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Regular Expressions :  

Regular expressions are simple algebraic expressions that are used to represent a set of 

strings. 

Recursive definition of regular expression: 

For given input alphabet ∑, regular expression is defined by following rules: 

1. Every character belonging to ∑, is a regular expression. 

2. Null string ɛ is a regular expression. 

3. If R1 and R2 are two regular expressions, then R1+ R2 is also a regular expression. 

4. If R1 and R2 are two regular expressions, then R1. R2 is also a regular expression. 

5. If R is a regular expression, then (R ) is also a regular expression. 

6. If R is a regular expression, then R* is also a regular expression. 

7. Any combination of above rules is also a regular expression. 

Regular Set or Regular Language :  

Set of strings generated by regular expressions is known as regular set (or) regular language. 

It is the language accepted by Finite Automata. 

Recursive definition of regular language from regular expression: 

For given input alphabet ∑, regular expression is defined by following rules: 

1. If Null string ɛ is a regular expression, then the regular language is L={ɛ} which 

contains the empty string. 

2. For every input symbol 𝑎 ∈ Σ, a is a regular expression, then the regular set is L={a}. 

3. Let R1 = a and R2 = b and R1+ R2 is a regular expression, then regular expression is 

a+b (means a or b) and regular set is L={a,b}. 

4. Let R1 = (a+b) and R2 = c and R1. R2 is a regular expression, then regular expression is 

(a+b).c (means starting with a or b followed by c) and regular set is L={ac,bc}. 

5. Let R={a} and R* is a regular expression (means any number of repetitions of a from 

0 to ∞) then regular set is L={ ɛ,a,aa,aaa...}. 

6. If ϕ is a regular expression, then regular language is L={}= ϕ which denotes the 

empty set. 

Properties of Regular Expressions: 

If R1 and R2 are two regular expressions, then language generated by R1 is L(R1) and 

language generated by R2 is L(R2). The properties of regular expressions are 

1. Union: It is a string from L(R1) or L(R2). It is denoted by L(R1+ R2) = L(R1) ∪ L(R2). 

Example: let R1 = ab+c ⟹ L(R1) ={ab,c} 

          R2 = d+ef ⟹ L(R2) ={d,ef} 

Then L(R1+ R2) = L(R1) ∪ L(R2) = {ab,c} ∪ {d,ef} = {ab,c,d,ef} 

2. Concatenation: It is a string from L(R1) followed by L(R2). It is denoted by L(R1. R2) 

= L(R1) . L(R2). 

Example: let R1 = ab+c ⟹ L(R1) ={ab,c} 

          R2 = d+ef ⟹ L(R2) ={d,ef} 

Then L(R1. R2) = L(R1) . L(R2) = {ab,c} . {d,ef} = {abd,abef,cd,cef} 

3. Kleene Closure: It is a string obtained by concatenating zero or more strings with 

repetitions. It is denoted by L(R*) = (L(R))*. 

Example: let R = ab+c ⟹ L(R) ={ab,c} 

               Then L(R*) = (L(R))* = {ab,c}* = {ɛ, ab,c,abab,abc,cab,cc,ababc…} 

4. L((R))=L(R) denotes same language as R. 

5. L(R).ɛ = ɛ .L(R) = L(R). 
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Identity rules of Regular Expressions: 

Two regular expressions R1 and R2 are equivalent if L(R1) = L(R2). The identity rules of 

regular expressions are 

1. ɛ + R = R + ɛ

2. ɛ . R = R . ɛ = R

3. R + R = R

4. Φ + R = R + Φ =R

5. Φ . R = R . Φ = ϕ

6. ɛ* = ɛ = ϕ*

7. R* . R* = R*

8. R . R* = R* . R

9. ɛ + R . R* = ɛ + R* . R = R*

10. (R*)* = R*

PROOFS 

LHS RHS 

ɛ + R = R + ɛ L(ɛ + R) = L(ɛ) ∪ L(R) 

