
Formal Languages and Automata Theory – R16

KHIT,CSE Page 1

INDEX

S.No UNIT – I: Finite Automata Page No

1

Why Study Automata Theory? 2

2 The Central Concepts of Automata Theory 3

3 Automation 6

4 Finite Automation 6

5 Transition Systems, Acceptance of a String by a Finite Automation, 9

6 DFA, Design of DFAs, 11

7 NFA, Design of NFA 12

8 Equivalence of DFA and NFA 13

9 Conversion of NFA into DFA 13

10 Finite Automata with E-Transition 14

11 Minimization of Finite Automata 15

12 Mealy and Moore Machines 16

13 Applications and Limitation of Finite Automata.

14 Differences between DFA and NFA 19

15 Differences between Mealy and Moore Machines 19

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 2

Why Study Automata Theory?:

There are several reasons why the study of automata and complexity is an important part of

the core of Computer Science.

Computer science can be divided into two main branches.

1. “Applied Computer Science” which is concerned with the design and implementation of

computer systems, with a special focus on software.

2. “Theoretical Computer Science” or “Theory of computation” which is concerned with

mathematical study of computation.

The central areas of theory of computation are

1. Automata theory

2. Computational theory

3. Complexity theory

Computational theory and Complexity theory:

The theories of computability and complexity are closely related. In complexity theory, the

objective is to classify problems as easy ones and hard ones; whereas in computability theory,

the classification of problems is by those that are solvable and those that are not.

Computational Problem:

“Computational Problem” means any problem that can be modeled to be solved by a

computer.

Computation:

“Computation” can be defined as finding a solution to a problem from the given inputs by

means of an algorithm.

Automata theory:

It deals with the formal definitions and properties of mathematical models of computation.

These models play a role in several applied areas of computer science. One model, called the

finite automaton, is used in text processing, compilers, and hardware design. Another model,

called the context-free grammar, is used in programming languages and artificial intelligence.

Finite automaton is a useful model for

1. Software for designing and checking the behavior of digital circuits (hardware

design).

2. The "lexical analyzer" of a typical compiler, that is, the compiler component that

breaks the input text into logical units, such as identifiers, keywords, and punctuation

(compilers).

3. Software for scanning large bodies of text, such as collections of Web pages, to find

occurrences of words, phrases, or other patterns (text processing).

The theories of computability and complexity require a precise definition of a computer.

Automata theory allows practice with formal definitions of computation.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 3

The Central Concepts of Automata Theory:

Symbol: Symbol is any character which is meaningful or meaningless.

Example: A,B,C,….,Z

 a,b,c,…z

 0,1,2,…9

 ∑, λ, δ, π…

Alphabet: An alphabet is a finite, and non empty set of symbols. It is denoted by ∑.

Common alphabets include:

Example: 1. ∑= {0, 1}, is the binary alphabet.

 2. ∑ = {a, b,…, z}, is lower-case English alphabet.

 3. ∑ = {0,1,2,…9}, is decimal number alphabet.

String: A string is a finite sequence of symbols from some alphabet.

Example: ∑= {0, 1}, is the binary alphabet.

 Strings are 00,01,10,11…

Empty String: The empty string is the string with zero occurrences of symbols. It is denoted

by ɛ.

Length of a string: the length of a string is "the number of symbols" in the string. length of a

string w is denoted by |w|. length of empty string is 0.

Example: w=sri, |w|=3

Powers of an alphabet (set of strings of length k): If ∑ is an alphabet, then set of all strings

of a certain length k are denoted by ∑k.

Example: if ∑= {0, 1}, then ∑0 = {ɛ} – strings of length 0,

∑1={0,1}– strings of length 1,
 ∑2={00,01,10,11}– strings of length 2,…

Prefix of a string: prefix of a string is formed by removing zero or more tailing symbols of

the string. For a string of length n, number of prefixes= n+1.

Example: w=sri, prefix=sri,sr,s,ɛ.

Proper prefix: prefix of a string other than itself is called proper prefix.

Example: w=sri, proper prefix=sr,s, ɛ.

suffix of a string: prefix of a string is formed by removing zero or more leading symbols of

the string. For a string of length n, number of suffixes= n+1.

Example: w=sri, suffix=sri,ri,i,ɛ.

