
Beams:

Bearns are slender members that are used for Supported transverse loading Long horizontal members used in buildings and bridges, and shafts supported in bearings. are some examples of beams.

In Beam Structure, the beams are joined together by welding, so that both forces and moments can be transmitted between the beams. purkaned off pearly



Each node has two degrees of freedom.

Typically, the degrees of freedom of Node 1 are 9, & 9: Here q is the transverse displacement and q is slope of rotation.

 $\therefore Q = [\gamma_1, \gamma_2, \gamma_3, \gamma_4, \dots]$

We Can consider the beam in terms of Natural coordinate system, then.

Here, V, V2 = Transverse displacements at Nodes 182. 0, 0 = Angular displacements/slopes.

Where, 01 = dv.

02 = dv2 in terms of Natural Coordinate

www.Jntufastupdates.com

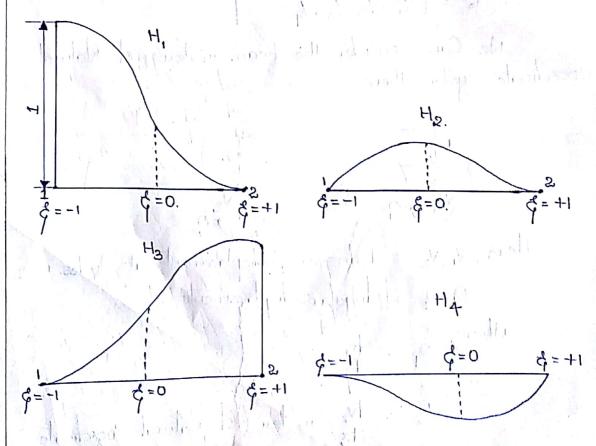
Hermite Shape Functions:

Where, i = 1,2,3,4.

Considering the boundary conditions.

$$\dot{\zeta} = -1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$$

$$\dot{\zeta} = +1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$


Now by applying the boundary conditions in the above equation 1, we can calculate the values of constants a; , bi ci and di . Then we get.

$$H_{1} = \frac{1}{4}(1-4)^{2}(2+4)$$

$$H_{2} = \frac{1}{4}(1-4)^{2}(4+1)$$

$$H_{3} = \frac{1}{4}(1+4)^{2}(2-4)$$

$$H_{4} = \frac{1}{4}(1+4)^{2}(4-1)$$

Considering the displacement function in terms of Natural cooxdinate system!

$$V = H_1 V_1 + H_2 \Theta_1 + H_3 V_2 + H_4 \Theta_2$$

$$V = H_1 V_1 + H_2 \frac{dv_1}{d\xi} + H_3 V_2 + H_4 \frac{dV_2}{d\xi} \longrightarrow (i)$$
Let Consider the Chain rule

$$\frac{dv}{d\xi} = \frac{dv}{dx} \cdot \frac{dx}{d\xi}$$

W.K.T

$$dx = \frac{1}{2}d\xi \Rightarrow \frac{dx}{d\xi} = \frac{1}{2}$$

System as.

where,
$$r_2 = \frac{dv}{dx}$$
 $r_4 = \frac{dv_2}{dx}$

Where,

$$H = \left[H_1, \frac{l_c}{2} H_2, H_3, \frac{l_c}{2} H_4 \right]$$

Now, for Calcutation of Sliffness Matriz: We should Consider the Hermite shape functions.

$$H_{1} = \frac{1}{4} (1 - \xi)^{2} (3 + \xi) \qquad H_{3} = \frac{1}{4} (1 + \xi)^{2} (2 - \xi)$$

$$H_{2} = \frac{1}{4} (1 - \xi)^{2} (\xi + 1) \qquad H_{4} = \frac{1}{4} (1 + \xi)^{2} (\xi - 1)$$