      =  {ɛ} ∪ L(R) 

L(R + ɛ) = L(R)∪ L(ɛ) 

      = L(R) ∪ {ɛ} 

Since L(ɛ + R)= L(R + 

ɛ), therefore ɛ + R = R + 

ɛ 

ɛ . R = R . ɛ = R L(ɛ . R) = L(ɛ) . L(R) 

 =  {ɛ} . L(R) 

 =  L(R) 

L(R + ɛ) = L(R). L(ɛ) 

 = L(R) . {ɛ} 

 =  L(R) 

Since 

L(ɛ . R)= L(R . ɛ)= 

L(R), therefore ɛ . R = 

R . ɛ = R 

R+R=R L(R + R) = L(R) ∪ L(R) 

 =  L(R) 

Since L(R+R) = L(R), 

therefore R+R = R 

Φ + R = R + Φ =R L(Φ + R) =L(Φ) ∪ L(R) 

  =  {} ∪ L(R) 

 =  L(R) 

L(R+Φ) = L(R)∪ L(Φ) 

  = L(R) ∪ {} 

 =  L(R) 

Since 

L(Φ+R)= L(R+Φ) = 

L(R), therefore Φ+R= R 

+ Φ=R

Φ . R = R . Φ = ϕ L(Φ . R) =L(Φ) . L(R) 

 =  {} . L(R) 

 =  {} 

 = Φ 

L(R.Φ) = L(R). L(Φ) 

  = L(R) . {} 

 =  {} 

 = Φ 

Since 

L(Φ.R)= L(R.Φ) = Φ , 

therefore Φ .R = R . Φ = 

ϕ 

ɛ* = ɛ = ϕ* L(ɛ*)=(L(ɛ))* 

 ={ ɛ}* 

 ={ ɛ, ɛɛ, ɛɛɛ, …} 

 ={ ɛ, ɛ, ɛ, …} 

 ={ ɛ, ɛɛ, ɛɛɛ, …} 

 ={ ɛ} 

 = L(ɛ) 

L(ϕ *)=(L(ϕ))* 

 ={ }* 

 ={ ɛ} 

 = L(ɛ) 

Since 

L(ɛ*) =L(ϕ*)=L(ɛ) 

therefore ɛ* = ɛ = ϕ* 

R* . R* = R* L(R*.R*)=L(R*).L( R*) 

 =(L(R))*.(L( R))* 

 =(L(R))*.(ɛ.ɛ) 

 =(L(R))*.(ɛ) 

 =(L(R))* 

Since 

L(R*.R*)=(L(R))* 

Therefore R*.R*=R* 

R . R* = R* . R L(R.R*)=L(R).L( R*) 

 =L(R).(L( R))* 

 =(R).{ɛ,R,RR,…} 

 ={R,RR,RRR,…} 

L(R*.R)=L(R*).L(R) 

 =(L(R))*.L( R) 

 ={ɛ,R,RR,..}(R) 

 ={R,RR,RRR,..} 

Since L(R.R*)=L(R*.R) 

Therefore R.R*=R*.R 

ɛ+R.R*=ɛ+R*.R=R* L(ɛ+R.R*)=L(ɛ)∪L(R.R*) 

 =  {ɛ} ∪ {R,RR,RRR,…} 

L(ɛ+R*.R)=L(ɛ)∪L(R*.R) 

 =  {ɛ} ∪ {R,RR,RRR,…} 

Since 

L(ɛ+R.R*)=L(ɛ+R*.R)= 
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 = L(R*)  = L(R*) L(R*) 

Therefore 

ɛ+R.R*=ɛ+R*.R=R* 

(R*)* = R* L((R*)*)= (L(R*))* 

 ={(L(R)*}* 

 =(R*)* 

 ={ ɛ,R,RR,…}* 

 ={ ɛ,R,RR,…} 

 =R* 

L(R*)=(L(R))* 

 =R* 

Since L((R*)*)= L(R*) 

