001.	Which of the following is an advantage of s	tackir	ng?	в
	A Less complexity	В	Better prediction	
	C Lower time of execution	D	Low Memory	
002.	SVM stands for?			В
	A Simple Vector Machine	В	Support Vector Machine	
	C Super Vector Machine	D	Small Vector Machine	-
003.	SVM is a supervisedMachine Learningcan	be us	sed for	С
	A Regression	В	Classification	
004	C Either A of B	D	Clustering	C
004.	f(x) = sign(w/x+b)	R	f(x) = cian(w + x + h)	C
	$C = f(x) - sign(w^{*}x + b)$	Б	f(x) = sign(w + x + b)	
005	Which of the following is not a ensemble le	arnin	a techniques?	D
	A Bagging	B	Boosting	
	C Stacking	D	PCA	
006.	Which of the following is true about average	na er	nsemble?	С
	A It can only be used in classification	B	It can only be used in regression	-
	problem		problem	
	C It can be used in both classification as	s D	It cant be used in classification as	
	well as regression		well as regression	
007.	Which of the following algorithm is not an e	xamp	ble of an ensemble method?	D
	A Extra Tree Regressor	В	Random Forest	
	C Gradient Boosting	D	Decision Tree	
008.	Generally, an ensemble method works bett	er, if	the individual base models have	Α
	? Note: Suppose each indivi	idual	base models have accuracy greater	
	than 50%	-	TRAL CONTRACTOR CONTRACTOR REPORTS	
	A Less correlation among predictions	В	High correlation among predictions	
	on ensemble output	D	None of the above	
009.	Suppose you are dealing with 4 class class	ificati	ion problem and you want to train a	D
	SVM model on the data for that you are usi	ng O	ne-vs-all method.How many times we	
	need to train our SVM model in such case?	,		
	A 1	В	2	
	C 3	D	4	
010.	Suppose you have trained an SVM with line	ear de	ecision boundary after training SVM,	С
	you correctly infer that your SVM model is u	under	fitting. Which of the following option	
	would you more likely to consider iterating	SVM	next time?	
	A You want to increase your data points	В	You want to decrease your data	
		~	points	
	C You will try to calculate more	D	You will try to reduce the features	
011	If a dataset can be classified into two class	oe hv	using a single straight line, is called	۸
011.		63 Dy	using a single straight line, is called	~
	A Linear SVM	в	Non-Linear SVM	
	C Kernel SVM	D	Cluster SVM	
012.	Nave Bayes is?			Α
	A Conditional Independence	В	Conditional Dependence	
	C Un-conditional Independence	D	Un-conditional dependence	
013.	Support vector machines is		·	С
	A Semi-supervised Machine Learning	В	Unsupervised Machine Learning	
	C Supervised Machine Learning	D	Reinforcement learning	
014.	The effectiveness of an SVM NOT depends	s upo	n	D
	A Selection of Kernel	В	Kernel Parameters	
	C Soft Margin Parameter C	D	Size of data set	

015.	In Hyper plane, f(x)=sign(w*x+b) where w is	sa?		В
	A Constant	В	Vector	
	C Distance	D	Width	
016.	Closest Point to the hyper plane are suppor	t vec	tors	Α
	A Irue	В	False	
017	Which of the following is the consequence h		The inflew cases only	۸
017.	creating bayesian network?	Jeiwe	sen a node and its predecessors while	~
	A Conditionally independent	в	Functionally dependent	
	C Both Conditionally	D	Dependent	
	dependant&Dependant		•	
018.	Bayes rule can be used for			С
	A Solving queries	В	Increasing complexity	
	C Answering probabilistic query	D	Decreasing complexity	_
019.	Which of the following is NOT True about E	nsen	ble lechniques?	D
	A Bagging decreases the variance of	В	Boosting helps to decrease the blas	
	C Bagging combines the predictions	П	or the classifier.	
	from different models and then finally	U	available ensemble techniques	
	gives the results		available ensemble techniques.	
020.	The formula for Bayes ' theorem is give	en as	:	в
	P(B A)P(A)			
	$P(A B) = \frac{\Gamma(B A)\Gamma(A)}{\Gamma(B)}$			
	P(B) Where $P(B)$	۸) ia	3	
	A Posterior probability	A) IS B	: Likelihood probability	
	C. Prior Probability	D	Marginal Probability	
021.	In Naive Baves. Numerical variable must be	e binr	ned and converted to ?	Α
•=··	A Categorical Values	В	Numerical Values	
	C Only zeros	D	Only ones	
022.	terms are required for building a bay	es m	odel.	С
	A 1	В	2	
	C 3	D	4	_
023.	Naive Bayes requires?	D	Opto paria al Malva a	В
	A Numerical Values	В	Categorical Values	
024	Spam Classification is an example for?	D	In between 0 and 1 only	Δ
027.	A Naive Baves	B	Probabilistic condition	~
	C Random Forest	D	Logistic Regression	
025.	Which of the following is NOT true about Su	Ippor	t Vector Regression?	D
	A It is a supervised learning algorithm	В	It uses the same principle as the	
	that is used to predict discrete values		SVMs	
	C he basic idea behind SVR is to find	D	In SVR, the best fit line is the	
	the best fit line		hyperplane that has the minimum	
			number of points	
026.	Which of the following is not a machine lear	ning	algorithm?	Α
	A SVG C Pandom forost	D D		
027	Which of the following is NOT true about by	nern	lane in SV/M2	C
027.	A This best boundary is known as the	B	The dimensions of the hyperplane	Ŭ
	hyperplane of SVM.		depend on the features present in the	
			dataset	
	C If there are 2 features , then	D	We always create a hyperplane that	
	hyperplane will be a 2-dimension		has a maximum margin	

