SOFTWARE ENGINEERING
R19 JNTUK

IV UNIT Notes

P. Suresh Babu, Assistant Professor

SURESH.MENTOR@GMAIL.COM

www.Jntufastupdates.com

UNIT- IV

Design with Context of Software Engineering, The Design Process, Design Concepts, The Design
Model. Software Architecture, Architecture Genres, Architecture Styles, Architectural Design,
Assessing Alternative Architectural Designs, Architectural Mapping Using Data Flow. Component,
Designing Class-Based Components, Conducting Component-level Design, Component Level
Design for WebApps, Designing Traditional Components, Component-Based Development.

Design Concepts

Introduction: Software design encompasses the set of principles, concepts, and practices that lead
to the development of a high-quality system or product. Design principles establish an overriding
philosophy that guides you in the design work you must perform. Design is pivotal to successful
software engineering.

The goal of design is to produce a model or representation that exhibits firmness,
commodity, and delight Software design changes continually as new methods, better analysis, and
broader understanding evolve.

DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING

Software design sits at the technical kernel of software engineering and is applied regardless
of the software process model that is used. Beginning once software requirements have been
analyzed and modeled, software design is the last software engineering action within the modeling
activity and sets the stage for construction (code generation and testing).

Each of the elements of the requirements model provides information that is necessary to
create the four design models required for a complete specification of design. The flow of
information during software design is illustrated in following figure.

The requirements model, manifested by scenario-based, class-based, flow-oriented, and
behavioral elements, feed the design task.

The data/class design transforms class models into design class realizations and the
requisite data structures required to implement the software.

The architectural design defines the relationship between major structural elements of the
software, the architectural styles and design patterns that can be used to achieve the requirements
defined for the system, and the constraints that affect the way in which architecture can be
implemented. The architectural design representation—the framework of a computer- based
system—is derived from the requirements model.

SURESH.MENTOR@GMAIL.COM

www.Jntufastupdates.com

Scenerio-based Flow-oriented Component-
elements elements Level Design
Use cases - fext Data flow diagrams
Usecase diagrams Control-flow diagrams
Activity diagrams Processing narratives
Swimlane diagrams Interface Design

Andlysis Model

Class-based Behavioral .]
elements elements Architectural Design

State diagrams

Class diagrams :
Sequence diagrams

Analysis packages
CRC models Data/Class Design
Collaboration diagrams

Design Model

Fig : Translating the requirements model into the design model

The interface design describes how the software communicates with systems that
interoperate with it, and with humans who use it. An interface implies a flow of information (e.g.,
data and/or control) and a specific type of behavior. Therefore, usage scenarios and behavioral
models provide much of the information required for interface design.

The component-level design transforms structural elements of the software architecture
into a procedural description of software components. Information obtained from the class-based
models, flow models, and behavioral models serve as the basis for component design.

The importance of software design can be stated with a single word—quality. Design is the
place where quality is fostered in software engineering. Design provides you with representations
of software that can be assessed for quality. Design is the only way that you can accurately translate
stakeholder’s requirements into a finished software product or system. Software design serves as
the foundation for all the software engineering and software support activities that follow.

THE DESIGN PROCESS

Software design is an iterative process through which requirements are translated into a
“blueprint” for constructing the software. Initially, the blueprint depicts a holistic view of software. That
is, the design is represented at a high level of abstraction.

Software Quality Guidelines and Attributes

McGlaughlin suggests three characteristics that serve as a guide for the evaluation of a good design:

The design must implement all of the explicit requirements contained in the requirements model, and it
must accommodate all of the implicit requirements desired by stakeholders.

The design must be a readable, understandable guide for those who generate code and for those who
test and subsequently support the software.
|

SURESH.MENTOR@GMAIL.COM 3

www.Jntufastupdates.com 3

The design should provide a complete picture of the software, addressing the data, functional, and
behavioral domains from an implementation perspective.

Quality Guidelines. To evaluate the quality of a design representation, consider the following guidelines:

A design should exhibit an architecture that (1) has been created using recognizable architectural styles
or patterns, (2) is composed of components that exhibit good design characteristics and (3) can be
implemented in an evolutionary fashion,2 thereby facilitating implementation and testing.

A design should be modular; that is, the software should be logically partitioned into elements or
subsystems.

A design should contain distinct representations of data, architecture, interfaces, and components.

A design should lead to data structures that are appropriate for the classes to be implemented and are
drawn from recognizable data patterns.

A design should lead to components that exhibit independent functional characteristics.

A design should lead to interfaces that reduce the complexity of connections between components and
with the external environment.

A design should be derived using a repeatable method that is driven by information obtained during
software requirements analysis.

A design should be represented using a notation that effectively communicates its meaning.

Quality Attributes. Hewlett-Packard developed a set of software quality attributes that has been given
the acronym FURPS—functionality, usability, reliability, performance, and supportability. The FURPS
quality attributes represent a target for all software design:

Functionality is assessed by evaluating the feature set and capabilities of the program, the generality of
the functions that are delivered, and the security of the overall system.

Usability is assessed by considering human factors, overall aesthetics, consistency, and documentation.
Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of output
results, the mean-time-to-failure (MTTF), the ability to recover from failure, and the predictability of the
program.

Performance is measured by considering processing speed, response time, resource consumption,
throughput, and efficiency.

Supportability combines the ability to extend the program (extensibility), adaptability, serviceability—
these three attributes represent a more common term, maintainability— and in addition, testability,
compatibility, configurability, the ease with which a system can be installed, and the ease with which
problems can be localized.

The Evolution of Software Design

The evolution of software design is a continuing process that has now spanned almost six decades. Early
design work concentrated on criteria for the development of modular programs and methods for refining
software structures in a top-down manner. Procedural aspects of design definition evolved into a
philosophy called structured programming.

A number of design methods, growing out of the work just noted, are being applied throughout the
industry. All of these methods have a number of common characteristics: (1) a mechanism for the
translation of the requirements model into a design representation, (2) a notation for representing
functional components and their interfaces, (3) heuristics for refinement and partitioning, and (4)
guidelines for quality assessment.

. __|
SURESH.MENTOR@GMAIL.COM 4

www.Jntufastupdates.com 4

DESIGN CONCEPTS

A set of fundamental software design concepts has evolved over the history of software engineering.
Each provides the software designer with a foundation from which more sophisticated design methods
can be applied. Each helps you answer the following questions:

e What criteria can be used to partition software into individual components?
e How is function or data structure detail separated from a conceptual representation of the
software?
e What uniform criteria define the technical quality of a software design?
The following brief overview of important software design concepts that span both traditional and
object-oriented software development.
Abstraction

Abstraction is the act of representing essential features without including the background
details or explanations. the abstraction is used to reduce complexity and allow efficient design and
implementation of complex software systems. Many levels of abstraction can be posed. At the highest
level of abstraction, a solution is stated in broad terms using the language of the problem environment.
At lower levels of abstraction, a more detailed description of the solution is provided.