Now Calculating the Single & double derivations of the Hermite shape functions as shown. H, = 4 (1-8)2 (2+4) = 1 (1+ & 2 2 &) (2+ &) = 1 [0+262-48+6+63-262] H, = 1 [8-33 +2] $H_1 = \frac{dH_1}{d\xi} = \frac{1}{4} \left[3\xi^2 - 3 \right]$ $H_1^{11} = \frac{d^2H_1}{dz^2} = \frac{1}{4}[64]$ Similarly hedolis to sometime - it's H2 = 1 (1-8)2 (6+1) $=\frac{1}{4}(1+\xi^2-2\xi)(\xi+1)$ H2 = 4 (3-3-4-4+1) : H3 = dH2 = 1 [3 = 2 - 2 = 1]

$$H_{5}' = \frac{dH_{2}}{d\xi} = \frac{1}{4} \left[3\xi^{2} - 2\xi - 1 \right]$$

$$H_{5}'' = \frac{dH_{2}}{d\xi^{2}} = \frac{1}{4} \left[6\xi - 2 \right]$$

$$H_{3} = \frac{1}{4} (1 + \xi)^{2} (2 - \xi)$$

$$=\frac{1}{4}(2+3\xi+4\xi-\xi-\xi-\xi-\xi)$$

$$+\frac{1}{3}=\frac{1}{4}(-\xi+3\xi+3)$$

$$-\frac{1}{3}=\frac{1}{4}(-\xi+3\xi+3)$$

 $= \frac{1}{4} \left(1 + \xi^{2} + 2\xi \right) \left(2 - \xi \right)$

8
$$H_4 = \frac{1}{4}(1+6)^2(8-1)$$

 $= \frac{1}{4}(1+6)^2(8-1)$
 $= \frac{1}{4}(1+6)^2(8-1)$

Now Considering the Strain Energy Term $U = \frac{1}{2} \int EI \frac{d^2v}{dx^2} dx.$

By solving we get.

U= 1/2 9 Ke 9.

where,
$$k_{e} = \frac{ET}{l_{e}^{3}} \begin{bmatrix} 12 & 6l_{e} & -12 & 6l_{e} \\ 6l_{e} & 4l_{e}^{2} & -6l_{e} & 2l_{e}^{2} \end{bmatrix}$$

$$-12 - 6l_{e} \quad 12 - 6l_{e}$$

$$6l_{e} \quad 2l_{e}^{2} - 6l_{e} \quad 4l_{e}^{2}$$

We = Clement Stiffness Matrix.

Load Vector:

Let 'p' be the Uniformly distributed load over

the length 'L'.

1 1 1 1 1 1 1 1 1 1 1 2 Down

2 Upward

Let (1) (10) 1 . 11 $\Rightarrow \int P. V^{T}. dx$ Where $V = Hq \Rightarrow V = Hq^{T}$ $dx = \frac{1}{2}dx$ ⇒ JP. HgT. Leds => Dle JHTdq. 9T Let Consider the Hermite term. 36 H C€ > [H, le H2 H3 le H4] de =>] H dE le HodE JHodE Le SH4dE Now Let JH, de = 4 (3-34+2)de $\Rightarrow \frac{1}{4} \left[\frac{1}{4} - \frac{3}{2} + 2 - \left[\frac{1}{4} - \frac{3}{4} - 2 \right] \right]$ Hade = + (*) =1 1 Hode = 1 (83-82-6+1)de

$$= \frac{1}{8} \left[\frac{2^{4}}{4} - \frac{2^{3}}{3} - \frac{2^{2}}{2} + E \right]^{\frac{1}{4}}$$

$$= \frac{1}{8} \left[\frac{2^{4}}{4} - \frac{2^{3}}{3} - \frac{2^{2}}{2} + E \right]^{\frac{1}{4}}$$

www.Jntufastupdates.com

$$= \frac{1}{8} \left[\frac{1}{4} - \frac{1}{3} - \frac{1}{2} + 1 - \left[\frac{1}{4} + \frac{1}{3} - \frac{1}{2} - 1 \right] \right]$$

$$= \frac{1}{8} \left[\frac{1}{4} - \frac{1}{3} - \frac{1}{2} + 1 - \frac{1}{4} - \frac{1}{3} + \frac{1}{2} + 1 \right]$$