Proper suffix: prefix of a string other than itself is called proper prefix.

Example: w=sri, proper suffix= ri,i,ɛ.

substring of a string: substring of a string is formed by removing either prefix or suffix or

both from a string excluding ɛ. For a string of length n, number of substrings= n(n+1)/2.

Example: w=sri, substring=sri, sr,s,ri,i,r

Language: language is a collection of strings formed from a particular alphabet.

Example: if ∑= {0, 1}, then the language of all strings consisting of n 0' s followed by n l' s,

for some n≥0 is L= {ɛ, 01,0011,000111,. .}.

Operations on strings:

1. Concatenation of a string

2. Kleene closure of a string

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 4

3. Positive closure of a string

4. Reverse of a string

Concatenation of a string: concatenation of a string is obtained by appending second string

at the end of first string. If w1 and w2 are strings, then w1.w2 or w1w2 denotes the

concatenation of w1 and w2.

Example: w1=sri w2=lakshmi then w1.w2=srilakshmi

length of concatenated string is |w1.w2|=|w1|+|w2|.

Example: w1=sri w2=lakshmi w1.w2=srilakshmi |w1.w2|=|w1|+|w2|=3+7=10

Kleene closure of a string: Set of all strings over an alphabet ∑ is known as kleene closure.

It is denoted by ∑*.

∑* = ∑0 ∪ ∑1 ∪∑2 ∪ ...
Example: if ∑= {0, 1}, then ∑0 = {ɛ} – strings of length 0,

∑1={0,1}– strings of length 1,
 ∑2={00,01,10,11}– strings of length 2,…

∑* = ∑0 ∪ ∑1 ∪∑2 ∪ ... ={ ɛ, 0, 1, 00 ,01, 10, 11, …}

Positive closure of a string: Set of all strings over an alphabet ∑ excluding the empty string

is known as positive closure. It is denoted by ∑+.

∑+ = ∑1 ∪∑2 ∪ ∑3 ∪… or ∑+ = ∑*-{ɛ}

Example: if ∑= {0, 1}, then ∑0 = {ɛ} – strings of length 0,

∑1={0,1}– strings of length 1,
 ∑2={00,01,10,11}– strings of length 2,…

∑* = ∑0 ∪ ∑1 ∪∑2 ∪ ... ={ ɛ, 0, 1, 00 ,01, 10, 11, …}

∑+ = ∑*-{ɛ} = { 0, 1, 00 ,01, 10, 11, …}

Reverse of a string: Reverse of a string is obtained by reading the string from back to front.

If w is a string, then reverse of a string w is denoted by wR.

Example: w=sri then wR=irs

Operations on languages:

1. Union of a language

2. Intersection of a language

3. Difference of a language

4. Complement of a language

5. Concatenation of a language

6. Kleene closure of a language

7. Positive closure of a language

Union of a language: Union of two languages is defined as collection of strings from L1 as

well as from L2. It is denoted as L1∪L2.

L1∪L2={w| w in L1 or w in L2}

Example: if L1= {0,1} and L2= {00,11} then L1∪L2={0,1,00,11}

Intersection of a language: Intersection of two languages is defined as collection of strings

common in both L1 as well as L2. It is denoted as L1∩L2.

L1∩L2={w| w in L1 and w in L2}

Example: if L1= {00,1} and L2= {00,11} then L1∩L2={00}

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 5

Difference of a language: Difference of two languages is defined as collection of strings

from L1 that are not in L2. It is denoted as L1−L2.

L1−L2={w| w in L1 and not in L2}

Example: if L1= {00,1} and L2= {00,11} then L1∩L2={1}

Complement of a language: Complement of a language is defined as language consisting of

all the strings that are not in language L. It is denoted as LC.

 LC =∑* −L

Example: if L= {set of strings that starts with 010} over ∑= {0, 1}

 then LC =∑* −L ={set of all strings} −{set of strings that starts with 010}

 = { of strings that does not starts with 010}

Concatenation of a language: Concatenation of a two languages is obtained by appending

every string in second language at the end of every string in first language. If L1 and L2 are

two languages, then L1.L2 or L1L2 denotes the concatenation of L1 and L2.