Therefore (R*)* = R* 

Algebraic laws of Regular Expressions: 

1. Commutative law: R + S = S + R  

2. Associative law: (R+S)+T = R+(S+T) 

(R.S).T = R.(S.T) 

3. Distributive law: (R+S)T = RT+ST 

(S+T)R = SR+TR 

4. Demorgan’s law: (R+S)* = (R*.S*)* = (R*+S*)* 

(R.S)* = (R*.S*)* = (R*+S*)* 

5. Other laws: (RS)*R = R(SR)* 

Equivalence of two regular expressions: 

For every regular expression, there is an equivalent finite automata. Two regular expressions 

are said to be equivalent, if same finite automata is constructed for both of the regular 

expressions. 

Finite Automata, and Regular Expressions: 

Finite Automata to Regular Expressions: 

Arden’s theorem: It is used to construct regular expression from finite automata. 

Statement: If P, Q are two Res, and if P does not contain epsilon ɛ, then equation R=Q+RP 

has a unique solution given by R=QP*. 

Steps to convert finite automata to regular expression: 

1. Write the equation for each and every state using the following notation

Name of state = (state from which input is coming) (input symbol on the transition)

2. While writing the equation for starting state, include ɛ.

3. Make substitutions and apply ardens theorem wherever possible to obtain a regular

expression.

Regular Expression to Finite Automata: 

There are 2 ways to convert regular expression to finite automata. They are 

1. Top-down approach

2. Bottom-up approach

Top-down approach: FA construction starts from RE and ends by reaching a single element 

on transition. 

Bottom-up approach: FA construction starts from basic element and ends on reaching RE. 

Steps to covert regular expression to finite automata: 
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Top-down approach: 

1 Take 2 states – start state q0 and final state qf. 

 
2 Make transition between these two states and place the 

given regular expression on the transition. 
 

3 If regular expression is in the form of RE=R1+R2, then 

finite automata is represented as 

 

4 If regular expression is in the form of RE=R1.R2, then finite 

automata is represented as  

 

5 If regular expression is in the form of RE=R*, then finite 

automata is represented  

 

6 Make use of the above steps until the finite automata 

contains only single element on each transition. 

 

 

Bottom-up approach: 

1 Divide the given regular expression into number of 

parts (Each part must be in the form of a RE.) and 

construct finite automata for each and every part 

separately using steps 2 to 7. 

 

2 Take 2 states – start state q0 and final state qf. Make 

transition between these two states and place the 

regular expression on the transition.  
3 If regular expression is in the form of RE=ɛ, then finite 

automata is represented as 

 
4 If regular expression is in the form of RE=a, then finite 

automata is represented as 

 
5 If regular expression is in the form of RE=R+S, then 

finite automata is represented as 

 
6 If regular expression is in the form of RE= R.S, then 

finite automata is represented as  
 

7 If regular expression is in the form of RE=R*, then 

finite automata is represented  

 
8 connect all the finite automata with an epsilon 

transition to obtain resultant finite automata. 

 

 

Pumping Lemma for regular languages: 

Every language is not regular. To show that L is not regular, pumping lemma is used. 

Pumping means “generating”. Pumping lemma means “it is a method of generating many 

input strings from a given string.” i.e., it is used to break a given long input string into several 

substrings.”  

www.Jntufastupdates.com <



Formal Languages and Automata Theory – R16 
 

KHIT,CSE Page 6 
 

Statement of pumping lemma: 

Let 𝑴 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) be a finite automata with ‘n’ number of states. 

1. Assume that the given language L is regular accepted by finite automata M. 

2. Choose a string w𝜖 L such that |w| ≥ n. i.e., length of string ≥ number of states. 

3. Break the string into 3 strings x,y,z, i.e., w=xyz such that |xy| ≤ n and y ≠ ɛ.  

4. By using pumping lemma, pump y to the suitable integer ‘i’ such that xyiz ∉ L for 

i≥0. This contradicts our assumption. 