As different levels of abstraction are developed, you work to create both procedural and data
abstractions.

A procedural abstraction refers to a sequence of instructions that have a specific and limited function.
The name of a procedural abstraction implies these functions, but specific details are suppressed.

A data abstraction is a named collection of data that describes a data object.

Architecture

Software architecture alludes to “the overall structure of the software and the ways in which that
structure provides conceptual integrity for a system” Architecture is the structure or organization of
program components (modules), the manner in which these components interact, and the structure of
data that are used by the components.

Shaw and Garlan describe a set of properties that should be specified as part of an architectural design:
Structural properties. This aspect of the architectural design representation defines the components of a
system (e.g., modules, objects, filters) and the manner in which those components are packaged and
interact with one another.

Extra-functional properties. The architectural design description should address how the design
architecture achieves requirements for performance, capacity, reliability, security, adaptability, and other
system characteristics.

Families of related systems. The architectural design should draw upon repeatable patterns that are
commonly encountered in the design of families of similar systems. In essence, the design should have
the ability to reuse architectural building blocks.

The architectural design can be represented using one or more of a number of different models.
Structural models: Represent architecture as an organized collection of program components.
Framework models: Increase the level of design abstraction by attempting to identify repeatable
architectural design frameworks that are encountered in similar types of applications.

Dynamic models : Address the behavioral aspects of the program architecture, indicating how the
structure or system configuration may change as a function of external events.

. __|
SURESH.MENTOR@GMAIL.COM 5

www.Jntufastupdates.com)

Process models :Focus on the design of the business or technical process that the system must
accommodate.

Functional models can be used to represent the functional hierarchy of a system.

A number of different architectural description languages (ADLs) have been developed to represent
these models.

Patterns

Brad Appleton defines a design pattern in the following manner: “A pattern is a named nugget of insight
which conveys the essence of a proven solution to a recurring problem within a certain context amidst
competing concerns”

A design pattern describes a design structure that solves a particular design problem within a specific
context and amid “forces” that may have an impact on the manner in which the pattern is applied and
used.

The intent of each design pattern is to provide a description that enables a designer to determine (1)
whether the pattern is applicable to the current work, (2) whether the pattern can be reused (hence,
saving design time), and (3) whether the pattern can serve as a guide for developing a similar, but
functionally or structurally different pattern.

Separation of Concerns

Separation of concerns is a design concept that suggests that any complex problem can be more easily
handled if it is subdivided into pieces that can each be solved and/or optimized independently. A concern
is a feature or behavior that is specified as part of the requirements model for the software.

Separation of concerns is manifested in other related design concepts: modularity, aspects,
functional independence, and refinement. Each will be discussed in the subsections that follow.

8.3.5 Modularity

Modularity is the most common manifestation of separation of concerns. Software is divided into
separately named and addressable components, sometimes called module.
Modularity is the single attribute of software that allows a program to be intellectually manageable

! Total software cost

i
‘\ /’ Cost to integrate

Region of minimum
b cost ’

~ -’
s M -

o

Cost or effort

|] Cost/module

| | -
7=

Number of modules

Fig : Modularity and software cost
- |

SURESH.MENTOR@GMAIL.COM 6

www.Jntufastupdates.com 6

Information Hiding

The principle of information hiding suggests that modules be “characterized by design decisions that
hides from all others.” In other words, modules should be specified and designed so that information
contained within a module is inaccessible to other modules that have no need for such information.

The use of information hiding as a design criterion for modular systems provides the greatest benefits
when modifications are required during testing and later during software maintenance. Because most
data and procedural detail are hidden from other parts of the software, inadvertent errors introduced
during modification are less likely to propagate to other locations within the software.

Functional Independence

The concept of functional independence is a direct outgrowth of separation of concerns,
modaularity, and the concepts of abstraction and information hiding. Functional independence is
achieved by developing modules with “single minded” function and an “aversion” to excessive
interaction with other modules.

Independence is assessed using two qualitative criteria: cohesion and coupling. Cohesion is
an indication of the relative functional strength of a module. Coupling is an indication of the relative
interdependence among modules.

Cohesion is a natural extension of the information-hiding concept. A cohesive module
performs a single task, requiring little interaction with other components in other parts of a program.
Stated simply, a cohesive module should do just one thing. Although you should always strive for
high cohesion (i.e., single-mindedness).

Coupling is an indication of interconnection among modules in a software structure.
Coupling depends on the interface complexity between modules, the point at which entry or
reference is made to a module, and what data pass across the interface. In software design, you
should strive for the lowest possible coupling.

Refinement

Stepwise refinement is a top-down design strategy originally proposed by Niklaus Wirth.
Refinement is actually a process of elaboration. You begin with a statement of function that is
defined at a high level of abstraction.

Abstraction and refinement are complementary concepts. Abstraction enables you to specify procedure
and data internally but suppress the need for “outsiders” to have knowledge of low-level details.
Refinement helps you to reveal low-level details as design progresses.

Aspects

An aspect is a representation of a crosscutting concern. A crosscutting concern is some characteristic of
the system that applies across many different requirements.

. __|
SURESH.MENTOR@GMAIL.COM 7

www.Jntufastupdates.com 7

Refactoring

An important design activity suggested for many agile methods, refactoring is a reorganization
technique that simplifies the design (or code) of a component without changing its function or behavior.
Fowler defines refactoring in the following manner: “Refactoring is the process of changing a software
system in such a way that it does not alter the external behavior of the

code [design] yet improves its internal structure.”

Object-Oriented Design Concepts

The object-oriented (OO) paradigm is widely used in modern software engineering. OO design concepts
such as classes and objects, inheritance, messages, and polymorphism, among others.

Design Classes

The requirements model defines a set of analysis classes. Each describes some element of the problem
domain, focusing on aspects of the problem that are user visible. A set of design classes that refine the
analysis classes by providing design detail that will enable the classes to be implemented, and implement
a software infrastructure that supports the business solution. Five different types of design classes, each
representing a different layer of the design architecture, can be developed:

User interface classes define all abstractions that are necessary for human computer interaction (HCI).
The design classes for the interface may be visual representations of the elements of the metaphor.
Business domain classes are often refinements of the analysis classes defined earlier. The classes identify
the attributes and services (methods) that are required to implement some element of the business
domain.

Process classes implement lower-level business abstractions required to fully manage the business
domain classes.

Persistent classes represent data stores (e.g., a database) that will persist beyond the execution of the
software.

System classes implement software management and control functions that enable the system to operate
and communicate within its computing environment and with the outside world.

Arlow and Neustadt suggest that each design class be reviewed to ensure that it is “well- formed.”