plane.

028.	In SV	M, The data points that are the closes	t to th	he hyperplane and which affect the	В
	positi	on of the hyperplane are termed as			
	A	Soft margin	В	Support Vectors	
	С	Hard margin	D	Nearest Neighbors	_
029.	What	do you mean by generalization error i	n terr	ns of the SVM?	В
	A	How far the hyperplane is from the	В	How accurately the SVM can predict	
	_	support vectors	_	outcomes for unseen data	
	С	The threshold amount of error in an	D	How accurately the SVM can predict	
		SVM		outcomes for trained data	
030.	The S	SVMs are less effective when			С
	A	The data is linearly separable	В	The data is clean and ready to use	
	С	The data is noisy and contains	D	The data has numerical values	
		overlapping points			
031.	Whicl	h of the following is the most popular c	choice	ofor text classification problems?	D
	А	Decision tree	В	Logistic regression	
	С	Random forest	D	Nave bayes	
032.	Whicl	h of the following is a disadvantage of	Nave	bayes algorithm?	D
	А	It can be used for Binary as well as	В	It performs well in Multi-class	
		Multi-class Classifications		predictions as compared to the other	
				Algorithms	
	С	It is the most popular choice for text	D	It assumes that all features are	
		classification problems		independent or unrelated, so it cannot	
		,		learn the relationship between	
				features.	
033.	Whicl	h of the followings in NOT an example	of Na	ave Baves Algorithm	D
	Α	Spam filtration	В	Sentimental analysis	
	С	Classifving articles	D	House rent prediction	
034.	Nave	Baves algorithm is based on	and	used for solving classification	Α
	proble	ems.			
	A	Baves Theorem	В	Candidate elimination algorithm	
	C	EM algorithm	D	S Algorithm	
035.	Whic	h of the followings is not a type of Nav	e Bav	ves Model	D
	A	Gaussian	B B	Multinomial	-
	C	Bernoulli	D	Polynomial	
036.	How	do we perform Bayesian classification	wher	some features are missing?	С
	A	We assuming the missing values as	B	We ignore the missing features	•
		the mean of all values	2		
	C	We integrate the posteriors	D	Drop the features completely	
	U	probabilities over the missing	0		
		features			
037		provides way and means of weighing	t un t	he desirability of goals and the	Δ
007.	likolih	_ provides way and means of weighing	g up i	The desirability of goals and the	Λ
	Δ	I Itility theory	R	Decision theory	
	C	Bavesian networks	D	Probability theory	
038	Proha	bility provides a way of summarizing t	tha	that comes from our laziness	R
030.	andia	ability provides a way of summarizing t			U
	Δ	Baliaf	R		
	\hat{c}	loint probability distributions	Л	Randomness	
USO	Time	complexity for Naive Raves classifier	for n f	icatura I classidatais	۸
033.	Δ	n*1	R	C(n±1)	A
	\hat{c}	$\bigcap(n^* I)$	Ы	O(n/L)	
040	Naivo	V(II L) Baves have attention to complex into	ractio	$\nabla(1^{\prime\prime} \vdash)$	Þ
V4U.	Δ	Statistical Model	R	Local Structure	D
	1 1				