5.  Therefore L is not regular. 

Closure Properties of Regular Languages: 

Closure property: A set is closed under an operation if applying that operation to elements of 

the set results in an element of the set. 

For example, the set of natural numbers is closed under addition and multiplication but not 

under subtraction or division because 2-3 is negative and 1/2 is not an integer. The set of 

integers is closed under addition, subtraction and multiplication but not under division. 

 

Regular sets are closed under the following: 

1. Union 

2. Concatenation 

3. Complementation 

4. Intersection 

5. Kleene closure 

6. Substitution 

7. Homomorphism 

8. Inverse homomorphism 

9. Quotient operation 

 

Union: The class of regular languages is closed under union. 

 

Statement: If L1 , L2 are two regular languages, then L1 ∪ L2 is also regular. 

Proof:  let r1 is a regular expression denoting L1=L(r1) and 

let r2 is a regular expression denoting L2=L(r2) 

 

L1 ∪ L2 = L(r1) ∪ L(r2)  

  =L(r1+r2) 

According to recursive definition of regular expression, if r1 and r2 are two regular 

expressions, then r1+r2 is also a regular expression. 

Since  r1+r2 is a regular expression and L1 ∪ L2 = L(r1+r2), therefore L1 ∪ L2 is also a 

regular. 

 

Concatenation: The class of regular languages is closed under concatenation. 

 

Statement: If L1 , L2 are two regular languages, then L1 . L2 is also regular. 

Proof:  let r1 is a regular expression denoting L1=L(r1) and 

let r2 is a regular expression denoting L2=L(r2) 

 

L1 . L2 = L(r1) . L(r2)  

  =L(r1.r2) 

According to recursive definition of regular expression, if r1 and r2 are two regular 

expressions, then r1.r2 is also a regular expression. 

Since  r1.r2 is a regular expression and L1 . L2 = L(r1.r2), therefore L1 . L2 is also a regular. 
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Complementation: The class of regular languages is closed under Complementation. 

 

Statement: If L(M) is a regular language, then L(M’) is also regular ( 𝑙 ̅= ∑* - L)   . 

Proof:  Let L(M) is regular and let M=(Q,∑,δ,q0,F)  be a DFA for L(M) and 

M’=(Q,∑,δ,q0,Q-F) be a DFA for L(M’), complement of L. 

If we construct a DFA for L(M), then w ∈ L, if w leads to final state in M. This implies that in 

M’, w leads to the same state but this state is non-accepting state in M’. Therefore, M’ rejects 

w. Similarly,if w ∉ L, then M’ accepts w.  

Therefore, L(M’) = L(M). 

Since L(M) is a regular language, therefore L(M’) is also regular 

 

Intersection: The class of regular languages is closed under Intersection. 

 

Statement: If L1 , L2 are two regular languages, then L1 ∩ L2 is also regular. 

Proof:  let r1 is a regular expression denoting L1=L(r1) and 

let r2 is a regular expression denoting L2=L(r2) 

 

L1 ∩ L2 =  (𝑙1̅ ∪  𝑙2̅̅̅ ̅̅ ̅̅ ̅̅ ̅) 

According to closure properties of regular languages,  

since L1 and L2 are two regular languages, its complement 𝑙1̅  and 𝑙2̅  are also regular. 

since 𝑙1̅   and 𝑙2̅   are two regular languages, its union  𝑙1̅  ∪ 𝑙2̅  is also regular. 

since 𝑙1̅  ∪ 𝑙2̅  are two regular languages, its complement 𝑙1̅ ∪ 𝑙2̅̅̅ ̅̅ ̅̅ ̅̅ ̅ is also regular. 

Therefore L1 ∩ L2 is also regular. 

 

Kleene Closure: The class of regular languages is closed under kleene closure. 

 

Statement: If L1 is a regular language, then L1* is also regular. 