$$= \frac{1}{8} \left[-\frac{2}{3} + 2 \right]$$

$$= \frac{1}{8} \left[-\frac{2}{3} + 2 \right]$$

$$= \frac{1}{8} \left[-\frac{2}{3} + 2 \right]$$

$$= \frac{1}{4} \left[-\frac{2}{4} + \frac{3}{3} + 2 + 2 \right]$$

$$= \frac{1}{4} \left[-\frac{1}{4} + \frac{3}{3} + 2 - \left[-\frac{1}{4} + \frac{3}{3} - 2 \right] \right]$$

$$= \frac{1}{4} \left[-\frac{1}{4} + \frac{3}{3} + 2 - \left[-\frac{1}{4} + \frac{3}{3} - 2 \right] \right]$$

$$= \frac{1}{4} \left[-\frac{1}{4} + \frac{3}{3} + 2 - \left[-\frac{1}{4} + \frac{3}{3} - 2 \right] \right]$$

$$= \frac{1}{4} \left[-\frac{1}{4} + \frac{3}{3} + 2 - \left[-\frac{1}{4} + \frac{3}{3} - \frac{1}{2} - 2 \right] \right]$$

$$= \frac{1}{4} \left[-\frac{1}{4} + \frac{3}{3} + 2 - \frac{1}{4} - \frac{1}{3} - \frac{1}{2} + 1 \right]$$

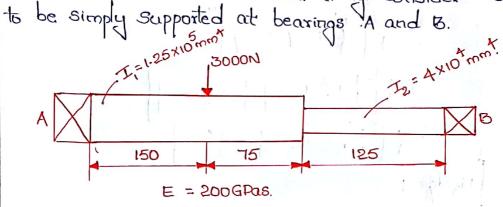
$$= \frac{1}{8} \left[\frac{2}{4} + \frac{4}{3} - \frac{3}{2} - \frac{2}{3} - \frac{1}{3} \right]$$

$$= \frac{1}{8} \left[\frac{2}{4} + \frac{4}{3} - \frac{1}{2} - 1 - \left[-\frac{1}{4} - \frac{1}{3} - \frac{1}{2} + 1 \right] \right]$$

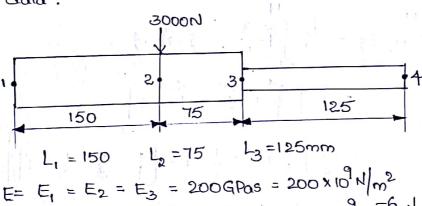
$$= \frac{1}{8} \left[\frac{2}{3} - 2 \right] \Rightarrow \frac{1}{8} \left[\frac{2 - 6}{3} \right] = \frac{1}{12} \left[-\frac{4}{3} \right]$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \right]$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{12} \frac{1}{1$$


e
$$f_e = \begin{bmatrix} \frac{Pl_e}{2} & \frac{Pl_e^2}{12} & \frac{Pl_e}{2} & \frac{Pl_e^2}{12} \end{bmatrix}^T$$
 for Upward dist.
8 $f_e = \begin{bmatrix} \frac{Pl_e}{2} & \frac{Pl_e^2}{12} & \frac{Pl_e^2}{2} & \frac{Pl_e^2}{12} \end{bmatrix}^T$ for downward dist.

