
1

UNITIII

Operator Overloading and Type Conversion & Inheritance

The Keyword Operator, Overloading Unary Operator, Operator Return Type,

Overloading Assignment Operator (=), Rules for Overloading Operators, Inheritance,

Reusability, Types of Inheritance, Virtual Base Classes, Object as a Class Member,

Abstract Classes, Advantages of Inheritance, Disadvantages of Inheritance.

Operator overloading: The single operator is used to exhibit the different behaviors

Operator Overloading Syntax:

Common operators to be overload are

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

Following is the list of operators, which cannot be overloaded −

:: .* . ?:

Operator overloading can be done by using either member function or by using friend

function. The differences are as given below.

at different instances is known as operator overloading.

Following is the list of operators, which cannot be overloaded:
scope operator - :: , sizeof ,member selector : “.” , member pointer selector : “*.”, ternary
 operator : “ ? :”

www.Jntufastupdates.com

2

// C++ program to add two complex numbers using operator overloading

#include<iostream.h>

class comp
{
 int r,i;
 public:
 void input()
 {
 cout<< "Enter real & imaginary parts : ";
 cin>>r>>i;
 }

 void display()
 {
 cout<<"Real = "<<r<<endl;
 cout<<"Imaginary = "<<i<<endl;
 }

comp operator +(comp c2)
{
comp c3;
c3.r=r+c2.r;
c3.i=i+c2.i;
return c3;
}
};

int main()

{

comp b1,b2,b3;

clrscr();

b1.input ();

b2.input();

b3=b1+b2;

b3.display();

return 0;

}

Output :

Enter real & imaginary parts : 2 3

Enter real & imaginary parts : 4 5

Real = 6

Imaginary = 8 i

www.Jntufastupdates.com

3

/* C++ program uses operator overloading to perform Addition, Subtraction,

Multiplication and Division of two complex numbers. */

#include<iostream.h>

#include<conio.h>

#include<string.h>

#include<stdio.h>

class complex

{

int i,r;

public:

void read()

{

cout<<"\nEnter Real Part:";

cin>>r;

cout<<"Enter Imaginary Part:";

cin>>i;

}

void display()

{

cout<<r<<"+"<<i<<"i";

}

complex operator+(complex a2)

 {

complex a;

a.r=r+a2.r;

a.i=i+a2.i;

return a;

}

complex operator - (complex a2)

 {

complex a;

a.r=r-a2.r;

a.i=i-a2.i;

return a;

}

complex operator *(complex a2)

complex a;

a.r=(r*a2.r)-(i*a2.i);

do {

cout<<"\n1.Addition\n”;

cout<<”\n2.Substraction\n";

cout<<"\n3.Mulitplication\n

cout<<”\n4.Division\n”;

cout<<”\n5.Exit\n";

cout<<"\nEnter the choice :";

cin>>ch;

cout<<"\nEnter First Complex

Number:";

a.read();

a.display();

cout<<"\nEnter Second Complex

Number:";

b.read();

b.display();

switch(ch)

{

case 1:

c=a+b;

c.display();

break;

case 2:

c=b-a;

c.display();

break;

case 3:

c=a*b;

c.display();

break;

case 4:

c=a/b;

c.display();

break;

}

www.Jntufastupdates.com

4

a.i=(r*a2.i)+(i*a2.r);

return a;

}

complex operator/(complex a2)

{

complex a;

a.r=((r*a2.r)+(i*a2.i))/((a2.r*a2.r)+ (a2.i*a2.i));

a.i=((i*a2.r)-(r*a2.i))/((a2.r*a2.r)+ (a2.i*a2.i));

return a;

}

};

int main()

{

int ch;

clrscr();

complex a,b,c;

}while(ch!=5);

getch();

}

Output:

1.Addition

2. Substraction

3.Mulitplication

4.Division 5.Exit

Enter the choice : 1

Enter The First Complex Number:

2 3

Enter The Second Complex

Number: 4 5

6+8 i

Enter the choice : 5

//Write C++ Program to overload + operator to add two matrices.