They define four characteristics of a well-formed design class:

e Complete and sufficient. A design class should be the complete encapsulation of all attributes
and methods that can reasonably be expected to exist for the class. Sufficiency ensures that the
design class contains only those methods that are sufficient to achieve the intent of the class, no
more and no less.

e Primitiveness. Methods associated with a design class should be focused on accomplishing one
service for the class. Once the service has been implemented with a method, the class should not
provide another way to accomplish the same thing.

o High cohesion. A cohesive design class has a small, focused set of responsibilities and single-
mindedly applies attributes and methods to implement those responsibilities.

e Low coupling. Within the design model, it is necessary for design classes to collaborate with one
another. If a design model is highly coupled, the system is difficult to implement, to test, and to
maintain over time.

. __|
SURESH.MENTOR@GMAIL.COM 8

www.Jntufastupdates.com 8

THE DESIGN MODEL

The design model can be viewed in two different dimensions. The process dimension indicates the
evolution of the design model as design tasks are executed as part of the software process. The
abstraction dimension represents the level of detail as each element of the analysis model is transformed
into a design equivalent and then refined iteratively. The design model has four major elements: data,
architecture, components, and interface.

3.4.1. Data Design Elements

Data design (sometimes referred to as data architecting) creates a model of data and/or information that
is represented at a high level of abstraction (the customer/user’s view of data). This data model is then
refined into progressively more implementation-specific representations that can be processed by the
computer-based system. The structure of data has always been an important part of software design. At
the program component level, the design of data structures and the associated algorithms required to
manipulate them is essential to the creation of high- quality applications. At the application level, the
translation of a data model into a database is pivotal to achieving the business objectives of a system. At
the business level, the collection of information stored in disparate databases and reorganized into a
“data warehouse” enables data mining or knowledge discovery that can have an impact on the success of
the business itself.

High

Analysis model I

Class diogroms

Class diagrams

Anoiysis ockages

Ana|ysis(§)ockoges Uk sssas tast ER% rgo els 4 Requirements:
c 2 i i ¥
5 CRC mo e_|s Osa ceise diciareig Do cﬂorat(liqn iagrams Constraints
‘a Collaboration Activity diagrams Gt oW tcésrcms Interoperubdlty
¢ diagrams ivity Control-flow iagrams Torcahs ondl
: Swimlane diagrams . . gels | .
0 Data flow diagrams ; Processmg narratives f
Collaboration f configuration
£ ControHlow diagrams e State diagrams
3 Processing narratives agrems Sequence diagrams
T 9 State |cgré:ms q 9
£ "SYTrccecnnna. Sequence iagrams
8 l ----------------
s | k] RN R
g 1. . vV 1 1 TUTToreeessad...
P Designclass | | | | UUTTEUEespeeaall]l
b . o %« °r 0N g TEEieesdenaas
) realizaons | v | 1 | | TTTTUeeesealdllll.
-8 Subsystems_ Technical interface Component diagrams Besidial lizati
g Collaboration design Design classes Seglgn class redlizations
diagrams Navigation design Activity diagrams Cillzyl;?rr:tsion Foarams
Desi del it Seguenss;clagroms Componentdiogrgms
Segn mooe Design (jCISSéS
: : Activity diagrams
/?E/?/Iéj/ﬂ&'ﬂff fo. Refinements to: Seque?lme lagrams
De5'9|'.1 < 'G.SS Component diagrams
S rga 'fa 1ons Design classes
Low CU HSYQ emtg Activity diagrams i
Od'ggfcr?nlson Sequence |Qgrcms Dep|oymenf lengmS
Architecture Interface Componenf-leve| Dep|o ment-level
elements elements elements elements

Process dimension

Fig : Dimensions of the design model

SURESH.MENTOR@GMAIL.COM

www.Jntufastupdates.com

3.4.2 Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The floor
plan depicts the overall layout of the rooms; their size, shape, and relationship to one another; and
the doors and windows that allow movement into and out of the rooms. Architectural design
elements give us an overall view of the software.

The architectural model is derived from three sources:
(1) information about the application domain for the software to be built.
(2) specific requirements model elements such as data flow diagrams or analysis classes, their
relationships, and collaborations for the problem at hand; and
(3) the availability of architectural styles and patterns.
The architectural design element is usually depicted as a set of interconnected
subsystems, often derived from analysis packages within the requirements model.

3.4.3. Interface Design Elements

The interface design for software is analogous to a set of detailed drawings for the doors, windows, and
external utilities of a house.
There are three important elements of interface design:

(1) the user interface (Ul);

(2) external interfaces to other systems, devices, networks, or other producers or consumers of
information; and

(3) internal interfaces between various design components.

These interface design elements allow the software to communicate externally and enable internal
communication and collaboration among the components that populate the software architecture.

Component-Level Design Elements

The component-level design for software is the equivalent to a set of detailed drawings for each room in
a house. These drawings depict wiring and plumbing within each room, the location of electrical
receptacles and wall switches, sinks, showers, tubs, drains, cabinets, and closets.

The component-level design for software fully describes the internal detail of each software component.
To accomplish this, the component-level design defines data structures for all local data objects and
algorithmic detail for all processing that occurs within a component and an interface that allows access
to all component operations.

Deployment-Level Design Elements

Deployment-level design elements indicate how software functionality and subsystems will be allocated
within the physical computing environment that will support the software. Deployment diagrams begin
in descriptor form, where the deployment environment is described in general terms. Later, instance
form is used and elements of the configuration are explicitly described.

. __|
SURESH.MENTOR@GMAIL.COM 10

www.Jntufastupdates.com 10

Architectural Design
SOFTWARE ARCHITECTURE

Architecture serves as a blueprint for a system. It provides an abstraction to manage the system
complexity and establish a communication and coordination mechanism among components. It defines
a structured solution to meet all the technical and operational requirements, while optimizing the
common quality attributes like performance and security.

What Is Architecture?
Bass, Clements, and Kazman define this elusive term in the following way:

“The software architecture of a program or computing system is the structure or structures of the
system, which comprise software components, the externally visible properties of those components,
and the relationships among them.”

The architecture is not the operational software. Rather, it is a representation that enables you to

e analyze the effectiveness of the design in meeting its stated requirements,
e consider architectural alternatives at a stage when making design changes is still relatively easy,
and
e reduce the risks associated with the construction of the software.
Why Is Architecture Important?

Bass and his colleagues identify three key reasons that software architecture is important:

e Representations of software architecture are an enabler for communication between all parties
(stakeholders) interested in the development of a computer-based system.

e The architecture highlights early design decisions that will have a profound impact on all software
engineering work that follows and, as important, on the ultimate success of the system as an
operational entity.

e Architecture “constitutes a relatively small, intellectually graspable model of how the system is
structured and how its components work together” The architectural design model and the
architectural patterns contained within it are transferable.

Architectural Descriptions

An architectural description of a software-based system must exhibit characteristics that

are analogous to those noted for the office building.

The IEEE Computer Society has proposed, Recommended Practice for Architectural
Description of Software-Intensive Systems, with the following objectives:

e to establish a conceptual framework and vocabulary for use during the design of software
architecture,

e to provide detailed guidelines for representing an architectural description, and

e to encourage sound architectural design practices.