L1.L2={w| w1 in L1 and w2 in L2}

Example: if ∑= {0, 1}, then the language of all strings consisting of n 0' s followed by n l' s,

for some n≥0 is L1= {ɛ, 01,0011,000111,. .}.

if ∑= {0, 1}, then the language of all strings consisting of an equal number of 0's and l's is

L2= {ɛ, 01, 10, 0011, 0101, 1001, .. .}.

L1.L2={ ɛ. ɛ , ɛ. 01, ɛ. 10, ɛ. 0011, ɛ. 0101, ɛ. 1001,…,0110,010011,010101,…}

 = {ɛ, 01, 10, 0011, 0101, 1001, .. ., 0101,010011,010101…}

Kleene closure of a language: If L is a language, Set of all strings formed by concatenation

of zero or more strings of the language is known as kleene closure. It is denoted by L*.

Li = Li-1.L, i≥1

L* = L0 ∪ L1 ∪L2 ∪ ...

Example: if ∑= {0, 1}, then language containing strings of length 1 is L= {0, 1},

then L0 = {ɛ}

L1= L0.L ={ɛ} {0,1}={0,1}
 L2= L1.L = {0,1}{0,1}={00,01,10,11}

L* = L0 ∪ L1 ∪L2 ∪ ... ={ ɛ, 0, 1, 00 ,01, 10, 11, …}

Positive closure of a language: If L is a language, Set of all strings formed by concatenation

of one or more strings of the language is known as positive closure. It is denoted by L+.

L+ = L1 ∪L2 ∪ L3 ∪… or L+ = L*-{ɛ}

Example: if ∑= {0, 1}, }, then language containing strings of length 1 is L= {0, 1},

then L0 = {ɛ}

L1= L0.L ={ɛ} {0,1}={0,1}
 L2= L1.L = {0,1}{0,1}={00,01,10,11}

L* = L0 ∪ L1 ∪L2 ∪ ... ={ ɛ, 0, 1, 00 ,01, 10, 11, …}

L+ = L*-{ɛ} = { 0, 1, 00 ,01, 10, 11, …}

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 6

Automata:

Automata is plural for the term “Automaton”. An Automaton is defined as a system where

information is transmitted and used for performing some internal operations without direct

participation of human.

Finite State Machine/ Finite Automata:

Definition:

“Finite State Machine” is a model of computation which is used to simulate the behaviour of

a machine or a system.

Model of Finite Automata:

It includes 1. Components of Finite State Machine

 2. Elements of Finite State Machine

 3. Working of Finite State Machine

 4. Mathematical representation of Finite State Machine

1.Components of Finite State Machine:

Finite State Machine consists of 3 components. They are 1. Input tape

 2. Read head and

 3. Finite Control

Input tape:

It is used to store the input string that is to be processed by Finite State Machine. The input is

finite and taken from a set of input alphabets ∑.

Read head:

It is used to read one symbol at a time from input tape and moves from left to right. Initially it

points to the leftmost symbol on the tape and it is controlled by “Finite control”.

Finite Control:

Finite control contains a set of states which are connected by transitions. In finite control, it is

decided that “machine is in this state and it is getting this input, so it will go to this state”.

2. Elements of Finite State Machine:

The main elements of Finite State Machine are 1. State

 2. Rules

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 7

 3. State transition

 4. Input events

1. State:

This element defines the behaviour of the system and generate action to be performed. There

are different types of states. They are 1. Start state

 2. Next state

 3. Accepting state

 3. Dead state

 4. Inaccessible state

 5. Universal State

 6. Existential State

Types of states:

1. Start state: State which is used to start processing of input string in finite state

machine is called as “start state” or “initial state”.

2. Next state: State which is defined by the transition function of finite state machine for

current state 𝑞𝑖 and input symbol x is called as “next state”.

𝛿(𝑞𝑖, 𝑥) → 𝑞𝑗

3. Accepting state: Once entire string is processed, state which leads to acceptance of

string is called as “Accepting state” or “final state”.

4. Dead state: A non final state of finite state machine whose transitions on every input

symbol terminates on itself is called as “dead state”.

𝑞 ∉ 𝐹 𝑎𝑛𝑑 𝛿(𝑞𝑖, Σ) → 𝑞𝑖

5. Inaccessible state: State which can never be reached from initial state is called

“inaccessible state” or “useless state”.