#include<iostream.h>

#include<conio.h>

class matrix

{

 int m, n, x[30][30];

public:

matrix(int a, int b)

{

m=a; n=b;

}

matrix()

{

}

void get();

void put();

matrix operator +(matrix);

};

matrix matrix::operator +(matrix b)

{

matrix c(m,n);

for(int i=0; i<m; i++)

for(int j=0; j<n; j++)

c.x[i][j]= x[i][j] + b.x[i][j];

return c;

}

int main()

{

int m,n;

clrscr();

cout<<"\n Enter the size of the Matrix";

cin>>m>>n;

matrix a(m,n) , b(m,n) , c;

a.get();

b.get();

c= a+b;

c.put();

 return 0;

www.Jntufastupdates.com

5

void matrix:: get()

{

cout<<"\n Enter values into the matrix";

for(int i=0; i<m; i++)

for(int j=0; j<n;j++)

cin>>x[i][j];

}

void matrix:: put()

{

cout<<"\n Sum of the matrix is :\n";

for(int i=0; i<m; i++)

{

for(int j=0; j<n;j++)

cout<<x[i][j]<<"\t";

cout<<endl;

}

}

}

Output:

Enter the size of the Matrix 3 3 Enter

values into the matrix:

1 2 3

4 5 6

3 4 5

Enter values into the matrix:

1 1 1

2 2 2

3 3 3

Sum of the matrix is :

2 3 4

6 7 8

6 7 8

//C++ program for unary increment (++) and decrement (--) operator

overloading.

#include<iostream.h>
class NUM
{
private:
int n;
public:
//function to get number
void getNum(int x)
{
n=x;
}

//function to display number
void dispNum(void)
{
cout << "value of n is: " << n;
}

//unary ++ operator overloading
void operator ++ (void)
{
++n;

int main()
{
NUM num;
num.getNum(10);

++num;
cout << "After increment - ";
num.dispNum();
cout << endl;

--num;
cout << "After decrement - ";
num.dispNum();
cout << endl;
return 0;
}

Output:
After increment - value of n is: 11

After decrement - value of n is: 10

www.Jntufastupdates.com

6

Access Specifier Private Protected Public

In Same Class YES YES YES

In Derived Class NO YES YES

In Outside Class NO NO YES

}
//unary -- operator overloading
void operator -- (void)
{
--n;
}
};

Inheritance:

C++ strongly supports the concept of reusability. The C++ classes can be reused in

several ways. Once a class has been written and tested, it can be adapted by another

programmer to suit their requirements. This is basically done by creating new classes,

reusing the properties of the existing ones. The mechanism of deriving a new class from

an old one is called inheritance. The old class is referred to as the base class and the

new one is called the derived class or subclass. A derived class includes all features of

the generic base class and then adds qualities specific to the derived class.

Inheritance is the process of creating new classes from the existing class or classes.

Existing class is known as Base class. New class is known as Derived class. A class

derivation list names one or more base classes and has the form:

Syntax : class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name

of a previously defined class. If the access-specifier is not used, then it is private by

default.

Access Control and Inheritance:

A derived class can access all the non-private members of its base class. Thus base-class

members that should not be accessible to the member functions of derived classes

should be declared private in the base class. A derived class can access all the non-

private members of its base class. Thus base- class members that should not be

accessible to the member functions of derived classes should be declared private in the

base class.

Different access types according to who can access them in the following way:

www.Jntufastupdates.com

7

Types of inheritance:

Single Inheritance - If a class is derived from a single base class, it is called as single

inheritance.

Multiple Inheritance - If a class is derived from more than one base class, it is known

as multiple inheritance.

Multilevel Inheritance - The classes can also be derived from the classes that are

already derived. This type of inheritance is called multilevel inheritance.