	С	Dynamic Model	D	Logical Structure	
041.	Whi	ch of the following is true about weighte	d ma	jority votes?1. We want to give higher	D
	weig	gnts to better performing models 2. Infer	ior m	odels can overfule the best model if	
	SDA	cial case of weighted voting 4. We want	to ai	yner man best moder 5. Voting is	
	mod		to gr	ve low weights to better performing	
	A	1 and 2	в	1 and 3	
	C	1. 2 and 4	D	1. 2 and 3	
042.	Whi	ch of the following are correct statement	t(s) a	bout stacking? 1. A machine learning	С
-	mod	lel is trained on predictions of multiple m	nachi	ne learning models 2. A Logistic	-
	regr	ession will definitely work better in the s	econ	d stage as compared to other	
	clas	sification methods 3. First stage models	are	trained on full / partial feature space of	
	train	ning data 4. A machine learning model is	s trair	ned on prediction of single machine	
	learı	ning model			
	А	1 and 2	В	2 and 3	
	С	1 and 3	D	2 and 4	
043.	Whi	ch of the following can be one of the ste	ps in	stacking?1. Divide the training data	Α
	into	k folds 2. Train k models on each k-1 fo	lds a	nd get the out of fold predictions for	
	rema	aining one fold 3. Divide the test data se	et in k	folds and get individual fold	
	prec	dictions by different algorithms	-		
	A	1 and 2	В	2 and 3	
044		I and 3 adventages of Neve Peyes Clessifier	D	1, 2 and 3	•
044.	D150	Naive Bayes assumes that all	R	It performs well in Multi-class	A
	Λ	features are independent or	D	nredictions as compared to the other	
		unrelated so it cannot learn the		Algorithms	
		relationship between features.			
	С	Nave Bayes is one of the fast and	D	It is the most popular choice for text	
		easy ML algorithms to predict a class		classification problems.	
		of datasets.			
045.	Sup	pose you are given n predictions on test	t data	a by n different models (M1, M2, . Mn)	D
	resp	pectively. Which of the following method	(s) ca	an be used to combine the predictions	
	of th	nese models? Note: We are working on a	a reg	ression problem 1. Median 2. Product	
	3. A	1 2	D	2. 2 and 4	
	A C	1, Z 3, A	D D	2, 5 and 4	
046.	How	$\frac{1}{1}$ can we assign the weights to output of	diffe	rent models in an ensemble?1 Use an	С
• • • •	algo	prithm to return the optimal weights 2. Ch	noose	e the weights using cross validation 3.	•
	Give	e low weights to more accurate models	4. Giv	ve high weights to more accurate	
	mod	lels			
	А	1 and 2	В	1 and 3	
	С	1, 2 and 4	D	1, 2 and 3	
047.	Wha	at is true about an ensembled classifier?	'1. Cl	assifiers that are more sure can vote	D
	with	more conviction 2. Classifiers can be m	ores	ureabout a particular part of the space	
	3. IV	lost of the times, it performs better than	a sin	gle classifier	
	A	1 and 2	В	1 and 3	
048	U Whi	2 and 5 ch of the following option is / are correct		1, 2 dilu 3 arding benefits of ensemble model21	c
040.	Rett	er performance 2 Generalized models '	Red	tter interpretability	C
	A	1 and 3	э. Бе В	2 and 3	
	C	1 and 2	D	1, 2 and 3	
049.	Whi	ch of the following method is used for fir	nding	optimal of cluster in K-Mean	Α
	algo	vrithm?	5		
	А	Elbow method	В	Manhattan method	