6. Equivalent state: Two states are “equivalent” or “indistinguishable”, if both

produces final states or if both produces non final states on applying same input

symbol.

𝛿(𝑞𝑖 , 𝑥) ∈ 𝐹 → 𝛿(𝑞𝑗, 𝑥) ∈ 𝐹

𝛿(𝑞𝑖, 𝑥) ∈ 𝑁𝐹 → 𝛿(𝑞𝑗, 𝑥) ∈ 𝑁𝐹

7. Distinguishable state: Two states are “not equivalent” or “distinguishable”, if both

produces final states or if both produces non final states on applying same input

symbol.

𝛿(𝑞𝑖, 𝑥) ∈ 𝐹 → 𝛿(𝑞𝑗 , 𝑥) ∈ 𝑁𝐹

𝛿(𝑞𝑖, 𝑥) ∈ 𝑁𝐹 → 𝛿(𝑞𝑗 , 𝑥) ∈ 𝐹

2. Rules:

This element defines the conditions that are to be satisfied for enabling state transition.

3. State transition:

This element defines the change in state. i,e., moving from one state to another state is known

as transition. Transitions are represented in 3 ways. They are 1. Transition diagram

 2. Transition table

 3. Transition function.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 8

Types of transition:

1. Transition diagram/ Transition graph/ Transition system:

A diagrammatical representation of states and transitions is called as transition

diagram. In transition diagram, circles are used to represent states and directed arrows

are used to represent transitions between states.

For a finite state machine, transition diagram or transition graph or a transition

system is formally defined as a directed labeled graph where each vertex is a state,

and directed edge is a transition between two states and edges are labeled with

input/output.

Note: For DFA, NFA, and Moore machine, only input is labeled on each edge, where

as in mealy machine, both input and output are labeled on each edge.

Representations:

Start state

Final state

Other states

initial and final states are same

transition between two states

transition between two states with input and output

2. Transition table: Tabular representation of states and transitions is called as

transition table. In transition table, rows are used to represent states and columns are

used to represent input symbols and entry in table represents the next state based on

current state and input symbol.

In this representation start state is marked by an arrow () and final state is

marked by an asterisk (*) or enclosed within a single circle (①).

3. Transition function: Mathematical representation of states and transitions is called as

transition function. It is denoted by 𝛿. There are two types of transition function

depending on number of arguments. They are 1. Direct transition function

 2. Indirect transition function.

Direct transition function: When the input is a symbol, it is known as direct

transition function. It is denoted by 𝜹(𝒒𝒊, 𝒙) = 𝒒𝒋 where

 𝑞𝑖 is used to represent current state

 𝑥 is used to represent input symbol and

 𝑞𝑗 represents the next state based on current state and input symbol.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 9

Note: 𝜹(𝒒𝒊, 𝜺) = 𝒒𝒊 , i.e state changes only on applying an input symbol.

Indirect transition function:

When the input is a string xw , it is known as indirect transition function. It is denoted

by 𝜹(𝒒𝒊, 𝒙𝒘) ⊢ 𝜹(𝜹(𝒒𝒊, 𝒙), 𝒘) where

 𝑞𝑖 is used to represent current state

 𝑥 is used to represent current input symbol and

 𝛿(𝑞𝑖 , 𝑥) represents the next state based on qi and x and

 𝑤 represents the remaining input string.

4. Input events:

This element is used to evaluate rules and lead to transition. These may be generated

internally or externally.

3. Working of finite state machine:

Computation begins in start state with input string in input tape. The read head scans the

input from input tape and sends it to finite control.

Based on current state and input symbol of finite state machine, next state will be determined.

After processing the entire string, if the finite control enters into one of the final states, FSM

declares that string is accepted and recognizes that string belongs to the given language.,

otherwise it declares that string doesn’t belongs to the given language.

