
1

Unit – I

Syllabus:

• Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract

Data Type (ADT), Preliminaries of algorithms. Time and Space complexity.

• Searching - Linear search, Binary search, Fibonacci search.

• Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging

(Merge sort) algorithms.

 A data structure is a particular way of storing and organizing data in a computer so that it can be

used efficiently.

 Some common examples of data structures are arrays, linked lists, queues, stacks, binary trees,

and hash tables

 Today computer programmers do not write programs just to solve a problem but to write an

efficient program.

 When selecting a data structure to solve a problem, the following steps must be performed.

1. Analysis of the problem to determine the basic operations that must be supported.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

 The term data means a value or set of values. It specifies either the value of a variable or a constant

(e.g., marks of students, name of an employee, address of a customer, value of pi, etc.).

 A record is a collection of data items. For example, the name, address, course, and marks obtained

are individual data items. But all these data items can be grouped together to form a record.

 A file is a collection of related records. For example, if there are 60 students in a class, then there

are 60 records of the students. All these related records are stored in a file.

 Data structures are generally categorized into two classes: primitive and non-primitive data

structures.

Primitive and Non-primitive Data Structures:

 Primitive data structures are the fundamental

data types which are supported by a

programming language. Some basic data types

are integer, real, character, and boolean. The

terms ‘data type, basic data type’, and ‘primitive

data type’ are often used interchangeably.

INTRODUCTION:

CLASSIFICATION OF DATA STRUCTURES:

www.Jntufastupdates.com

2

 Non-primitive data structures are those data structures which are created using primitive data

structures. Examples of such data structures include linked lists, stacks, trees, and graphs.

 Non-primitive data structures can further be classified into two categories: linear and non-linear

data structures.

Linear and Non-linear Structures:

 If the elements of a data structure are stored in a linear or sequential order, then it is a linear data

structure.

o Examples include arrays, linked lists, stacks, and queues.

o Linear data structures can be represented in memory in two different ways. One way is to

have to a linear relationship between elements by means of sequential memory locations.

The other way is to have a linear relationship between elements by means of links.

 If the elements of a data structure are not stored in a sequential order, then it is a non-linear data

structure.

o The relationship of adjacency is not maintained between elements of a non-linear data

structure. Examples include trees and graphs.

Arrays:

 An array is a collection of similar data elements. These data elements have the same data type.

The elements of the array are stored in consecutive memory locations and are referenced by an

index (also known as the subscript).

 In C, arrays are declared using the following syntax: datatype name[size];

Ex: int marks[10];

limitations:

o Arrays are of fixed size.

o Data elements are stored in contiguous memory locations which may not be always available.

o Insertion and deletion of elements can be problematic because of shifting of elements from their

positions.

www.Jntufastupdates.com

3

Linked Lists:

 linked list is a dynamic data structure in which elements (called nodes) form a sequential list.

 In a linked list, each node is allocated space as it is added to the list. Every node in the list points

to the next node in the list.

 Every node contains the following

The value of the node or any other data that corresponds to that node

A pointer or link to the next node in the list

 The first node in the list is pointed by Head/Start/First. The last node in the list contains a NULL

pointer to indicate that it is the end or tail of the list.

Advantage: Easier to insert or delete data elements

Disadvantage: Slow search operation and requires more memory space

Stacks:

 A stack is a linear data structure in which insertion and deletion of elements are done at only one

end, which is known as the top of the stack.

 Stack is called a last-in, first-out (LIFO)

structure because the last element which is

added to the stack is the first element which

is deleted from the stack.

 Stacks can be implemented using arrays or

linked lists.

 Every stack has a variable top associated

with it. Top is used to store the address of

the topmost element of the stack.

 It is this position from where the element will be added or deleted. There is another variable MAX,

which is used to store the maximum number of elements that the stack can store.

 If top = NULL, then it indicates that the stack is empty and if top = MAX–1, then the stack is full.

 A stack supports three basic operations: push, pop, and peep. The push operation adds an element

to the top of the stack. The pop operation removes the element from the top of the stack. And the

peep operation returns the value of the topmost element of the stack (without deleting it).

www.Jntufastupdates.com

4

Queues:

 A Queue is a linear data structure in which insertion can be done at rear end and deletion of

elements can be dome at front end.