	С	Ecludian method	D	Gaussian method	
050.		is basically a type of unsupervised	learn	ing method	В
	А	Unsupervised learning	В	clustering	
	С	semi supervised	D	classification	
051.	Feat	ure scaling is an important step before	apply	ing K-Mean algorithm. What is reason	Α
	behir	nd this?	_		
	A	In distance calculation it will give the	В	You always get the same clusters. If	
	~	same weights for all features	_	you use or dont use feature scaling	
	С	In Manhattan distance it is an	D	For easy remembering the values	
050	т. а	important step but in Euclidian it is not		for the second standard standard of the second standard standard standard standard standard standard standard s	_
052.	In the	e Naive Bayes algorithm, suppose that	prior	for class w1 is greater than class w2,	в
	woul	a the decision boundary shift towards the	ne re	gion R1 (region for deciding w1) or	
	towa	towarda ragion R1	D	towarda ragion P2	
	A C	No shift in decision boundary	D	It depends on the exact value of	
	C	No shint in decision boundary.	D	ni depends on the exact value of	
053	W/hic	h of the following statement is TRUE a	bout	the Bayes classifier?	Δ
000.	Δ	Bayes classifier works on the Bayes	R	Bayes classifier is an unsupervised	~
	/ `	theorem of probability	0	learning algorithm	
	С	Baves classifier is also known as	D	It assumes the independence	
	•	maximum apriori classifier.	_	between the independent variables or	
				features.	
054.	Wha	t is the minimum no. of variables/ featu	res re	equired to perform clustering?	В
	А	0	В	1	
	С	2	D	3	
055.	Whic	h of the following is/are valid iterative s	strateg	gy for treating missing values before	С
	clust	ering analysis?			
	А	Imputation with mean	В	Nearest Neighbor assignment	
	С	Imputation with Expectation	D	Imputation with mode	
		Maximization algorithm	_		_
056.	Whic	ch of the following techniques would per	rform	better for reducing dimensions of a	Α
	data	set?	-		
	А	Removing columns which have too	В	Removing columns which have high	
	\sim	many missing values	П	Variance in data	
	C	dete trende	D	many NULL values	
057	W/bic	uala lienus		I for reducing the dimensionality of	п
037.	data'	2	useu		U
	Α	t-SNF	в	PCA	
	C	I DA False	D	PAC	
058.	Whic	the following are the high and low	boun	ds for the existence of F-Score?	Α
	Α	[0,1]	В	(0,1)	
	С	[-1,1]	D	(-1,0)	
059.		is the task of dividing the populatio	n or c	lata points into a number of groups.	В
	Α	Unsupervised learning	В	clustering	
	С	semi supervised	D	classification	
060.	Whic	h of the following is not clustering meth	nod?		D
	А	Density-Based	В	Hierarchical Based	
	С	Grid-based	D	Project Based	
061.		consider the clusters as the de	nse re	egion having some similarity and	Α
	differ	ent from the lower dense region of the	spac	e	
	A	Density-Based	В	Hierarchical Based	
000	C	Grid-based	D	Distance based	-
062.	Aggl	omerative has approach			В

	А	top down	В	bottom up	
	С	dynamic	D	static	
063.	Princ	cipal Component Analysis is a/an		earning algorithm that is used for the	Α
	dime	ensionality reduction inmachine learning)		
	A	Unsupervised	В	Supervised	
	C	Semi-supervised	D .	Reinforcement	-
064.	PCA	works better if there is?A linear structu	ire in	thedatalf the data lies on acurved	С
	surfa	ace and not on a flat surfacelf variables	ares	scaled inthe same unit	
	A	1 and 2	В	2 and 3	
	C	1 and 3	D	1,2 and 3	~
065.	vvna	t is the importance of using PCA before	e the	clustering?	C
	A	Avoid bad features	В	Find the explained variance	
	C	Find which dimension of data	D	Find good realures to improve your	
066	\//ho	n uses PCA2		clustering score	^
000.		You want to find latent features and	D	When my data is small and with a fow	A
	А	roduce dimensionality	D	footuroo	
	\mathbf{c}	When I have a avertit appa	П	Evenutime before uses a Machine	
	C	when I have a overnit case	D	Everytime before uses a Machine	
067	W/by	you have to drep unimportant features	c		D
007.		Find the correct clusters	R	Lising the most important features will	D
	Λ		D	give you better efficiency predicting	
				your target	
	C	Standardize the data	П	To trains the model faster	
068.	Wha	t PCA does afterfall?	U		Δ
	A	Reduce dimensionality of the data	в	Create clusters in order to let you	
	,,	and create new features from	_	know what are the class	
		features set given			
	С	Predicts your target with high	D	Give you the highest number of	
	-	efficiency		features possible, to maximize the	
				efficience of vour Machine Learning	
				algorithm	
069.	Follo	wing the steps to run a PCA 's alg	jorith	m, why is so important standardize	С
	your	data?			
	A	Standardize data allows other people	В	Make the training time more fast	
		understand better your work			
	С	Find the features which can best	D	Use the best practices of data	
		predicts Y		wrangling	
070.	The	PCA algorithm is based on some math	emat	ical concepts such as	D
	A	Variance	В	Covariance	
	С	Eigen values and Eigen vectors	D	Confusion matrix	_
071.	A ma	atrix containing the covariance betweer	the	pair of variables is called	Α
	A	Covariance Matrix	В	Confusion matrix	
070	C	Correlation matrix	D	Error matrix	~
072.	VVhic	ch of the following are not an application	ns of	PCA?	D
	A	Image processing	В	movie recommendation system	
	C	optimizing the power allocation in	D	Relation between neight and weight	
070	\ / /l= : -	various communication channels	م مار م		~
073.		in or the following options are correct, v	vnen	you are applying PCA on a image	U
	aata	self 1. It can be used to effectively dete		elormable objects. 2. It is invariant to	
	ann	e transionns. 5. it can be used for lossy	/ ima	ge compression. 4. It is not invariant to	
	51180	1 and 2	P	2 and 3	
	н С	i allu z 3 and 4	D	∠ anu o 1 and 4	
	U U		υ	i allu 4	