4. Mathematical representation of Finite State Machine/Finite Automata:

Finite Automata is formally defined as 5-tuple 𝑴 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑀 = 𝐹𝑖𝑛𝑖𝑡𝑒 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ → Q

𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

 𝐹 − 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

Transition System:

A transition system is formally defined as a directed labeled graph where each vertex is a

state, and directed edge is a transition between two states and edges are labeled with

input/output.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 10

A transition system is a 5-tuple (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ∗𝑋𝑄

𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄
 𝐹 − 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

i.e if (𝑞0, w. 𝑞2) is in 𝜹. it means that the graph starts at the vertex 𝑞0, goes along a set of

edges, and reaches the vertex 𝑞2 . The concatenation of the label of all the edges thus

encountered is w.

Acceptability of a string by finite automata:

i.e., A string w is accepted by finite automata 𝑀 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) if 𝛿(𝑞0, 𝑤) = 𝑞𝑓 for some

𝑞𝑓 𝜖 𝐹. This is basically acceptability of a string by the final state.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 11

Types of Finite Automata:

Finite Automata can be classified into 2 types. They are

1. Finite Automata without output (recognizers)

2. Finite Automata with output (tranducers)

Finite Automata without output are classified into 3 types. They are

1. Deterministic Finite Automata (DFA)

2. Non Deterministic Finite Automata (NFA)

3. Non Deterministic Finite Automata with Epsilon transitions (NFA-𝜀)

4. Minimized DFA

Finite Automata with output are classified into 2 types. They are

1. Moore Machine

2. Mealy Machine

Finite Automata without output (RECOGNIZERS):

1. DETERMINISTIC FINITE AUTOMATA (DFA)

Definition:

Deterministic Finite Automata can be defined as “it is a finite automata in which all the

moves of a machine can be uniquely determined by using current state and input symbol. i.e.,

For the given input symbol, there will be only one transition from the current state.

Mathematical representation of DFA:

DFA is formally defined as 5-tuple 𝑴 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑀 = 𝐹𝑖𝑛𝑖𝑡𝑒 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ → Q

𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

 𝐹 − 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

Working of DFA:

Initially DFA is assumed to be in its start state 𝑞0 with its read head on leftmost symbol of

input string in input tape. The read head scans the input from input tape and sends it to finite

control.

Based on current state and input symbol of finite state machine, next state will be determined

by finite control. During each move, read head moves one position to the right.

After processing the entire string, if the DFA enters into one of the final states, the string is

accepted, otherwise the string is rejected.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 12

Design of DFAs:

1. Write the strings in the given language using the given input alphabet ∑.

2. Design DFA for the minimum string in the language.

3. At each state, for the input symbol which has no transition, put a loop over that

particular state with that input symbol.

4. If the language is satisfied for that loop on that state, then check for next state.

Otherwise, put the transition for the previous state with that input symbol.

5. If then also, it is not satisfied, then put the transition for the previous previous state

with that input symbol.

6. If it is a start state, include a new state called as dead state.

7. Repeat the steps 2-5 until each and every state in DFA is having a transition with each

and every input symbol.

2. NON-DETERMINISTIC FINITE AUTOMATA (NDFA / NFA)

Definition:

Non Deterministic Finite Automata can be defined as “it is a finite automata in which some

of the moves of a machine cannot be uniquely determined by using current state and input

symbol. i.e., For the given input symbol, there will be more than one transition from the

current state.

Mathematical representation of NFA:

NFA is formally defined as 5-tuple 𝑴 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑀 = 𝐹𝑖𝑛𝑖𝑡𝑒 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ → 2Q , 2Q ⊆ 𝑄

 𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

 𝐹 − 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

Working of NFA:

Initially NFA is assumed to be in its start state 𝑞0 with its read head on leftmost symbol of

input string in input tape. The read head scans the input from input tape and sends it to finite

control.

Based on current state and input symbol of finite state machine, several choices may exist for

the next state. Then the machine chooses one of them and continues.

If the next input symbol matches, it continues. Otherwise, it chooses another way. During

each move, read head moves one position to the right.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 13

After processing the entire string, if the NFA enters into one of the final states, the string is

accepted, otherwise the string is rejected.

Design of NFAs:

1. Write the strings in the given language using the given input alphabet ∑.

2. Design NFA for the minimum string in the language.

3. Put the transition with the input symbol wherever necessary, such that all strings of

given language are accepted by NFA.

Equivalence of DFA and DFA:

Two DFAs M1 and M2 are said to be equivalent, if the language accepted by 2 DFAs is same

irrespective of number of states. i.e., if L(M1)=L(M2), then M1 and M2 are equivalent.