 A queue is a first-in, first-out (FIFO) data

structure in which the element that is

inserted first is the first one to be taken

out.

 Like stacks, queues can be implemented by using either arrays or linked lists.

Insert element into the Queue:

Delete element from Queue:

 A queue is full when rear = MAX – 1, An underflow condition occurs when we try to delete an

element from a queue that is already empty. If front = NULL and rear = NULL, then there is no

element in the queue.

Trees:

 A tree is a non-linear data structure which consists of a collection of nodes arranged in a

hierarchical order.

 One of the nodes is designated as the root node, and the remaining nodes can be partitioned into

disjoint sets such that each set is a sub-tree of the root

 The simplest form of a tree is a binary tree. A binary tree

consists of a root node and left and right sub-trees, where both

sub-trees are also binary trees.

 Each node contains a data element, a left pointer which points

to the left sub-tree, and a right pointer which points to the right

sub-tree.

 The root element is the topmost node which is pointed by a

‘root’ pointer. If root = NULL then the tree is empty.

www.Jntufastupdates.com

5

 Here R is the root node and T1 and T2 are the left and right subtrees of R. If T1 is non-empty,

then T1 is said to be the left successor of R. Likewise, if T2 is non-empty, then it is called the

right successor of R.

Advantage: Provides quick search, insert, and delete operations

Disadvantage: Complicated deletion algorithm

Graphs:

 A graph is a non-linear data structure which is a collection of vertices (also called nodes) and

edges that connect these vertices.

 A node in the graph may represent a city and the edges connecting

the nodes can represent roads.

 A graph can also be used to represent a computer network where

the nodes are workstations and the edges are the network

connections.

 Graphs do not have any root node. Rather, every node in the graph can be connected with every

another node in the graph.

Advantage: Best models real-world situations

Disadvantage: Some algorithms are slow and very complex

 This section discusses the different operations that can be performed on the various data structures

previously mentioned.

 Traversing It means to access each data item exactly once so that it can be processed. For example,

to print the names of all the students in a class.

 Searching It is used to find the location of one or more data items that satisfy the given constraint.

Such a data item may or may not be present in the given collection of data items. For example, to

find the names of all the students who secured 100 marks in mathematics.

 Inserting It is used to add new data items to the given list of data items. For example, to add the

details of a new student who has recently joined the course.

 Deleting It means to remove (delete) a particular data item from the given collection of data items.

For example, to delete the name of a student who has left the course.

 Sorting Data items can be arranged in some order like ascending order or descending order

depending on the type of application. For example, arranging the names of students in a class in

an alphabetical order, or calculating the top three winners by arranging the participants’ scores in

descending order and then extracting the top three.

 Merging Lists of two sorted data items can be combined to form a single list of sorted data items.

OPERATIONS ON DATA STRUCTURES:

www.Jntufastupdates.com

6

 An abstract data type (ADT) is a data structure, focusing on what it does and ignoring how it does

its job. (or) Abstract Data type (ADT) is a

type (or class) for objects whose behavior is

defined by a set of value and a set of

operations.

 Ex: stacks ADT and queues ADT. the user

is concerned only with the type of data and

the operations that can be performed on it.

 We can implement both these ADTs using

an array or a linked list.

Advantage of using ADTs

 Modification of a program is simple, For example, if you want to add a new field to a student’s

record to keep track of more information about each student, then it will be better to replace an

array with a linked structure to improve the program’s efficiency.

 In such a scenario, rewriting every procedure that uses the changed structure is not desirable.

Therefore, a better alternative is to separate the use of a data structure from the details of its

implementation.

 Algorithm is step by step logical procedure for solving a problem.

 In Algorithm each step is called Instruction.

 An Algorithm is any well-defined computational procedure that take some values as inputs and

produce some values as output.

 An Algorithm is a sequence of computational steps that transform input into output.

 An Algorithm has 5 basic properties:

1. Input:An Algorithm has take ‘0’ or more number of inputs that can be supplied as externally.

2. Output: An Algorithm must produce at least one output.

3. Definiteness: Each instruction in the algorithm must be clear.

4. Finiteness: An algorithm must terminate after a finite number of steps.

5. Effectiveness: Each operation should be effective. i.e the operations must be terminate after

finite amount of time.