Hierarchical Inheritance - If a number of classes are derived from a single base class,

it is called as hierarchical inheritance.

Hybrid Inheritance - Hybrid Inheritance is a method where one or more types of

inheritance are combined together and used.

class A
{
public:
int x;
protected:
int y;
private:
int z;
};
class B : public A
{
// x is public
// y is protected
// z is not accessible from B
};

class C : protected A
{
// x is protected
// y is protected
// z is not accessible from C
};

class D : private A // 'private' is default for
 { classes
// x is private
// y is private
// z is not accessible from D
};

www.Jntufastupdates.com

8

//C++ Program for single inheritance

#include<iostream.h>
#include<conio.h>
class B
{
public:
int a,b;
void get();
void show();
};

class D:public B
{
int c;
public:

void mul();
void disp();
};

void B::get()
{
a=5;b=10;
}

void B::show()
{
cout<<"\t"<<a;
}

void D::mul()
{
c=b*a;
}

void D::disp()
{
cout<<"\n"<<a<<"\t"<<b<<"\ta*b:"<<c;
}

int main()
{
D d;
d.get();
d.mul();

d.show();
d.disp();
d.b=20;
d.mul();
d.disp();
getch();
return 0;
}
Output:

5
5 10 50
5 20 100

Multiple Inheritance:

#include <iostream.h>

// Base class Shape

class Shape

{

public:

void setWidth(int w)

 { width = w;

}

void setHeight(int h)

{ height = h;

// Derived class

class Rectangle :public shape, public
PaintCost

{

public:

int getArea()

{

return (width * height);

}

};

www.Jntufastupdates.com

9

}

protected:

int width; int height;

};

// Base class PaintCost

class PaintCost

{

public:

int getCost(int area)

{

return area * 70;

}

};

int main(void)

{

Rectangle Rect;

int area;

Rect.setWidth(5);

Rect.setHeight(7);

area = Rect.getArea();

// Print the area of the object.

cout << "Total area: " <<area<< endl;

// Print the total cost of painting

cout << "Total paint cost: $" <<

Rect.getCost(area) << endl;

return 0;

}

Output:

Total area: 35

Total paint cost 2450

Multilevel Inheritance:

#include<iostream.h>

class Student

{ protected:

int marks;

public:

void accept(){

cout<<" Enter marks"; cin>>marks;

}

};

class Test : public Student

{ protected:

int p=0;

public:

void check()

class Result :public Test{ public:

void print(){ if(p==1)

cout<<"\n You have passed";

else

cout<<"\n You have not passed";

}

};

int main()

{ Result r;

r.accept();

r.check();

r.print();

return 0;

www.Jntufastupdates.com

10

{ if(marks>60)

{

p=1;

}

}

};

}

Output:-

Enter marks 70

You have passed

Heirarchical Inheritance:
/*C++ program to demonstrate example of hierarchical inheritance to get square and

cube of a number.*/

#include <iostream.h>

class Number

{ private:

int num;

public:

void getNumber(void)

{ cout << "Enter an integer number: ";

cin>> num;

}

//to return num

int returnNumber(void)

{ return num;

}

};

//Base Class 1, to calculate square of a
//number

class Square:public Number

{ public:

int getSquare(void)

{ int num,sqr;

num=returnNumber(); //get number from
//class Number

sqr=num*num;

return sqr;

//Base Class 2, to calculate cube of a
//number

class Cube:public Number

{ public:

int getCube(void)

{ int num,cube;

num=returnNumber();

//get number from class Number
cube=num*num*num;

return cube;

}

};

int main()

{ Square objS;

Cube objC;

int sqr,cube;

objS.getNumber();

sqr =objS.getSquare();

cout << "Square of "<<

objS.returnNumber() << " is: " << sqr;
objC.getNumber();

cube=objC.getCube();

cout << "Cube of "<< objS.returnNumber()
<< " is: " << cube;

www.Jntufastupdates.com

11

}

};

return 0;