Procedure:

1. Draw transition table format with input symbols and pair of states. Each pair of states

contains state from M1 and state from M2.

2. Initially take start states of M1 and M2 as a pair and generate new pair of states with

the input symbols of DFA.

3. During the process of generating new pair of states, if a pair of type (F,NF) or (NF,F)

is generated, then immediately stop the process and conclude that given DFAs are not

equivalent.

4. During the process of generating pairs of states, if a pair of type (F,F) or (NF,NF) is

generated, then repeat the process until no new pair of states are found and conclude

that given DFAs are equivalent.

Equivalence of DFA and NFA/ Conversion from NFA to DFA:

1. Draw the transition table for the given NFA.

2. Draw the transition table format for the required DFA with the input symbols in the

given DFA having only initial state.

3. The start state of DFA is the start state of given NFA.

4. If over an input symbol in DFA, a new state is obtained, then make that state as the

stat in DFA.

5. Repeat step4 until no new state is found.

6. The final states of DFA are those states that contain the final states of NFA.

3. NFA WITH EPSILON TRANSITIONS (NFA-ɛ / ɛ-NFA)

Definition:

Non Deterministic Finite Automata with epsilon transitions can be defined as “it is a non

deterministic finite automata in which some of the transitions of a machine can be made

without reading any input symbol. i.e., without any input symbol (ɛ), there will be a transition

from the current state.

ɛ - transitions:

ɛ - transitions are the transitions by using which NFA can change its state without reading

any input symbol.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 14

ɛ - closure:

ɛ - closure of a state is set of all the states reachable from that state by using only ɛ -

transitions including itself.

ɛ-closure(q0)={q0,q1,q2} for

Mathematical representation of NFA-ɛ:

NFA-ɛ is formally defined as 5-tuple 𝑴 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑀 = 𝐹𝑖𝑛𝑖𝑡𝑒 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ ∪ {ε} → 2Q , 2Q ⊆ 𝑄

 𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄
 𝐹 − 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

Working of NFA-ɛ:

Initially NFA-ɛ is assumed to be in its start state 𝑞0 with its read head on leftmost symbol of

input string in input tape. The read head scans the input from input tape and sends it to finite

control.

Based on current state and input symbol of finite state machine, several choices may exist for

the next state. Then the machine chooses one of them and continues.

If there is no input symbol, then using epsilon transition, it moves to next state and continues.

If the next input symbol matches, it continues. Otherwise, it chooses another way. During

each move, read head moves one position to the right.

After processing the entire string, if the NFA-ɛ enters into one of the final states, the string is

accepted, otherwise the string is rejected.

Design of NFA-ɛ:

1. Write the strings in the given language using the given input alphabet ∑.

2. Design NFA- ɛ for the minimum string in the language.

3. Put the transition with the ɛ symbol wherever necessary, such that all strings of given

language are accepted by NFA-ɛ.

Equivalence of NFA-ɛ and NFA/ Conversion from NFA-ɛ to NFA:

1. Find ɛ - closures of all the states in given NFA- ɛ.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 15

2. Find transitions for NFA 𝜹′ with every state and every input symbol of given NFA- ɛ

using 𝜹′(𝒒𝒑 , 𝒊) = 𝜺 − 𝒄𝒍𝒐𝒔𝒖𝒓𝒆 (𝜹(𝜺 − 𝒄𝒍𝒐𝒔𝒖𝒓𝒆(𝒒𝒑), 𝒊)

3. Draw the transition diagram based on transitions obtained.

4. The start state of NFA is the start state of given NFA- ɛ.

5. The final states of NFA are the final states of NFA- ɛ.

4. Minimized Deterministic Finite Automata:

Definition:

DFA with number of states as minimum as possible is called as “Minimized Finite

Automata”.

Procedure to minimize DFA:

There are 2 ways to minimize DFA. They are 1.Equivalence method

 2. Myhill-Nerode theorem

1. Equivalence method:

Definitions:

k-equivalent:

Two states are said to be “k-equivalent” (k≥0) , if both produces final states or if both

produces non final states on applying same input of length k or less.