Structure of an Algorithm:

1. Algorithm is a procedure consisting of heading and body. In body part we are writing

statements and in the head part we are writing the following.

Syntax: Algorithm name_of_Algo (param1,param2, …);

ABSTRACT DATA TYPE:

PRELIMINARIES OF ALGORITHM:

www.Jntufastupdates.com

7

2. The beginning and ending of block should be indicated by ‘{‘ and ‘}’ or ‘start’ and ‘end’

respectively.

3. Every statement in the algorithm should be end with semicolon (;).

4. Single line

comments are

written using ‘//’

as beginning of

comments.

5. The identifier

should begin

with character

and it may be

combination of

alpha numeric.

6. Assignment operator (:=) we can use as follows

Variable := expression (or) value;

7. There are other type of operators such as Boolean operators (TRUE/FALSE), logical operators

(AND,OR,NOT) and relational operators (<,>,<=,>=,…..)

8. The input and output we can write it as read and print respectively.

9. The Array index are stored with in [] brackets. The index of array starts from ‘0’ to ‘N-1’.

Syntax: datatype Aray_name[size];

10. The conditional statements such as if-then (or) if-then-else are written as follows.

if(condition) then statements;

if(condition) then

statements;

else

statements;

 The efficiency of an algorithm can be computed by measuring the performance of an algorithm.

We can measure the performance of an algorithm in Two(2) ways.

1. Time Complexity

2. Space Complexity

1. Time Complexity:

 The time complexity of an algorithm is the amount of computing time required by an algorithm

to run its completion.

 There are 2 types of computing time 1. Compile time 2. Run time

TIME AND SPACE COMPLEXITY:

www.Jntufastupdates.com

8

 The time complexity generally computed at run time (or) execution time.

 The time complexity can be calculated in terms of frequency count.

 Frequency count is a count denoting the number of times the statement should be executed.

 The time complexity can be calculated as

Comments – 0

Assignment / return statement – 1

Conditional (or) Selection Constructs – 1

Example 1: Sum of the elements in an Array

Statements Step count/ Execution Frequency Total Steps

Algorithm Addition (A,n)

{

//A is an array of size ‘n’

Sum :=0;

for i:=1 to n do

 Sum:=Sum+A[i];

return Sum;

}

0

0

0

1

1

1

1

0

-

-

-

1

n+1

n

1

-

0

0

0

1

n+1

n

1

0

Total 2n+3

Example 2: Subtraction of two matrices

Statements Step count/ Execution Frequency Total Steps

Algorithm Subtract (A,B,C,m,n)

{

for i:=1 to m do

 for j:=1 to n do

 C[i,j] := A[i,j] – B[i,j];

}

0

0

1

1

1

0

-

-

m+1

m(n+1)

mn

-

0

0

m+1

mn+m

mn

0

Total 2mn+2m+1

2. Space Complexity:

 Space Complexity can be defined as amount of memory (or) space required by an Algorithm to

run.

 To compute the space complexity we use 2 factors i. Constant ii. Instance characteristics.

 The space requirement S(p) can be given as S(p) = C+Sp

Where C- Constant, it denotes the space taken for input and output.

Sp – Amount of space taken by an instruction, variable and identifiers.

www.Jntufastupdates.com

9

Example 1: Sum of three numbers

Algorithm Add(a,b,c)

{

//a,b,c are float type variables

return a+b+c;

}

 The space required for this algorithm is: Assume a,b,c are occupies 1 word size each, total size

comes to be 3.

Example 2: Sum of Array values

Algorithm Addition (A,n)

{

//A is an array of size ‘n’

Sum :=0;

for i:=1 to n do

 Sum:=Sum+A[i];

return Sum;

}

 The space required for this algorithm is:

One word space for each variable then i,sum,n 3

For Array A[] we require the size n

Total space complexity for this algorithm is S(p) ≥ (n+3)

What to Analyze in an algorithm:

An Algorithm can require different times to solve different problems of same size

1. Worst case: Maximum amount of time that an algorithm require to solve a problem of size ‘n’.

Normally we can take upper bound as complexity. We try to find worst case behavior.