Proof:  let r1 is a regular expression denoting L1=L(r1) and 

 

L1* = (L(r1))*  

  =L(r1*) 

According to recursive definition of regular expression, if r1 is a regular expression, then r1* 

is also a regular expression. 

Since  r1* is a regular expression and L1* = L(r1*), therefore L1* is also a regular. 

 

Substitution: The class of regular languages is closed under substitution. 

 

Statement: If L1 is a regular language with some alphabet ∑, then L1 is also regular with a 

unique replacement of ∑ with ∑1. 

Proof:  let ∑={a,b}, then a is a regular expression denoting L1={a} and  

b is a regular expression denoting L2={b} 

therefore  L= L1.L2=ab is a regular language over ∑={a,b}. 

let ∑1={0,1}, on substituting ‘a’ with ‘0’ and ‘b’ with ’1’. 

L=01 is also regular. 

 

Homomorphism: The class of regular languages is closed under homomorphism. 

 

Statement: If L1 is a regular language with some alphabet ∑, and if strings in L1are replaced 

with other strings, then resultant language is also regular. 

Proof:  let ∑={a,b}, then aba is a regular expression denoting L1={aba} and  

(aa)* is a regular expression denoting L2={(aa)*} 

therefore  L= L1.L2=aba(aa)* is a regular language over ∑={a,b}. 

on substituting ‘aba’ with ‘0’ and ‘aa’ with ’1’. 

h(aba)=0 

www.Jntufastupdates.com <



Formal Languages and Automata Theory – R16 
 

KHIT,CSE Page 8 
 

h(aa)=1  

then 01* is also regular. 

 

Inverse Homomorphism: The class of regular languages is closed under inverse 

homomorphism. 

 

Statement: It works by  applying homomorphism backwards 

Proof:  let  h(aba)=0 

h(aa)=1  

then h(01)=aba(aa) 

h-1(abaaa)=01 and h-1((abaaa + (aa)*)*)=(01+1*)* 

 

Quotient of Language: The class of regular languages is closed under quotient of a 

language. 

 

Statement: It works by  applying homomorphism backwards 

Proof:  If L1,L2 are two regular languages, then Quotient denoted by L1/L2 is also regular. 

  L1/L2={x|∃y in L2 and  ∋ xy is in L1} 

 e.g: Let L1=0*10*, L2=0*1, then L1/L2=0*10*/0*1=0* 

 

Finite Automata and regular grammars: 

Grammar: Grammar is a set of rules used to define a valid sentence in any language. 

Mathematical representation of grammar: Grammar is defined as a 4-tuple G={V,T,P,S} 

where  

V - finite set of non-terminals 

T - finite set of terminals 

P – finite set of production rules 

S – Start symbol 

“Non terminals” are represented by capital letters A, B, C,… so on. 

“Terminals” are represented by small letters a, b, c,… so on. 

“Production rules” are of the form α  β, where  

α contains non-terminal symbols or may also contain both terminals 

and non-terminals with atleast one non-terminal. 

β contains terminal, non-terminal symbols or any combination of both 

terminals and non-terminals. 

Types of grammar: 

1. Linear grammar- 

Left linear grammar and Right linear grammar 

2. Non-Linear grammar 

3. Simple grammar 

4. Recursive grammar 

5. Regular grammar 

 

Linear grammar: A grammar with atmost one variable (non-terminal) at right side of 

production rule is called linear grammar. 

Example:  SaSb  SA  SAb 

  Sɛ  AaB|ɛ AaAb|ɛ 

    BAb 

Non linear grammar: A grammar with more than one variable (non terminal) at the right 

side of the production is called non linear grammar. 
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Example: SSS SaA 

Sɛ Aɛ 

SaSb SaSAS 

SbSa 

Simple or S- Grammar: A grammar is said to be S-Grammar if all the productions are of the 

form Aax, where  A ∈ V (variables) 

a ∈ T (terminals) 

x ∈ V* (0 or more variables) 

and any pair (A,a) occurs atmost once in production p. 