The IEEE standard defines an architectural description (AD) as “a collection of products to document an
architecture.” The description itself is represented using multiple views, where each view is “a
representation of a whole system from the perspective of a related set of concerns.”

. __|
SURESH.MENTOR@GMAIL.COM 11

www.Jntufastupdates.com 11

Architectural Decisions

Each view developed as part of an architectural description addresses a specific stakeholder concern. To
develop each view (and the architectural description as a whole) the system architect considers a variety
of alternatives and ultimately decides on the specific architectural features that best meet the concern.
Therefore, architectural decisions themselves can be considered to be one view of the architecture. The
reasons that decisions were made provide insight into the structure of a system and its conformance to
stakeholder concerns.

ARCHITECTURAL GENRES

The architectural genre will often dictate the specific architectural approach to the structure that must be
built. In the context of architectural design, genre implies a specific category within the overall software
domain. Within each category, you encounter a number of subcategories. Grady Booch suggests the
following architectural genres for software-based systems:

e Artificial intelligence—Systems that simulate or augment human cognition, locomotion, or other
organic processes.

e Commercial and nonprofit—Systems that are fundamental to the operation of a business
enterprise.

e Communications—Systems that provide the infrastructure for transferring and managing data,
for connecting users of that data, or for presenting data at the edge of an infrastructure.

e Content authoring—Systems that are used to create or manipulate textual or multimedia
artifacts. Devices—Systems that interact with the physical world to provide some point service
for an individual.

e Entertainment and sports—Systems that manage public events or that provide a large group
entertainment experience.

e Financial—Systems that provide the infrastructure for transferring and managing money and
other securities.

e Games—Systems that provide an entertainment experience for individuals or groups. e
Government—Systems that support the conduct and operations of a local, state, federal, global,
or other political entity.

e Industrial —Systems that simulate or control physical processes.

e Legal—Systems that support the legal industry.

e Medical—Systems that diagnose or heal or that contribute to medical research.

e Military—Systems for consultation, communications, command, control, and intelligence as well
as offensive and defensive weapons.

e Operating systems—Systems that sit just above hardware to provide basic software services.

e Platforms—Systems that sit just above operating systems to provide advanced services.

e Scientific—Systems that are used for scientific research and applications.

e Tools—Systems that are used to develop other systems.

e Transportation—Systems that control water, ground, air, or space vehicles.

e Utilities—Systems that interact with other software to provide some point service.

. __|
SURESH.MENTOR@GMAIL.COM 12

www.Jntufastupdates.com 12

ARCHITECTURAL STYLES

An architectural style as a descriptive mechanism to differentiate the house from other styles. The
software that is built for computer-based systems also exhibits one of many architectural styles. Each style
describes a system category that encompasses (1) a set of components (e.g., a database, computational
modules) that perform a function required by a system; (2) a set of connectors that enable
“communication, coordination and cooperation” among components; (3) constraints that define how
components can be integrated to form the system; and (4) semantic models that enable a designer to
understand the overall properties of a system by analyzing the known properties of its constituent parts.
An architectural style is a transformation that is imposed on the design of an entire system. The intent is
to establish a structure for all components of the system.

A Brief Taxonomy of Architectural Styles

Data-centered architectures. A data store (e.g., a file or database) resides at the center of this architecture
and is accessed frequently by other components that update, add, delete, or otherwise modify data within
the store. The following figure illustrates a typical data-centered style. Client software accesses a central
repository. In some cases the data repository is passive.

Data-centered architectures promote integrability.

Client Client
software software

Client
software

Client
software

Data store
(repository or

blackboard)

Client
software

Client Client
software software

Fig : Data-centered architecture

Data-flow architectures. This architecture is applied when input data are to be transformed through a
series of computational or manipulative components into output data. A pipe-and-filter pattern shown in
following figure. It has a set of components, called filters, connected by pipes that transmit data from one
component to the next. Each filter works independently of those components upstream and downstream,
is designed to expect data input of a certain form, and produces data output of a specified form. However,
the filter does not require knowledge of the Workings of its neighboring filters.

. __|
SURESH.MENTOR@GMAIL.COM 13

www.Jntufastupdates.com 13

Pipes

e,

—/

Filter I—>

Filter

Filter H Filter I—

-
>
r o

Filter I->

Pipes and filters

Filter I<—

Fig : Data-flow architecture

Filter

1

Call and return architectures. This architectural style enables you to achieve a program structure that is
relatively easy to modify and scale. A number of sub styles exist within this category:

Main program

’\

Controller Controller Controller
subprogram subprogram subprogram
Application Application Application Application Application
subprogram subprogram subprogram subprogram subprogram
Application Application
subprogram subprogram

Fig : Main program/subprogram architecture

Main program/subprogram architectures. This classic program structure decomposes function
into a control hierarchy where a “main” program invokes a number of program components that
in turn may invoke still other components. The following figure illustrates an architecture of this
type.
Remote procedure call architectures. The components of a main program/subprogram
architecture are distributed across multiple computers on a network.

Object-oriented architectures. The components of a system encapsulate data and the operations that
must be applied to manipulate the data. Communication and coordination between components are
accomplished via message passing.

. __|
SURESH.MENTOR@GMAIL.COM

www.Jntufastupdates.com

14

14

Layered architectures. The basic structure of a layered architecture is illustrated in following figure. A
number of different layers are defined, each accomplishing operations that progressively become closer
to the machine instruction set. At the outer layer, components service user interface operations. At the
inner layer, components perform operating system interfacing. Intermediate layers provide utility services
and application software functions.

Components

User interface layer

Application layer

Fig : Layered architecture

Architectural Patterns

Architectural patterns address an application-specific problem within a specific context and under a set
of limitations and constraints. The pattern proposes an architectural solution that can serve as the basis
for architectural design.

Organization and Refinement

The following questions provide insight into an architectural style:

Control. How is control managed within the architecture? Does a distinct control hierarchy exist, and if
so, what is the role of components within this control hierarchy? How do components transfer control
within the system? How is control shared among components? What is the control topology? Is control
synchronized or do components operate asynchronously?

Data. How are data communicated between components? Is the flow of data continuous, or are data
objects passed to the system sporadically? What is the mode of data transfer? Do data components exist,
and if so, what is their role? How do functional components interact with data components? Are data
components passive or active? How do data and control interact within the system?

. __|
SURESH.MENTOR@GMAIL.COM 15

www.Jntufastupdates.com 15

These questions provide the designer with an early assessment of design quality and lay the foundation
for more detailed analysis of the architecture.

ARCHITECTURAL DESIGN

As architectural design begins, the software to be developed must be put into context—that is, the design
should define the external entities (other systems, devices, people) that the software interacts with and
the nature of the interaction. Once context is modeled and all external software interfaces have been
described, you can identify a set of architectural archetypes.