}

Output:

Enter an integer number: 10

Square of 10 is: 100

Enter an integer number: 20 Cube of 10 is:

8000

Hybrid Inheritance:
// C++ program to implement Hybrid Inheritance

#include<iostream.h>

#include<conio.h>

class arithmetic

{

protected:

int num1, num2;

public:

void getdata(){

cout<<"For Addition:";

cout<<"\nEnter the first number: ";

cin>>num1;

cout<<"\nEnter the second number: ";

cin>>num2;

}

};

class plus: public arithmetic{

protected:

int sum;

public:

void add(){

sum=num1+num2;

}

};

class result: public plus, public minus{

public:

void display(){

cout<<"\nSum of "<<num1<<" and

"<<num2<<"= "<<sum;

cout<<"\nDifference of "<<n1<<" and

"<<n2<<"= "<<diff;

}

};

int main(){

clrscr();

result z;

z.getdata();

z.add();

z.sub();

z.display();

getch();

return 0;

}

Output:

For Addition:

Enter the first number: 10

www.Jntufastupdates.com

12

class minus{

protected:

int n1,n2,diff;

public:

void sub(){

cout<<"\nFor Subtraction:";

cout<<"\nEnter the first number: ";

cin>>n1;

cout<<"\nEnter the second number: ";

cin>>n2;

diff=n1-n2;

}

};

Enter the sencond number: 5

For Subtraction:

Enter the first number: 15

Enter the sencond number: 5

Sum of 10 and 5 =15

Difference of 15 and 5 is 10

Inheritance Advantages and Disadvantages:
Advantages :
1. Inheritance promotes reusability. When a class inherits or derives another class, it
can access all the functionality of inherited class.

2. Reusability enhanced reliability. The base class code will be already tested and
debugged.

3. As the existing code is reused, it leads to less development and maintenance costs.

4. Inheritance makes the sub classes follow a standard interface.

5. Inheritance helps to reduce code redundancy and supports code extensibility.

6. Inheritance facilitates creation of class libraries.

Disadvantages:-
1. Inherited functions work slower than normal function as there is indirection.

2. Improper use of inheritance may lead to wrong solutions.

3. Often, data members in the base class are left unused which may lead to memory
wastage.

4. Inheritance increases the coupling between base class and derived class. A change in
base class will affect all the child classes.

www.Jntufastupdates.com

13

Virtual base class:
An ambiguity can arise when several paths exist to a class from the same base class.
This means that a child class could have duplicate sets of members inherited from a
single base class.

C++ solves this issue by introducing a virtual base class. When a class is made virtual,
necessary care is taken so that the duplication is avoided regardless of the number of
paths that exist to the child class.

What is Virtual base class? Explain its uses.
When two or more objects are derived from a common base class, we can prevent

multiple copies of the base class being present in an object derived from those objects

by declaring the base class as virtual when it is being inherited. Such a base class is

known as virtual base class. This can be achieved by preceding the base class’ name

with the word virtual.

Simple Program for Virtual Base Class:

#include<iostream.h>

#include<conio.h>

class student {

int rno;

public:

void getnumber() {

cout << "Enter Roll No:";

cin>>rno;

}

void putnumber() {

cout << "\nRoll No:" << rno << "\n";

}

class result : public test, public sports

{ int total;

public:

void display() {

total = part1 + part2 + score;

putnumber();

putmarks();

putscore();

cout << "\n\tTotal Score:" << total;

}

};

int main() {

www.Jntufastupdates.com

14

cin>>part1;

cout << "Part2:"; cin>>part2;

}

void putmarks() {

cout << "\tMarks Obtained\n";

cout << "\n\tPart1:" << part1;

cout << "\n\tPart2:" << part2;

}

};

class sports : public virtual student

 { public:

int score;

void getscore() {

cout << "Enter Sports Score:";

cin>>score;

}

void putscore() {

cout <<"\n\tSports Score is:" << score;