074.	Whie A	ch of the following option is true? LDA explicitly attempts to model the difference between the classes of data. PCA on the other hand does not take into account any difference in class.	В	Both attempt to model the difference between the classes of data.	Α
	С	PCA explicitly attempts to model the difference between the classes of data. LDA on the other hand does not take into account any difference in class.	D	Both dont attempt to model the difference between the classes of data.	
075.	Imag at m	gine you are dealing with 10 class class ost how many discriminant vectors can	sificat be p	ion problem and you want to know that produced by LDA. What is the correct	В
	A C	20 21	B D	9 11	
076.	PCA	s generally tries to find the dime	ensio	nal surface to project the	Α
	A C	Lower, higher	B	Higher, lower	
077.	Whi	ch of the following statement is true for	a t-S	NE cost function?	В
	A C	It is asymmetric in nature. It is same as the cost function for SNF.	B D	It is symmetric in nature. It is same as t-test	
078.	Whi	ch of the following statement is correct	for t-	SNE and PCA?	D
	A	t-SNE is linear whereas PCA is non- linear	В	t-SNE and PCA both are linear	
	С	t-SNE and PCA both are nonlinear	D	t-SNE is nonlinear whereas PCA is linear	
079.	Whie algo A C	ch of the following is/are not true about rithm and Distribution based expectatio Both starts with random initializations Both have strong assumptions that	Cent on-ma B D	roid based K-Means clustering aximization clustering algorithm Both are iterative algorithms Expectation maximization algorithm is	D
000	\ A /I_ :	the data points must fulfill		a special case of K-Means	
080.	A	ch of the following algorithm is most ser K-means clustering algorithm	B	e to outliers? K-medians clustering algorithm	Α
081.	C In th	K-modes clustering algorithm le figure below, if you draw a horizontal	D line (K-centered clustering algorithm on y-axis for y=2. What will be the	в
		2.8		_	
		20			
		1.5 -			
		10		L	
	րստ	ber of clusters formed?	C	A 8	

nber 1 of clusters formed u

- А 3 С
- 082. If you are using Multinomial mixture models with the expectation-maximization С algorithm for clustering a set of data points into two clusters, which of the assumptions are important:

В

D

2

4

- All the data points follow two А Gaussian distribution
- С All the data points follow two multinomial distribution
- В All the data points follow n Gaussian distribution (n > 2)
- D All the data points follow n multinomial distribution (n > 2)
- **083.** The most popularly used dimensionality reduction algorithm is Principal Component С Analysis (PCA). Which of the following is/are true about PCA?PCA is an unsupervised methodIt searches for he directions that data have the largest varianceMaximum number of principal components <= number of featuresAll principal components are not orthogonal to each other
 - 1.2 Α
 - С 1,2,3

- 2.3 В
- 1,2,4 D
- 084. After performing K-Means Clustering analysis on a dataset, you observed the following D dendrogram. Which of the following conclusion can be drawn from the

dendrogram?

- There were 28 data points in А clustering analysis
- С The proximity function used is Average-link clustering
- The best no. of clusters for the В analyzed data points is 4
- The above dendrogram interpretation D is not possible for K-Means clustering analysis
- 085. How can Clustering (Unsupervised Learning) be used to improve the accuracy of С Linear Regression model (Supervised Learning)Creating different modelsfor different cluster groups. Creating an input feature for cluster ids as an ordinal variable. Creating an input feature for cluster centroids as a continuous variable. Creating an input featurefor cluster size as a continuous variable.
 - А 1 only

Α

1 and 2

С 1, 2, 3 and 4

- 1, 2 and 3
- D **086.** Which of the following clustering algorithms suffers from the problem of convergence at **D** local optima?K- Means clusteringalgorithmAgglomerative clusteringalgorithmExpectation-Maximizationclustering algorithmDiverse

В

clusteringalgorithm 1 only

- В
- С 2 and 4 D
- 087. In which of the following case LDA will fail?
 - If the discriminatory information is not B А in the mean but in the variance of the data
 - С If the discriminatory information is in D the mean and variance of the data

2 and 3

1 and 3

If the discriminatory information is in the mean but not in the variance of the data

Α

If the discriminatory information is not in the mean and not in the ariance of the data

088. Which of the following comparison(s) are true about PCA and LDA?Both LDA and PCA D arelinear transformation techniquesLDA is supervised whereasPCA is unsupervisedPCA maximize the varianceof the data, whereas LDA maximize the separation between different classes