K=0, 0-equivalent:

The only string with length “0” is ɛ. If ɛ is applied on any state, it cannot reach a final state,

but if ɛ is applied on any state, it reaches a final state, since the ɛ- closure of any state

includes the state itself.

Therefore at level “0”, behaviour of final states differ from non final states. so, partition the

states into 2 groups, final and non final. It is denoted by 𝜋0.

K=1, 1-equivalent:

It is denoted by 𝜋1. Equivalence at level 1 can exist if and only if there is equivalence at level

“0”. Therefore here equivalence is to be checked among the states that were equivalent in

level 0 (subsets of 𝜋0). States having the same behavior will be grouped.

Procedure:

1. Write the set of states Q in the given DFA.

2. Find 0-equivalence (𝜋0): Partition Q into 2 groups, I - Final states ‘F’ and II - Non-

Final states ‘NF’.

𝜋0 = (𝐼, 𝐼𝐼) = (𝐹, 𝑄 − 𝐹)

3. Find 1-equivalence (𝜋1): check equivalence on subsets (groups) of 𝜋0 and perform

partition on subsets of 𝜋0 F, NF to find new groups.

𝜋1 = (𝐼, 𝐼𝐼𝐼, 𝐼𝑉. .)

 If the group of 𝜋0 contains a single state, then further it cannot be partitioned.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 16

 For each group, write the transition table with input symbols on row side and

states on column side.

 Rewrite the transition table by replacing the transition with its group number

that it falls into.

 For any input symbol, if transition is made to same subset of 𝜋0, then it cannot

be partitioned.

 For any input symbol, if transition is made to different subset of 𝜋0, then

subset is again partitioned.

4. Similarly find 2-equivalence (𝜋2) and so on until 𝜋𝑛−1 = 𝜋𝑛.

5. For any input symbol, if no partitions are made on subsets of 𝜋𝑛, then that states are

indistinguishable and these groups are the states of modified DFA.

6. Draw transition table for the minimized DFA with modified states on row side and

input symbols on column side and generate the transitions.

7. Draw transition diagram based on transition table obtained in step 6. This is the

required minimized DFA.

8. Remove any useless states to obtain optimized DFA.

2. Myhill-Nerode theorem:

1. Draw transition table for given DFA.

2. Write the set of states Q in the given DFA and partition Q into 2 groups, Final states

‘F’ and Non-Final states ‘NF’.

3. Make two dimensional matrix labeled by states of DFA at left side and bottom.

4. The major diagonal and upper triangular matrix is marked with dashes.

5. Write the combinations by attaching final states to non final states and put X in that

combinations in the matrix.

6. Write the combinations by attaching non final states to non final states.

7. For each pair of states, draw the transition table with input symbols on row side and

states on column side and generate new pair of states.

8. If any of new pair of states generated is either X (or) x, then the pair taken is marked

with x. Otherwise pair is marked with zero ‘0’.

9. Write the modified matrix.

10. The combinations of entries 0 are the states of minimized DFA.

11. Draw transition table for the minimized DFA with modified states on row side and

input symbols on column side and generate the transitions.

12. Draw transition diagram based on transition table obtained in step 6. This is the

required minimized DFA.

13. Remove any useless states to obtain optimized DFA.

Finite Automata with output (TRANSDUCERS):

1. MOORE MACHINE:

Definition:

It was proposed by Edward F. Moore. Moore machine is a finite automata with output where

output depends on present state only. In this machine, states are labeled with state name and

output.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 17

Mathematical representation of Moore machine:

Moore machine is formally defined as 6-tuple 𝑴 = (𝑸, 𝚺, 𝚫, 𝜹, 𝝀, 𝒒𝟎) where

 𝑀 = 𝑀𝑜𝑜𝑟𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 Δ − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ → Q

 𝜆 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄 → Δ

 𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

2. MEALY MACHINE:

Definition:

It was proposed by George H. Mealy. Mealy machine is a finite automata with output where

output depends on present state and present input. In this machine, transition is labeled with

input and output.