Example: SaS SaAS|a SaS 

SbSS ASbA SbSS 

Sc SaSS 

Sc 

(s,a), (s,b) occur only once (s,a) occur only once (s,a) occur twice 

∴ s-grammar  ∴ s-grammar  ∴ not s-grammar 

Recursive grammar: A grammar is said to be recursive grammar, if it contains either a 

recursive production or an indirectly recursive production. 

Example: SaS SaA|b SSS 

AbS|c SaSb 

Sɛ 

Left linear grammar: A grammar G=(V,T,P,S) is said to be left linear grammar if all the 

productions are of the form ABx or Ax, where  A,B ∈ V (variables) 

x ∈ T* (0 or more terminals) 

i.e., RHS non terminal is at left end.

Example: SAb SAab 

SSb AAab 

Sɛ AB 

Ba 

Right linear grammar: A grammar is said to be right linear grammar if all the productions 

are of the form AxB or Ax, where  A,B ∈ V (variables) 

x ∈ T* (0 or more variables) 

i.e., RHS non terminal is at right end.

Example: SabS SA 

Sa AaA 

Aɛ 

Regular Grammar: A grammar G=(V,T,P,S) is said to be regular grammar, if it is either 

right linear grammar or left linear grammar or nothing. i.e., productions are in the form of 

AxB or ABx or Ax or Aɛ, where  A,B ∈ V (variables) 

x ∈ T* (0 or more terminals) 

i.e., LHS contains a single non terminal and

 RHS contains only terminals or 

 single non terminal followed by terminals or 

 terminals followed by single non terminal or 

 nothing. 

Example: SabS SAab 

Sa AAab|B 

Ba 
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Relation between Regular Grammar and Finite Automata: 

Conversion between regular grammar and FA: 

1. RLG to FA 

2. FA to RLG 

3. RLG to LLG 

4. LLG to RLG 

5. LLG to FA 

6. FA to LLG 

RLG to FA: 

1. Let G=(V,T,P,S) be the RLG and M be the FA. 

2. Start symbol of G is the start symbol of M. 

3. Each variable in RLG will be a state in FA. 

4. If variable has an ɛ-production Aɛ, then that state A will become final state, 

otherwise a new final state will be introduced. 

5. If production in G is of the form Aa1 a2 a3… anB, then make transition  

 

 

6. If production in G is of the form Aa1 a2 a3… an, then make transition introducing a 

new final state. 

 

FA to RLG: 

1. Let G=(V,T,P,S) be the RLG and M be the FA. 

2. Start symbol of M is the start symbol of G. 

3. For each transition                          , write the production  

4. Now combine all the productions to form a RLG. 

5. Make substitutions if possible to minimize the grammar. 

RLG to LLG: 

1. Let L be RLG. Construct FA for given RLG. 

2. Replace the start state with final state and vice versa and reverse the direction of all 

the edges. 

3. Construct  grammar from step2 

4. Reverse the right side of each production of RLG obtained in step3. 

5. Resultant grammar is LLG. 

LLG to RLG: 

1. Reverse the right side of each production of LLG 

2. Construct FA for obtained grammar in step1. 

3. Replace the start state with final state and vice versa and reverse the direction of all 

the edges. 

4. Construct  grammar from FA obtained in step3 

5. Resultant grammar is RLG. 

LLG to FA: 

LLG → RLG → FA 

FA to LLG: 

FA → RLG → LLG 
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Regular Expressions and Regular Grammars: 

Conversion between regular grammar and regular expression: 

1. RG to RE 

2. RE to RG 

RG to RE: 

1. Let G=(V,T,P,S) be the RLG, replace → symbol in the production with ‘=’ symbol.  

2. If there is a equation of the form A= aA | b, then convert it into A=a*b 

3. By applying substitutions, compute the expression for the starting symbol.  

RE to RG: 

RE → FA → RLG 
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