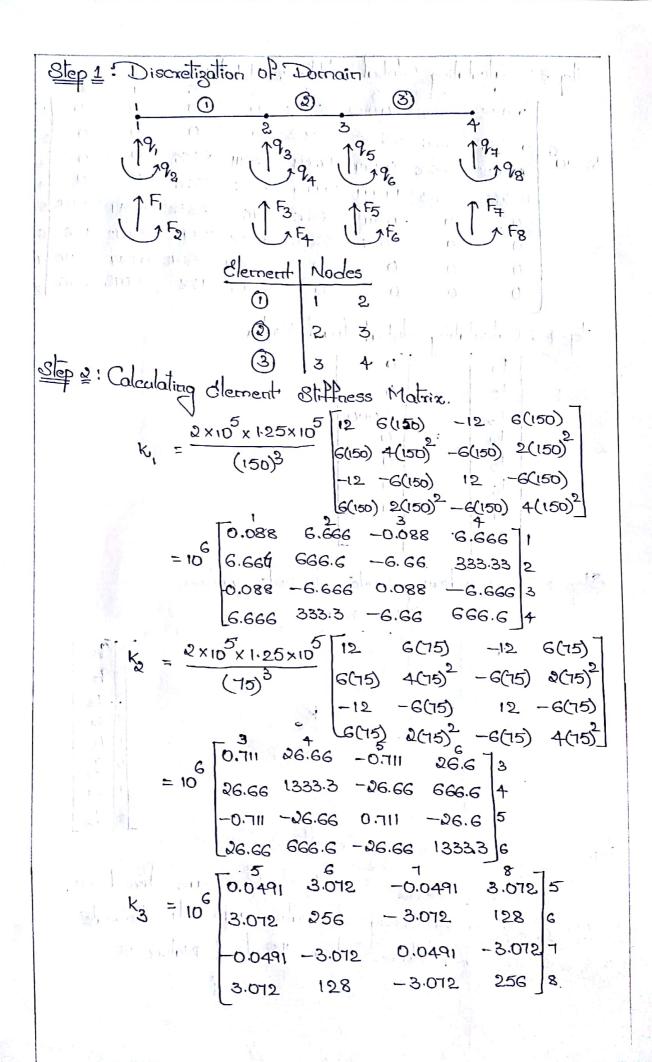
Problems:


(1)

Model 1:

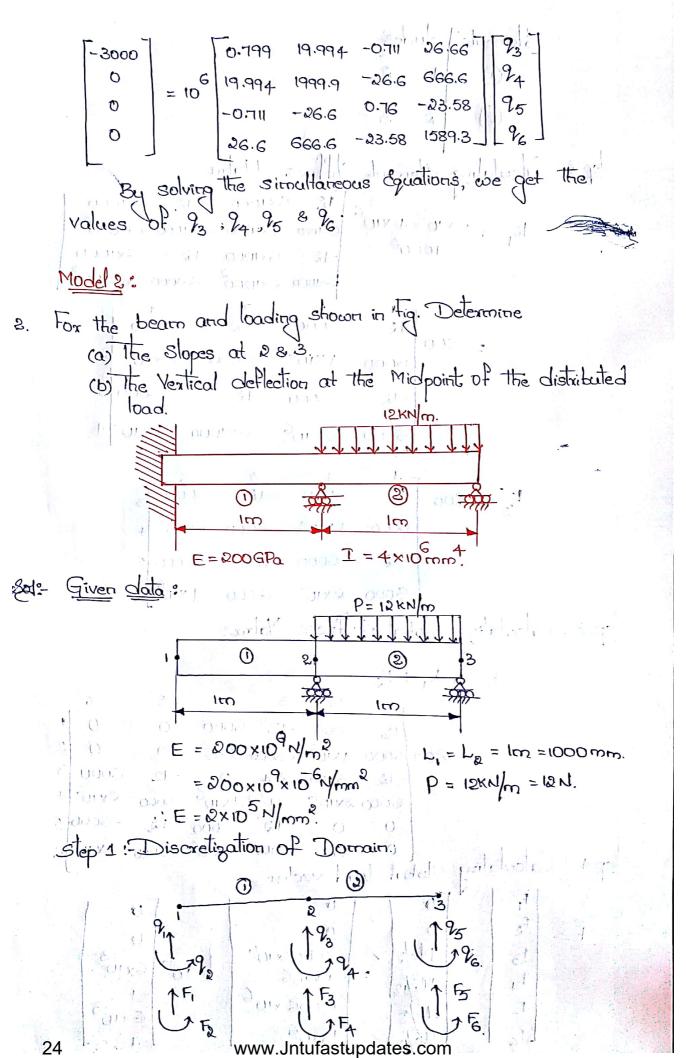
Find the deflection at the load and the slopes at the ends for the steel shaft shown in fig. Consider the shaft to be simply supported at bearings. A and B.