An archetype is an abstraction (similar to a class) that represents one element of system behavior. The
set of archetypes provides a collection of abstractions that must be modeled architecturally if the system
is to be constructed, but the archetypes themselves do not provide enough implementation detail.
Representing the System in Context

At the architectural design level, a software architect uses an architectural context diagram(ACD) to
model the manner in which software interacts with entities external to its boundaries. The generic
structure of the architectural context diagram is illustrated in following figure. Referring to the figure,
systems that interoperate with the target system (the system for which an architectural design is to be
developed) are represented as
e Superordinate systems—those systems that use the target system as part of some higher-level
processing scheme.
e Subordinate systems—those systems that are used by the target system and provide data or
processing that are necessary to complete target system functionality.
e Peer-level systems—those systems that interact on a peer-to-peer basis (i.e., information is either
produced or consumed by the peers and the target system.
e Actors—entities (people, devices) that interact with the target system by producing or consuming
information that is necessary for requisite processing.

Superordinate systems

—

Target system

Uses
Uses Peers
ctors !
Depends on
Subordinate systems
Fig : Architectural context diagram
SURESH.MENTOR@GMAIL.COM 16

www.Jntufastupdates.com 16

Defining Archetypes
An archetype is a class or pattern that represents a core abstraction that is critical to the design of an
architecture for the target system. In general, a relatively small set of archetypes is required to design
even relatively complex systems. The target system architecture is composed of these archetypes, which
represent stable elements of the architecture but may be instantiated many different ways based on the
behavior of the system.

The following archetypes can be used :

e Node. Represents a cohesive collection of input and output elements of the home security
function. For example a node might be comprised of (1) various sensors and (2) a variety of alarm
(output) indicators.

e Detector. An abstraction that encompasses all sensing equipment that feeds information into the
target system.

e Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing lights, bell)
for indicating that an alarm condition is occurring.

e Controller. An abstraction that depicts the mechanism that allows the arming or disarming of a
node. If controllers reside on a network, they have the ability to communicate with one another.

Controller

T I Communicates with

Node

AN

Detector Indicator

Refining the Architecture into Components
As the software architecture is refined into components, the structure of the system begins to emerge.
The architecture must accommodate many infrastructure components that enable application
components but have no business connection to the application domain. Set of top-level components
that address the following functionality:

e External communication management—coordinates communication of the security function

with external entities such as other Internet-based systems and external alarm notification.

e Control panel processing—manages all control panel functionality.

e Detector management—coordinates access to all detectors attached to the system.

o Alarm processing—verifies and acts on all alarm conditions.
Each of these top-level components would have to be elaborated iteratively and then positioned within
the overall architecture.

. __|
SURESH.MENTOR@GMAIL.COM 17

www.Jntufastupdates.com 17

ASSESSING ALTERNATIVE ARCHITECTURAL DESIGNS

An Architecture Trade-Off Analysis Method

The Software Engineering Institute (SEl) has developed an architecture trade-off analysis method
(ATAM) that establishes an iterative evaluation process for software architectures. The design analysis
activities that follow are performed iteratively:
*Collect scenarios. A set of use cases is developed to represent the system from the user’s point
of view.
*Elicit requirements, constraints, and environment description. This information is determined as
part of requirements engineering and is used to be certain that all stakeholder concerns have been
addressed.
*Describe the architectural styles/patterns that have been chosen to address the scenarios and
requirements. The architectural style(s) should be described using one of the following
architectural views:
. Module view for analysis of work assignments with components and the degree
to which information hiding has been achieved.
. Process view for analysis of system performance.
. Data flow view for analysis of the degree to which the architecture meets
functional requirements.
1. Evaluate quality attributes by considering each attribute in isolation. The number of quality
attributes chosen for analysis is a function of the time available for review and the degree to which
quality attributes are relevant to the system at hand. Quality attributes for architectural design
assessment include reliability, performance, security, maintainability, flexibility, testability,
portability, reusability, and interoperability.
2. Identify the sensitivity of quality attributes to various architectural attributes for a specific
architectural style. This can be accomplished by making small changes in the architecture and
determining how sensitive a quality attribute, say performance, is to the change. Any attributes that
are significantly affected by variation in the architecture are termed sensitivity points.
3. Critique candidate architectures (developed in step 3) using the sensitivity analysis conducted
in step 5.

Architectural Complexity

A useful technique for assessing the overall complexity of a proposed architecture is to consider
dependencies between components within the architecture. These dependencies are driven by
information/control flow within the system. Zhao suggests three types of dependencies: Sharing
dependencies represent dependence relationships among consumers who use the same resource or
producers who produce for the same consumers

Flow dependencies represent dependence relationships between producers and consumers of
resources.

Constrained dependencies represent constraints on the relative flow of control among a set of activities.
Architectural Description Languages

Architectural description language (ADL) provides a semantics and syntax for describing a software
architecture. Hofmann and his colleagues suggest that an ADL should provide the designer with the ability
to decompose architectural components, compose individual components into larger architectural blocks,
and represent interfaces (connection mechanisms) between components.

. __|
SURESH.MENTOR@GMAIL.COM 18

www.Jntufastupdates.com 18

ARCHITECTURAL MAPPING USING DATA FLOW

A mapping technique, called structured design is often characterized as a data flow- oriented design
method because it provides a convenient transition from a data flow diagram to software architecture.
The transition from information flow (represented as a DFD) to program structure is accomplished as part
of a six step process:

1. the type of information flow is established,
flow boundaries are indicated,
the DFD is mapped into the program structure,
control hierarchy is defined,
the resultant structure is refined using design measures and heuristics, and

6. the architectural description is refined and elaborated.
In order to perform the mapping, the type of information flow must be determined. One type of
information flow is called transform flow and exhibits a linear quality. Data flows into the system along
an incoming flow path where it is transformed from an external world
representation into internalized form. Once it has been internalized, it is processed at a
transform center. Finally, it flows out of the system along an outgoing flow path that transforms the data
into external world.
Transform Mapping

vk wn

Transform mapping is a set of design steps that allows a DFD with transform flow characteristics to be
mapped into a specific architectural style. To map data flow diagrams into a software architecture, you
would initiate the following design steps:

Step 1. Review the fundamental system model. The fundamental system model : The fundamental
system model or context diagram depicts the security function as a single transformation, representing
the external producers and consumers of data that flow into and out of the function. The following figure
depicts a level 0 context model, and the next figure shows refined data flow for the security function,

User commands Display
and data information

SafeHome

software ’ Alarm

Sensor Telephone Telephone
Sensors - number tones line

Fig : Context-level DFD for the SafeHome security function

SURESH.MENTOR@GMAIL.COM 19

www.Jntufastupdates.com 19

— ———
— —

User commands — e
ongrgofa . il S
/// \\\
-~ \\
7 \\
4 Configuration N
7 d%to
// Interact Configure \\
[wit request Contiguration information \
| user :
| Activate/ Configuration !
\\ Password eactivate cﬂ:to 1
\ system A/D msg. /I
\ P
\ Fpoass @ / Control
N AT W) e
S Conf(ljgt#ronon /in ormotlyon

——— -

~ Sensor
information

Alarm I

Teleiphone

ine

Monitor
sensors

Sensors
Sensor
status

Fig : Level 1 DFD for the SafeHome security function

Telephone
number tones

Step 2. Review and refine data flow diagrams for the software. Information obtained from the
requirements model is refined to produce greater detail

Step 3. Determine whether the DFD has transform or transaction flow characteristics. Evaluating the
DFD, we see data entering the software along one incoming path and exiting along three outgoing paths.
Therefore, an overall transform characteristic will be assumed for information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing flow boundaries. Incoming
data flows along a path in which information is converted from external to internal form; outgoing flow
converts internalized data to external form. Incoming and outgoing flow boundaries are open to
interpretation. That is, different designers may select slightly different points in the flow as boundary
locations.