}

};

result obj;

clrscr();

obj.getnumber();

obj.getmarks();

obj.getscore();

obj.display();

getch();

return 0;

}

Output :

Enter Roll No: 200

Enter Marks Part1: 90

Part2: 80
Enter Sports Score: 80

Roll No: 200

Marks Obtained Part1: 90

Part2: 80
Sports Score is: 80

Total Score is: 250

Virtual functions:
A virtual function is a member function that is declared within a base class and
redefined by a derived class. To create virtual function, precede the function’s
declaration in the base class with the keyword virtual. When a class containing virtual
function is inherited, the derived class redefines the virtual function to suit its own
needs.

Base class pointer can point to derived class object. In this case, using base class pointer
if we call some function which is in both classes, then base class function is invoked. But
if we want to invoke derived class function using base class pointer, it can be achieved

class test : virtual public student

{ public:

int part1, part2;

void getmarks() {

cout << "Enter Marks\n"; cout << "Part1:";

www.Jntufastupdates.com

15

by defining the function as virtual in base class, this is how virtual functions support
runtime polymorphism.

- Consider the following program code:
Class A {

int a;

public:

A() {

a = 1;

}

virtual void show() {

cout <<a;

}

};

Class B: public A {

int b;

public:

B() {

b = 2;

}

called

pA = &oA;
pA→show(); // Base version will be called

return 0;

}

Output:

2

1

declaring at least one of its functions as pure virtual function. A pure virtual function is

specified by placing "= 0" in its declaration as follows:

virtual void show() {

cout <<b;

}

};

int main() {

A *pA;

B oB;

A oA;

pA = &oB;

pA→show(); // Derived version will be

Abstract class:
The C++ interfaces are implemented using abstract classes .A class is made abstract by

class Box

 = 0;

{
public:
virtual double getVolume() // pure virtual function
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};

The purpose of an abstract class (often referred to as an ABC) is to provide an
appropriate base class from which other classes can inherit. Abstract classes cannot be

www.Jntufastupdates.com

16

used to instantiate objects and serves only as an interface. Attempting to instantiate an
object of an abstract class causes a Compilation error.

Thus, if a subclass of an ABC needs to be instantiated, it has to implement each of the
virtual functions, which means that it supports the interface declared by the ABC.
Failure to override a pure virtual function in a derived class, then attempting to
instantiate objects of that class, is a compilation error.

Classes that can be used to instantiate objects are called concrete classes.

Abstract Class Example:
Consider the following example where parent class provides an interface to the base

class to implement a function called getArea():

class Triangle: public Shape

{

public:

int getArea()

{

return (width * height)/2;

}

};

int main()

{ Rectangle Rect;

Triangle Tri;

Rect.setWidth(5);

Rect.setHeight(7);

// Print the area of the object.

cout << "Total Rectangle area: " <<

Rect.getArea() << endl;

Tri.setWidth(5);

Tri.setHeight(7);

// Print the area of the object.

cout << "Total Triangle area: " <<

Tri.getArea() << endl;

return 0;

}

#include <ios

Shape

tream.h>

// Base class

 class

{ public:

// pure virtual function providing
interface fr

getArea() = 0;

amew

 Rectangle:

ork.

virtual int

void setWidth(int w)

{

width = w;

}

void setHeight(int h)

{

height = h;

}

protected: int width;

int height;

};

// Derived classes

class public Shape

{ public:

int getArea()

{

return (width * height);

www.Jntufastupdates.com

17

}

};

Output:

Total Rectangle area: 35

Total Triangle area: 17

Assignment Questions

1. What are different types of inheritance supported by C++? Give an example for each.

2. What is inheritance? Present the advantages and disadvantages of inheritance.

3. Write about operator overloading in C++ with an example.

4. Write C++ Program to overload + operator to add two matrices.

5. Explain about Virtual Base classes and Virtual Functions in C++.

www.Jntufastupdates.com