Sol Given data:


$$= 200 \times 10^{5} \, \text{N/mm}^{2}$$

$$= 2 \times 10^{5} \, \text{N/mm}^{2}$$

$$I_{1} = 1.25 \times 10^{5} \text{ mm}^{4}$$


$$I_{2} = 1.25 \times 10^{5} \text{ mm}^{4}$$

$$I_{3} = 4 \times 10^{4} \text{ mm}^{4}$$

Step 3: Calculating Global Stiffers Motion.
0.088 6.666 -0.088 6.666 0 0 0 0 1 6.666 6.666 -6.66 233.3 0 0 0 0 2 K.=10 -0.088 -6.666 0.199 19.994 -0.111 26.66 0 0 3 6.666 333.3 19.994 1999.9 -26.6 666.6 0 0 4
0.088 6.666 -0.082 6.666 0
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6.666 6666 0000 19.994 -07111 06.66 0 0 3
-0.088 -6.66 0.119 1999.9 -26.6 666.6 0 0 4-
5.555
0 0 50.6 500.00 -3.012 0.049 -3.012 7
0 0 0 0 0 2:072 256 8
Step 4 : Calculating Global load Vector.
Slep 4 " Colculating Global
$F = \begin{bmatrix} F_2 \\ \end{bmatrix}$
$ F_3 = -3000 $
F ₄ = 0
F ₅ 0
FG 0
Step 4 " Calculating Global load Vector. F = F2 F3 F4 F5 F6 F7 F8
- I - I - I - I - I - I - I - I - I - I
Step 5: Considering Finité derneut Quation.
F = KU
T= 1/ T 2 3 4 3 5 7 1 7 7
3,92
-3000 £10 K
5 95
7 97
8 98
et . 1 Branchica Conditions.
step 6: Applying Boundary Conditions.
Since Node 1 and Node 2 are fixed i.e.,
9,=92=94=98=0. By using Chroination approach, Eliminate 1,2,7, & 8 xxxx and Columns, then the final Matrix is.
1,2,7, &8 xocos and Columns, well
NO. 10 2 1997

www.Intufastundates.com

Scanned by CamScanner

dl to I Nodes
Clements Nodes
Step 2: Calculating Glement Stiffness Matrix. $K_1 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_2 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_3 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_4 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_5 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_6 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_7 = \frac{2 \times 10 \times 4 \times 10}{1000^3}$ $K_8 = \frac{2 \times 10 \times 10}{1000^3}$ $K_8 = \frac{2 \times 10}{1000^3}$
step 2: Calculating Glement Stiffness Malrie.
K = 2 × 10 × 4×10 6×1000 4×1000 -6×1000 2×1000
10003 -12 -6x1000 12 -6x1000
EXIDOD 2×1000 -6×1000 4
- 800 12 6000 -12 6000
6000 4x10 -6000 2x10 2
$= 800 \begin{vmatrix} 2 & 6000 & -12 & 6000 \\ 6000 & 4 \times 10^6 & -6000 & 2 \times 10^6 \\ -12 & -6000 & 12 & -6000 & 3 \end{vmatrix}$ $= 6000 2 \times 10^6 & -6 \times 1000 4 \times 10^6 & 4 $
[6000 2x 106 -6x 1008 24 x 10]
$K_{2} = 800$ $\begin{bmatrix} 12 & 6000 & -12 & 6000 \\ 6000 & 4 \times 10^{6} & -6000 & 2 \times 10^{6} \\ -12 & -6000 & 12 & -6000 \end{bmatrix} = 6000$ $\begin{bmatrix} 6000 & 2 \times 10^{6} & -6000 & 4 \times 10^{6} \end{bmatrix} = 6000$
6000 4×10 -6000 2×10 4
-12 -6000 12 -6000 5
[6000 Rx106 -6000 4x106]6
step 3: Calculating Global Stiffness Matrix:
$K = K_1 + K_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{2}$ 800 6000 4×10^6 -6000 4×10^6 0 0 2
6000 2×106 0 8×106 -6000 2×106 4
0 0 -12 -6000 12 -6000 5 0 0 6000 2×106 -6000 4×10.6
F3 - Ple/2 -0.006x106 66x103
Ple/12 1 X 106 - 1 -3
Fig. F3 F3 F4 F5 F6 Www.Intufastupdates.com Global load vector.

Scanned by CamScanner

Step 5: Considering Finite Glement Countion.

$$F = KQ$$
 Or $F = KQ$
 $C = KQ$

26