Step 5. Perform “first-level factoring.” The program architecture derived using this mapping results in a
top-down distribution of control. Factoring leads to a program structure in which top-level components
perform decision making and low level components perform most input, computation, and output work.
Middle-level components perform some control and do moderate amounts of work.

Step 6. Perform “second-level factoring.” Second-level factoring is accomplished by mapping individual
transforms (bubbles) of a DFD into appropriate modules within the architecture. Beginning at the
transform center boundary and moving outward along incoming and then outgoing paths, transforms are
mapped into subordinate levels of the software structure. The general approach to second level is a one-
to-one mapping between DFD transforms and software modules, different mappings frequently occur.
Two or even three bubbles can be combined and represented as one component, or a single bubble may
be expanded to two or more components.

. __|
SURESH.MENTOR@GMAIL.COM 20

www.Jntufastupdates.com 20

Step 7. Refine the first-iteration architecture using design heuristics for improved software quality. A
first-iteration architecture can always be refined by applying concepts of functional independence.
Components are exploded or imploded to produce sensible factoring, separation of concerns, good
cohesion, minimal coupling, and most important, a structure that can be implemented without difficulty,
tested without confusion, and maintained without grief.

Refining the Architectural Design

Refinement of software architecture during early stages of design is to be encouraged. Design
refinement should strive for the smallest number of components that is consistent with effective
modaularity and the least complex data structure that adequately serves information requirements.

Component-level design

Component-level design occurs after the first iteration of architectural design has been completed. At this
stage, the overall data and program structure of the software has been established. The intent is to
translate the design model into operational software.

WHAT IS A COMPONENT?

A component is a modular building block for computer software. More formally, the

OMG Unified Modeling Language Specification defines a component as “a modular, deployable, and
replaceable part of a system that encapsulates implementation and exposes a set of interfaces.”

The true meaning of the term component will differ depending on the point of view of the software
engineer who uses it.

An Object-Oriented View

In the context of object-oriented software engineering, a component contains a set of collaborating
classes. Each class within a component has been fully elaborated to include all attributes and operations
that are relevant to its implementation. As part of the design elaboration, all interfaces that enable the
classes to communicate and collaborate with other design classes must also be defined. To accomplish
this, you begin with the requirements model and elaborate analysis classes and infrastructure classes.

The Traditional View

In the context of traditional software engineering, a component is a functional element of a program that
incorporates processing logic, the internal data structures that are required to implement the processing
logic, and an interface that enables the component to be invoked and data to be passed to it. A traditional
component, also called a module, resides within the software architecture and serves one of three
important roles:

1. A control component that coordinates the invocation of all other problem domain components,

2. aproblem domain component that implements a complete or partial function that is required
by the customer, or

3. aninfrastructure component that is responsible for functions that support the processing
required in the problem domain.

. __|
SURESH.MENTOR@GMAIL.COM 21

www.Jntufastupdates.com 21

DESIGNING CLASS-BASED COMPONENTS

Basic Design Principles

Four basic design principles are applicable to component-level design and have been widely adopted
when object-oriented software engineering is applied.

The Open-Closed Principle (OCP). “A module [component] should be open for extension but closed for
modification” This statement seems to be a contradiction, but it represents one of the most important
characteristics of a good component-level design. Stated simply, you should specify the component in a
way that allows it to be extended without the need to make internal modifications to the component
itself.

The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for their base classes”. This
design principle, originally proposed by Barbara Liskov, suggests that a component that uses a base class
should continue to function properly if a class derived from the base class is passed to the component
instead. LSP demands that any class derived from a base class must honor any implied contract between
the base class and the components that use it. In the context of this discussion, a “contract” is a
precondition that must be true before the component uses a base class and a post condition that should
be true after the component uses a base class.

Dependency Inversion Principle (DIP). “Depend on abstractions. Do not depend on concretions”. The
more a component depends on other concrete components, the more difficult it will be to extend.

The Interface Segregation Principle (ISP). “Many client-specific interfaces are better than one general
purpose interface”. ISP suggests that you should create a specialized interface to serve each major
category of clients. Only those operations that are relevant to a particular category of clients should be
specified in the interface for that client. If multiple clients require the same operations, it should be
specified in each of the specialized interfaces.

The Release Reuse Equivalency Principle (REP). “The granule of reuse is the granule of release”. When
classes or components are designed for reuse, there is an implicit contract that is established between
the developer of the reusable entity and the people who will use it. The developer commits to establish a
release control system that supports and maintains older versions of the entity while the users slowly
upgrade to the most current version. Rather than addressing each class individually, it is often advisable
to group reusable classes into packages that can be managed and controlled as newer versions evolve.
The Common Closure Principle (CCP). “Classes that change together belong together.” Classes should
be packaged cohesively. That is, when classes are packaged as part of a design, they should address the
same functional or behavioral area. When some characteristic of that area must change, it is likely that
only those classes within the package will require modification.

This leads to more effective change control and release management.

The Common Reuse Principle (CRP). “Classes that aren’t reused together should not be grouped
together”. When one or more classes within a package changes, the release number of the package
changes. All other classes or packages that rely on the package that has been changed must now update
to the most recent release of the package and be tested to ensure that the new release operates without
incident. If classes are not grouped cohesively, it is possible that a class with no relationship to other
classes within a package is changed.

. __|
SURESH.MENTOR@GMAIL.COM 22

www.Jntufastupdates.com 22

Component-Level Design Guidelines
Ambler suggests the following guidelines:

Components. Naming conventions should be established for components that are specified as part of
the architectural model and then refined and elaborated as part of the component-level model.
Architectural component names should be drawn from the problem domain and should have meaning to
all stakeholders who view the architectural model.

Interfaces. Interfaces provide important information about communication and collaboration.
Ambler recommends that (1) lollipop representation of an interface should be used in lieu of the more
formal UML box and dashed arrow approach, when diagrams grow complex; (2) for consistency,
interfaces should flow from the left-hand side of the component box; (3) only those interfaces that are
relevant to the component under consideration should be shown, even if other interfaces are available.
Cohesion

cohesion is the “single-mindedness” of a component. Lethbridge and Laganiére define a number of
different types of cohesion

Functional. Exhibited primarily by operations, this level of cohesion occurs when a component performs
a targeted computation and then returns a result.