	A	1 and 2	В	2 and 3	
000	C	1 and 3	D	1,2 and 3	-
089.	vvna	t will nappen when eigenvalues are rou	Jgniy	equal?	в
	A C	PCA will baye average performance	D	Capt Say	
non	U Whic	FCA will have average performance	ormir	Call Say	c
030.	fixed	I number of iterations 2 Assignment of	ohse	rvations to clusters does not change	C
	hetw	veen iterations. Except for cases with a	bad I	ocal minimum 3 Centroids do not	
	char	age between successive iterations, 4.Te	ermin	ate when RSS falls above a threshold.	
	A	1.2	В	2.3	
	С	1,2,3	D	1,3,4	
091.	Whic	ch of the following is/are not true about	DBS	CAN clustering algorithmFor data	D
	point	ts to be in acluster, they must be in a d	istand	ce threshold to a core pointIt has	
	stror	ng assumptionsfor the distribution of da	ta po	ints indataspacelt has substantially	
	hight	time complexity of order O(n ³)It does n	ot rec	quire priorknowledge of the no. of	
	desi	red clusters			
	А	1 only	В	2 only	
	С	4 only	D	2 and 3	_
092.	Wha	t is the trend in software nowadays?	-		Α
	A	to bring computer more &more closer	В	to solve complex problems	
	0	to user	Р	to be verestile	
002	U UD WI	to be task specific	D	to be versatile	C
095.	rodu	ction while working on a local machine	with	minimal computational power?	C
	A	Dataset with 1 Million entries and 300	B	Dataset with 100000 entries and 310	
		features	U	features	
	С	Dataset with 10.000 entries and 8	D	Dataset with 10.000 entries and 200	
	-	features		features	
094.	Wha	t could be the possible reason(s) for pr	oduc	ing two different dendrograms using	В
	aggl	omerative clustering algorithm for the s	ame	dataset?1. Proximity function used 2.	
	of da	ata points used 3. of variables used			
	A	Only 1	В	1, 2 and 3	
	С	Only 2	D _.	1 and 2	
095.	In wi	nich of the following cases will K-Mean	s clus	stering fail to give good results? Data	Α
	point	ts with outliersData points with different	aens	itiesData points with roundshapesData	
	poin	1 2 and 4	D	2 and 2	
	A C	1, 2 and 4	D	2 dilu 3 1 and 2	
096	Whic	2 and 4	for fir	n anu z ndina dissimilarity between two	П
000.	clust	ers in hierarchical clustering?Single-lin	kCon	nolete-linkAverage-link	0
	A	1 and 2	B	1 and 3	
	С	2 and 3	D	1. 2 and 3	
097.	Whic	ch of the following sequences is correct	t for a	K-Means algorithm using Forgy	Α
	meth	nod of initialization? Specify the numbe	r ofclu	ustersAssign cluster	
	cent	roidsrandomlyAssign each data point to	othe r	nearest cluster centroidRe-assign each	
	point	t tonearest cluster centroidsRe-comput	e clus	stercentroids	
	А	1, 2, 3, 5, 4	В	1, 3, 2, 4, 5	
	С	2, 1, 3, 4, 5	D	3, 4, 5, 2, 1	
098.	Wha	t are dendrites?			Α
	A	fibers of nerves	В	nuclear projections	
000	C	other name for nucleus	D	error in ANN	~
099.	vvna	t is snape of dendrites like	D	round	C
	A C	oval	Р	round	
	C	แยย	U	rectangular	