Mathematical representation of Mealy machine:

Mealy machine is formally defined as 6-tuple 𝑴 = (𝑸, 𝚺, 𝚫, 𝜹, 𝝀, 𝒒𝟎) where

 𝑀 = 𝑀𝑜𝑜𝑟𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 Δ − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

 𝛿 − 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ → Q

 𝜆 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝛿: 𝑄𝑋Σ → Δ

 𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

Conversion of Moore Machine to Mealy machine:

1. Draw transition table of moore machine.

2. Draw transition table format for mealy machine.

3. Put present states of moore machine in present state of mealy machine.

4. Put next states for corresponding present states and input of moore machine in next

states for those present states and input of mealy machine.

5. For output, consider present state and output of moore machine.

6. Output for next state at input in mealy machine will be Output for that state as present

state in moore machine.

Conversion of Mealy Machine to Moore machine:

1. Draw transition table of mealy machine.

2. Observe next state and output columns .

3. If output differs for same next state, then break that state into number of states.

4. Change next states according to new set of states.

5. Put output in modified mealy machine.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 18

6. Draw transition table format for moore machine.

7. Put present states and next states of modified mealy machine in present state and next

states of moore machine.

8. For output, consider next state and output of mealy machine.

9. Output for next state in moore machine will be Output for that state as present state in

mealy machine.

www.Jntufastupdates.com

Formal Languages and Automata Theory – R16

KHIT,CSE Page 19

Differences between DFA and NFA:

DFA NFA

“it is a finite automata in which all the moves

of a machine can be uniquely determined by

using current state and input symbol

“it is a finite automata in which some of the

moves of a machine cannot be uniquely

determined by using current state and input

symbol.

DFA is formally defined as 5-tuple 𝑴 =
(𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑀 =
𝐹𝑖𝑛𝑖𝑡𝑒 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑐ℎ𝑖𝑛

𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡
𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦

𝛿: 𝑄𝑋Σ → Q
𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄 𝐹 −
𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

NFA is formally defined as 5-tuple 𝑴 =
(𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) where

 𝑀 =
𝐹𝑖𝑛𝑖𝑡𝑒 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑐ℎ𝑖𝑛

𝑄 − 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡
𝛿 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦

𝛿: 𝑄𝑋Σ ∪ {ε} → 2Q , 2Q ⊆ 𝑄
𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄 𝐹 −
𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝐹 ⊆ 𝑄

It does not allow any epsilon transitions It allows epsilon transitions

It takes less time to recognize input string. It takes more time to recognize input string.

It occupies more space. It occupies less space.

It accepts a string, if it is in one of the final

states, after processing entire string.

It accepts a string, if some sequence of

possible moves of a machine reaches final

state, after processing entire string.

It rejects a string, if it is in non-final states,

after processing entire string.

It rejects a string, if no sequence of possible

moves of a machine reaches final state, after

processing entire string.

It is bigger than NFA. It is smaller than DFA.

Differences between Moore Machine and mealy Machine:

Moore Machine Mealy Machine

It was proposed by Edward F. Moore. It was proposed by George H. Mealy.

Moore machine is a finite automata with

output where output depends on present state

only.

Mealy machine is a finite automata with

output where output depends on present state

and present input.

In this machine, states are labeled with state

name and output.

In this machine, transition is labeled with

input and output.

Moore machine is formally defined as 6-tuple

𝑴 = (𝑸, 𝚺, 𝚫, 𝜹, 𝝀, 𝒒𝟎) where

 𝑀 = 𝑀𝑜𝑜𝑟𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑄 −
𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡
 Δ − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡

𝛿 − 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑏𝑦 𝛿: 𝑄𝑋Σ → Q

𝜆 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑏𝑦 𝛿: 𝑄 → Δ

 𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

Mealy machine is formally defined as 6-tuple

𝑴 = (𝑸, 𝚺, 𝚫, 𝜹, 𝝀, 𝒒𝟎) where

 𝑀 = 𝑀𝑜𝑜𝑟𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑄 −
𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

 Σ − 𝑖𝑛𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡
 Δ − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡

𝛿 − 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑏𝑦 𝛿: 𝑄𝑋Σ → Q

𝜆 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑏𝑦 𝛿: 𝑄𝑋Σ → Δ

 𝑞0 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑞0 ∈ 𝑄

For input ɛ, output is λ(𝑞0) For input ɛ, output is ɛ.

For input string of length ‘n’, output string

consists of length ‘n+1’.

For input string of length ‘n’, output string

consists of length ‘n’.

www.Jntufastupdates.com