Layer. Exhibited by packages, components, and classes, this type of cohesion occurs when a higher layer
accesses the services of a lower layer, but lower layers do not access higher layers.

Communicational. All operations that access the same data are defined within one class. In general,
such classes focus solely on the data in question, accessing and storing it.

Coupling

Coupling is a qualitative measure of the degree to which classes are connected to one another. As classes
(and components) become more interdependent, coupling increases. An important objective in
component-level design is to keep coupling as low as is possible.

Class coupling can manifest itself in a variety of ways. Lethbridge and Laganiére define the following
coupling categories:

Content coupling. Occurs when one component “surreptitiously modifies data that is internal to another
component”.

Common coupling. Occurs when a number of components all make use of a global variable. Although this
is sometimes necessary, common coupling can lead to uncontrolled error propagation and unforeseen
side effects when changes are made.

Control coupling. Occurs when operation A() invokes operation B() and passes a control flag to

B. The control flag then “directs” logical flow within B. The problem with this form of coupling is that an
unrelated change in B can result in the necessity to change the meaning of the control flag that A passes.
If this is overlooked, an error will result.

Stamp coupling. Occurs when ClassB is declared as a type for an argument of an operation of ClassA.
Because ClassB is now a part of the definition of ClassA, modifying the system becomes more complex.
Data coupling. Occurs when operations pass long strings of data arguments. The “bandwidth” of
communication between classes and components grows and the complexity of the interface increases.
Testing and maintenance are more difficult.

Routine call coupling. Occurs when one operation invokes another. This level of coupling is common and
is often quite necessary. However, it does increase the connectedness of a system. Type use coupling.
Occurs when component A uses a data type defined in component B. If the type definition changes, every
component that uses the definition must also change.

. __|
SURESH.MENTOR@GMAIL.COM 23

www.Jntufastupdates.com 23

Inclusion or import coupling. Occurs when component A imports or includes a package or the content of
component B.

External coupling. Occurs when a component communicates or collaborates with infrastructure
components. Although this type of coupling is necessary, it should be limited to a small number of
components or classes within a system.

Software must communicate internally and externally. Therefore, coupling is a fact of life. However, the
designer should work to reduce coupling whenever possible.

CONDUCTING COMPONENT-LEVEL DESIGN

The following steps represent a typical task set for component-level design, when it is applied for an
object-oriented system.

Step 1. Identify all design classes that correspond to the problem domain. Using the requirements and
architectural model, each analysis class and architectural component is elaborated.

Step 2. Identify all design classes that correspond to the infrastructure domain. These classes are not
described in the requirements model and are often missing from the architecture model, but they must
be described at this point.

Step 3. Elaborate all design classes that are not acquired as reusable components. Elaboration requires
that all interfaces, attributes, and operations necessary to implement the class be described in detail.
Design heuristics (e.g., component cohesion and coupling) must be considered as this task is conducted.

Step 3a. Specify message details when classes or components collaborate. The requirements model
makes use of a collaboration diagram to show how analysis classes collaborate with one another. As
component-level design proceeds, it is sometimes useful to show the details of these collaborations by
specifying the structure of messages that are passed between objects within a system. Although this
design activity is optional, it can be used as a precursor to the specification of interfaces that show how
components within the system communicate and collaborate. Step 3c. Elaborate attributes and define
data types and data structures required to implement them. In general, data structures and types used
to define attributes are defined within the context of the programming language that is to be

Step 3d. Describe processing flow within each operation in detail. This may be accomplished using a
programming language-based pseudocode or with a UML activity diagram. Each

software component is elaborated through a number of iterations that apply the stepwise refinement
concept.

Step 4. Describe persistent data sources (databases and files) and identify the classes required to
manage them. Databases and files normally transcend the design description of an individual component.
In most cases, these persistent data stores are initially specified as part of architectural design. However,
as design elaboration proceeds, it is often useful to provide additional detail about the structure and
organization of these persistent data sources.

Step 5. Develop and elaborate behavioral representations for a class or component. UML state diagrams
were used as part of the requirements model to represent the externally observable behavior of the
system and the more localized behavior of individual analysis classes. During component-level design, it
is sometimes necessary to model the behavior of a design class.

Step 6. Elaborate deployment diagrams to provide additional implementation detail. Deployment
diagrams are used as part of architectural design and are represented in descriptor form. In this form,
major system functions (often represented as subsystems) are represented within the context of the
computing environment that will house them. During component-level design, deployment diagrams can
be elaborated to represent the location of key packages of components.

. __|
SURESH.MENTOR@GMAIL.COM 24

www.Jntufastupdates.com 24

Step 7. Refactor every component-level design representation and always consider alternatives. The
first component-level model you create will not be as complete, consistent, or accurate as the nth
iteration you apply to the model.

COMPONENT-LEVEL DESIGN FOR WEBAPPS

A WebApp component is (1) a well-defined cohesive function that manipulates content or provides
computational or data processing for an end user or (2) a cohesive package of content and functionality
that provides the end user with some required capability. Therefore, component-level design for
WebApps often incorporates elements of content design and functional design.

Content Design at the Component Level

Content design at the component level focuses on content objects and the manner in which they may be
packaged for presentation to a WebApp end user.
Functional Design at the Component Level

Modern Web applications deliver increasingly sophisticated processing functions that (1) perform
localized processing to generate content and navigation capability in a dynamic fashion, (2) provide
computation or data processing capability that is appropriate for the WebApp’s business domain, (3)
provide sophisticated database query and access, or (4) establish data interfaces with external corporate
systems. To achieve capabilities, you will design and construct WebApp functional components that are
similar in form to software components for conventional software.

WebApp functionality is delivered as a series of components developed in parallel with the information
architecture to ensure that they are consistent.

During architectural design, WebApp content and functionality are combined to create a functional
architecture. A functional architecture is a representation of the functional domain of the WebApp and
describes the key functional components in the WebApp and how these components interact with each
other.

DESIGNING TRADITIONAL COMPONENTS

The foundations of component-level design for traditional software components were formed in the early
1960s and were solidified with the work of Edsger Dijkstra and his colleagues. In the late 1960s, Dijkstra
and others proposed the use of a set of constrained logical constructs from which any program could be
formed. The constructs emphasized “maintenance of functional domain.”

The constructs are sequence, condition, and repetition. Sequence implements processing steps that are
essential in the specification of any algorithm. Condition provides the facility for selected processing based
on some logical occurrence, and repetition allows for looping. These three constructs are fundamental to
structured programming—an important component-level design technique.

Graphical Design Notation

”A picture is worth a thousand words,” but it’s rather important to know which picture and which 1000
words. There is no question that graphical tools, such as the UML activity diagram or the flowchart,
provide useful pictorial patterns that readily depict procedural detail.

The activity diagram allows you to represent sequence, condition, and repetition and all elements of
structured programming. And is a descendent of an earlier pictorial design representation called a
flowchart. A flowchart, like an activity diagram, is quite simple pictorially. A box is used to indicate a

. __|
SURESH.MENTOR@GMAIL.COM 25

www.Jntufastupdates.com 25

processing step. A diamond represents a logical condition, and arrows show the flow . The following figure
illustrates three structured constructs.