	The fundamental unit of network is			С
	A brain	В	nucleus	
	C neuron	D	axon	
101.	Whats the main point of difference between	hum	an & machine intelligence?	Α
	A human perceive everything as a	В	human have emotions	
	pattern while machine perceive it			
	merely as data			
	C human have more IQ & intellect	D	human have sense organs	_
102.	What is auto-association task in neural netw	vorks	?	В
	A find relation between 2 consecutive	В	related to storage & recall task	
	Inputs C predicting the future inpute		reducing features	
102	Example of a ungunaryized facture man?	D	reducing reatures	D
103.	A text recognition	R	voice recognition	D
	C image recognition	Л	image classification	
104	What is plasticity in neural networks?	D		Δ
104.	A input pattern keeps on changing	в	input pattern has become static	~
	C output pattern keeps on changing	D	output is static	
105.	John hopfield was credited for what importa	nt as	pec of neuron?	С
	A learning algorithms	В	adaptive signal processing	
	C energy analysis	D	searching algorithms	
106.	What is ART in neural networks?			С
	A automatic resonance theory	В	artificial resonance theory	
	C adaptive resonance theory	D	abstract resonance theory	
107.	Who proposed the first perceptron model in	1958	3?	D
	A McCulloch-pitts	В	Marvin Minsky	
	C Hopfield	D .	Rosenblatt	_
108.	Where does the chemical reactions take pla	ice in	neuron?	С
	A dendrites	В	axon	
400	C synapses	D	nucleus	~
109.	vinat is purpose of Axon?	D	transmittar	C
	A receptors		apporator	
110		U	generator	
110.	()narations in the natural natworks can parte	NERT MA	(hat kind at anarations?	n
	A serial	orm w B	hat kind of operations?	D
	A serial C random	Drm w B D	hat kind of operations? parallel serial or parallel	D
111.	A serial C random Which action is faster pattern classification	Drm w B D or ad	hat kind of operations? parallel serial or parallel iustment of weights in neural nets?	D
111.	A serial C random Which action is faster pattern classification A pattern classification	orm w B D or ad <u>j</u> B	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights	D A
111.	A serial C random Which action is faster pattern classification A pattern classification C equal	orm w B D or adj B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending	D
111.	A serial C random Which action is faster pattern classification A pattern classification C equal	orm w B D or ad <u></u> B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions	D
111. 112.	A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of	orm w B D or ad <u></u> B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning?	D A B
111. 112.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars 	orm w B D or ad B D of dee B	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction	D A B
111. 112.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing 	orm w B D or ad B D of dee B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions p learning? Home price prediction Pattern recognition	D A B
111. 112. 113.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of 	orm w B D or ad B D of dee B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition	D A B A
111. 112. 113.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning 	orm w B D or ad B D of dee B D B	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning	D A B A
111. 112. 113.	Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining	orm w B D or ad B D of dee B D B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing	D A B A
111. 112. 113. 114.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each 	or ad D or ad B D of dee B D B D n of w	 what kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? 	D A B A D
111. 112. 113. 114.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each A synchronization 	orm w B D or ad B D of dee B D D n of w B	 what kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? learning law 	D A B A D
 111. 112. 113. 114. 	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each A synchronization C learning algorithm 	orm w B D or ad B D of dee B D B D n of w B D	hat kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? learning law both learning algorithm & law	D A B A D
111. 112. 113. 114. 115.	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each A synchronization C learning algorithm What is an activation value? A weighted sum of inputto 	orm w B D or ad B D of dee B D D n of w B D	 what kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? learning law both learning algorithm & law 	D A B A D A
 111. 112. 113. 114. 115. 	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each A synchronization C learning algorithm What is an activation value? A weighted sum of inputs 	orm w B D or ad B D of dee B D D D n of w B D B D	 what kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? learning law both learning algorithm & law 	D A B A D A
 111. 112. 113. 114. 115. 116. 	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each A synchronization C learning algorithm What is an activation value? A weighted sum of inputs C main input to neuron Positive sign of weight indicates? 	orm w B D or ad B D of dee B D n of w B D B D B D	 what kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? learning law both learning algorithm & law threshold value initial value of neuron 	D A B A D A
 111. 112. 113. 114. 115. 116. 	 Operations in the neural networks can perfor A serial C random Which action is faster pattern classification A pattern classification C equal Which of the following is NOT an example of A Self-driving cars C Natural language processing Autoencoder is an example of A Deep learning C Data mining The procedure to incrementally update each A synchronization C learning algorithm What is an activation value? A weighted sum of inputs C main input to neuron Positive sign of weight indicates? 	orm w B D or ad B D of dee B D B D n of w B D B D B D B D B D	 what kind of operations? parallel serial or parallel justment of weights in neural nets? adjustment of weights either of them can be fast, depending on conditions ep learning? Home price prediction Pattern recognition Machine learning Data warehousing veights in neural is referred to as? learning law both learning algorithm & law threshold value initial value of neuron 	D A B A D A A