: Condition
First

TGSk F

Next Else-part Then-part
fask

Y

Sequence If-then-else

Case
condifion
f Case part
T
F
I ;
F Do while Repeat until
V" Selection Repetition

Fig : Flowchart constructs

The sequence is represented as two processing boxes connected by a line (arrow) of control. Condition,
also called if-then-else, is depicted as a decision diamond that, if true, causes then-part processing to
occur, and if false, invokes else-part processing. Repetition is represented using two slightly different
forms. The do while tests a condition and executes a loop task repetitively as long as the condition holds
true. A repeat until executes the loop task first and then tests a condition and repeats the task until the
condition fails. The selection (or select- case) construct shown in the figure is actually an extension of the
if-then-else.

Tabular Design Notation

Decision tables provide a notation that translates actions and conditions into a tabular form. The table is
difficult to misinterpret and may even be used as a machine-readable input to a table-driven algorithm.
Decision table organization is illustrated in following figure.. Referring to the figure, the table is divided
into four sections. The upper left-hand quadrant contains a list of all conditions. The lower left-hand
quadrant contains a list of all actions that are possible based on combinations of conditions. The right-
hand quadrants form a matrix that indicates condition combinations and the corresponding actions that
will occur for a specific combination. Therefore, each column of the matrix may be interpreted as a
processing rule. The following steps are applied to develop a decision table:

1. List all actions that can be associated with a specific procedure (or component).

2. List all conditions (or decisions made) during execution of the procedure.

3. Associate specific sets of conditions with specific actions, eliminating impossible combinations

of conditions; alternatively, develop every possible permutation of conditions.
4. Define rules by indicating what actions occur for a set of conditions.

. __|
SURESH.MENTOR@GMAIL.COM 26

www.Jntufastupdates.com 26

Conditions 112|3|4]|5]|6
Regular customer LN fiJ

Silver customer T|T

Gold customer T
Special discount FIT|F|T
Actions

No discount /

Apply 8 percent discount / v

Apply 15 percent discount /
QEE(I)):, rc\:fddmonol x percent / /

Fig : Decision table

Program Design Language

Program design language (PDL), also called structured English or pseudocode, incorporates the logical
structure of a programming language with the free-form expressive ability of a natural language (e.g.,
English). Narrative text (e.g., English) is embedded within a programming language-like syntax.
Automated tools can be used to enhance the application of PDL.

A basic PDL syntax should include constructs for component definition, interface description, data
declaration, block structuring, condition constructs, repetition constructs, and input-output (I/0)
constructs. It should be noted that PDL can be extended to include keywords for multitasking and/or
concurrent processing, interrupt handling, inter process synchronization, and many other features.

COMPONENT-BASED DEVELOPMENT

Component-based software engineering (CBSE) is a process that emphasizes the design and
construction of computer-based systems using reusable software” components.”
Domain Engineering

The intent of domain engineering is to identify, construct, catalog, and disseminate a set of software
components that have applicability to existing and future software in a particular application domain.
The overall goal is to establish mechanisms that enable software engineers to share these components
to reuse them during work on new and existing systems. Domain engineering includes three major
activities— analysis, construction, and dissemination. The overall approach to domain analysis is often
characterized within the context of object-oriented software engineering. The steps in the process are
defined as:

. __|
SURESH.MENTOR@GMAIL.COM 27

www.Jntufastupdates.com 27

Define the domain to be investigated.

Categorize the items extracted from the domain.

Collect a representative sample of applications in the domain.
Analyze each application in the sample and define analysis classes.
Develop a requirements model for the classes.

uhwnN e

Component Qualification, Adaptation, and Composition

Domain engineering provides the library of reusable components that are required for component-
based software engineering. Some of these reusable components are developed in- house, others can
be extracted from existing applications, and still others may be acquired from third parties.
Component Qualification. Component qualification ensures that a candidate component will perform
the function required, will properly “fit” into the architectural style specified for the system, and will
exhibit the quality characteristics (e.g., performance, reliability, usability) that are required for the
application.

Among the many factors considered during component qualification are :

* Application programming interface (API).

* Development and integration tools required by the component.

* Run-time requirements, including resource usage (e.g., memory or storage), timing or
speed, and network protocol.

* Service requirements, including operating system interfaces and support from other
components.

* Security features, including access controls and authentication protocol. * Embedded
design assumptions, including the use of specific numerical or non numerical algorithms.

* Exception handling. Each of these factors is relatively easy to assess when reusable
components that have been developed in-house are proposed.

Component Adaptation : An adaptation technique called component wrapping. When a software team
has full access to the internal design and code for a component white-box wrapping is applied. white-box
wrapping examines the internal processing details of the component and makes code-level modifications
to remove any conflict. Gray-box wrapping is applied when the component library provides a component
extension language or API that enables conflicts to be removed or masked. Black-box wrapping requires
the introduction of pre- and post processing at the component interface to remove or mask conflicts.
Component Composition. The component composition task assembles qualified, adapted, and
engineered components to populate the architecture established for an application. To accomplish this,
an infrastructure must be established to bind the components into an operational system. The
infrastructure provides a model for the coordination of components and specific services that enable
components to coordinate with one another and perform common tasks.

. __|
SURESH.MENTOR@GMAIL.COM 28

www.Jntufastupdates.com 28

Analysis and Design for Reuse

Binder suggests a number of key issues that form a basis for design for reuse:

Standard data. The application domain should be investigated and standard global data structures (e.g.,
file structures or a complete database) should be identified. All design components can then be
characterized to make use of these standard data structures.

Standard interface protocols. Three levels of interface protocol should be established: the nature of
intra modular interfaces, the design of external technical (nonhuman) interfaces, and the human-
computer interface.

Program templates. An architectural style is chosen and can serve as a template for the
architectural design of a new software.

Classifying and Retrieving Components

A reusable software component can be described in many ways, but an ideal description encompasses
the 3C model—concept, content, and context.

The concept of a software component is “a description of what the component does”. The interface to
the component is fully described and the semantics represented within the context of pre- and post
conditions is identified. The concept should communicate the intent of the component.

The content of a component describes how the concept is realized. In essence, the content is information
that is hidden from casual users and need be known only to those who intend to modify or test the
component.

The context places a reusable software component within its domain of applicability. That is, by specifying
conceptual, operational, and implementation features, the context enables a software engineer to find
the appropriate component to meet application requirements. A reuse environment exhibits the
following characteristics:
* A component database capable of storing software components and the classification
information necessary to retrieve them.
* A library management system that provides access to the database.
* A software component retrieval system that enables a client application to retrieve
components and services from the server.
* CBSE tools that support the integration of reused components into a new design or

implementation.

. __|
SURESH.MENTOR@GMAIL.COM 29

www.Jntufastupdates.com 29