	С	can be either excitatory or inhibitory	D	excitatory output	
		as such			-
117.	Nega	ative sign of weight indicates?	-		в
	A	excitatory input	В		
	C	excitatory output	D		_
118.	Ine	amount of output of one unit received b	by and	other unit depends on what?	D
	A	output unit	В	input unit	
	С	activation value	D	weight	_
119.	Wha	t is gradient descent?	_	-	В
	A	Activation function	В	Optimization algorithm	
	С	Loss function	D	Cost function	_
120.	Wha	t does a gradient descent algorithm do	?		С
	A	Tries to find the parameters of a	В	Adjusts the weights at the input layers	
		model that minimizes the cost			
		function			
	С	Both A and B	D	Neither A nor B	
121.	Whic	ch of the following loss function is used	in re	gression?	С
	А	Logarithmic loss	В	Cross entropy	
	С	Mean squared error	D	sigmoid function	
122.	Whic	ch of the following deep learning models	s use	es back propagation?	С
	А	Convolutional Neural Network	В	Multilayer Perceptron Network	
	С	Recurrent Neural Network	D	Reinforcement Network	
123.	Whic	ch of the following is not a method used	l to p	revent overfitting in a neural network?	D
	А	Dropout of neurons	В	Early stopping	
	С	Batch normalization	D	one hot encoding	
124.	Whic	ch of the following is NOT a deep learni	ng lik	orary?	В
	А	Tensorflow	В	Pandas	
	С	PyTorch	D	Keras	
125.	Whic	ch of the following is true about bias?			С
	А	Bias is inherent in any predictive	В	Bias impacts the output of the	
		model		neurons	
	С	Both A and B	D	Neither A nor B	
126.	In Te	ensorFlow, what is the use of asession?	?		В
	А	The current work space session for	В	We launch the graph in a session	
		storingthe code			
	С	A session is used to download the	D	A session is used for exporting data	
		data		out ofTensorFlow	
127.	How	can we improve the calculation speed	in Te	ensorFlow, without losing accuracy?	Α
	Α	Using GPU	В	By doing random sampling on	
				Tensors	
	С	By removing few nodes from	D	By removing the hidden layers	
		computationalgraphs			
128.	How	calculations work in TensorFlow			С
	А	Through vector multiplications	В	Through RDDs	
	С	Through Computational Graphs	D	Through map reduce tasks	
129.	Whic	ch of the following activation function ca	in no	t be used in the output layer of an	Α
	imag	e classification model?			
	A	ReLu	В	Softmax	
	С	Sigmoid	D	Log function	
130.	Supp	pose you have a dataset from where vo	u ha	ve to predict three classes. Then which	Α
	of th	e following configuration you should us	e in t	he output layer?	
	А	Activation function = softmax, loss	В	Activation function = sigmoid, loss	
		function = cross entropy		function = cross entropy	
	С	Activation function = softmax, loss	D	Activation function = sigmoid, loss	
				5	

		function = mean squared error		function = mean squared error	
131.	Whie	ch tool is best suited for solvingDeep Le	earnii	ng problems?	D
	А	R	В	Sklearn	
	С	Excel	D	TensorFlow	
132.	A te	nsor is similar to			Α
	A	Data Array	В	ANN Model	
	С	SQL query	D	Pythoncode	_
133.	How	do you feed external data intoplacehol	Iders	?	В
	A	by using import data command	В	by using feed_dict	
404	C	by using read data function			-
134.	Can	We use GPU for faster computations in	ו וen	SOFFIOW Descible only on cloud	U
	A C	No, not possible Ressible only with small datasets	D		
125		Tonsorflow uses computation algraphy	D 2	res, possible	П
155.		Tensors are nothing but	R	Gaphs are easy to plot	U
	~	computationalgraphs	D	Capits are easy to plot	
	C	There is no such concept of	П	Calculations can be done in parallel	
	0	computational graphs in TensorFlow	D		
136	Kea	rs is a deep learning framework on whi	ch too		в
	A	R	B	TensorFlow	-
	С	SAS	D	Azure	
137.	Wha	it is the meaning of model=sequentil() i	n Kei	as?	С
	А	No such code in Keras	В	Keras should be used only for	
				sequentialmodels like RNNs	
	С	Keras builds sequential models	D	Creates a computational graph	
138.	Whie	ch tool is NOT Suited for buildingANN r	node	ls	С
	А	Python	В	TensorFlow	
	С	Excel	D	Keras	
139.	Can	we have multidimensional tensors			С
	А	No tensor can have maximum two	В	Possible only in image data	
	-	dimensions	_		
	C	Yes possible	D	Possible only in geo tagged data	_
140.	lens	sorFlow supports which python version	?		D
	A	Python 3.0	В	Python 3.3 Distance 2.02.0	
		Python 3.5	D	Python 3.63.9	~
141.		2 are main tensor type you can	D		C
	с С	Δ	Б	5	
142	Ten	sorFlow was initially released in	D	5	Δ
1721	A	November 9, 2015	 B	November 8 2015	Λ
	C	October 9, 2015	D	November 9, 2016	
143.	Whi	ch tool is a deep learning wrapper on T	enso	rFlow	В
	А	Python	В	Keras	
	С	PyTourch	D	Azure	
144.	How	v deep learning models are built on Kera	as		Α
	А	by using sequential models	В	by using feed_dict	
	С	by creating place holders and	D	by creating data frames	
		computationalgraphs			
145.	Tens	sorFlow is a free and open-source	k	based library for machine learning.	Α
	А	Python	В	Java	
	С	PHP	D	Angular	
146.	Tens	sorFlow is developed by			С
	А	IBM Team	В	Microsoft Team	
	С	Google Brain team	D	None of the above	