2. Best case: Minimum amount of time that an algorithm require to solve a problem of size ‘n’.

Normally it is not much useful.

3. Average case: the average amount of time that an algorithm require to solve a problem of size ‘n’.

Some times it is difficult to find. Because we have to check all possible data organizations

 Searching means to find whether a particular value is present in an array or not.

 If the value is present in the array, then searching is said to be successful and the searching process

gives the location of that value in the array.

 However, if the value is not present in the array, the searching process displays an appropriate

message and in this case searching is said to be unsuccessful.

 Searching techniques are linear search, binary search and Fibonacci Search

SEARCHING:

www.Jntufastupdates.com

10

 Linear search is a technique which traverse the array sequentially to locate given item or search

element.

 In Linear search, we access each element of an array one by one sequentially and see weather it

is desired element or not. We traverse the entire list and match each element of the list with the

item whose location is to be found. If the match found then location of the item is returned

otherwise the algorithm return NULL.

 A search is successful then it will return the location of desired element

 If A search will unsuccessful if all the elements are accessed and desired element not found.

 Linear search is mostly used to search an unordered list in which the items are not sorted.

Linear search is implemented using following steps...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the first element in the list.

Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function

Step 4 - If both are not matched, then compare search element with the next element in the list.

Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

Example:

Consider the following list of elements and the element to be searched...

LINEAR SEARCH:

www.Jntufastupdates.com

11

www.Jntufastupdates.com

12

• Binary search is the search technique which works efficiently on the sorted lists. Hence, in order

to search an element into some list by using binary search technique, we must ensure that the list

is sorted.

• Binary search follows divide and conquer approach in which, the list is divided into two halves

and the item is compared with the middle element of the list. If the match is found then, the

location of middle element is returned otherwise, we search into either of the halves depending

upon the result produced through the match.

Algorithm:

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.

Step 5 - If both are not matched, then check whether the search element is smaller or larger than

the middle element.

Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left

sublist of the middle element.

Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right

sublist of the middle element.

Step 8 - Repeat the same process until we find the search element in the list or until sublist

contains only one element.

Step 9 - If that element also doesn't match with the search element, then display "Element is not

found in the list!!!" and terminate the function.

Example:

BINARY SEARCH:

www.Jntufastupdates.com

13

Example 2:

www.Jntufastupdates.com

14

 Fibonacci search is an efficient search algorithm based on divide and conquer principle that can

find an element in the given sorted array with the help of Fibonacci series in O(log N) time

complexity. This is based on Fibonacci series which is an infinite sequence of numbers denoting

a pattern which is captured by the following equation:

F(n)=n if n<=1

F(n)=F(n-1)+F(n-2) if n>1

o where F(i) is the ith number of the Fibonacci series where F(0) and F(1) are defined as 0

and 1 respectively.

 The first few Fibonacci numbers are: 0,1,1,2,3,5,8,13....

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0) = 1 + 0 = 1

F(3) = F(2) + F(1) = 1 + 1 = 2

F(4) = F(3) + F(2) = 1 + 2 = 3 and so continues the series

 Other searches like binary search also work for the similar principle on splitting the search space

to a smaller space but what makes Fibonacci search different is that it divides the array in unequal

parts and operations involved in this search are addition and subtraction these arithmetic

operations takes place simple and hence reducing the work load of the computing machine.

Algorithm:

 Let the length of given array be n [0...n-1] and the element to be searched be x.

 Then we use the following steps to find the element with minimum steps:

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be f(M)

Let the two Fibonacci numbers preceding it be f(M-1) and f(M-2).

F(M) = F(Size of array)

F(M-1) = F(M) - 1

F(M-2) = F(M-1) -1

i (index) = min (offset + F(M-2) , n-1) //Offset = -1

2. While the array has elements to be checked:

-> Compare x with the last element of the range covered by f(M-2)

-> If x matches, return index value

-> Else if x is less than the element, move the three Fibonacci variables two Fibonacci down,

Indicating removal of approximately two-third of the unsearched array from rear end. Not Reset

offset to index

FIBONACCI SEARCH:

www.Jntufastupdates.com

15

-> Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.

Reset offset to index. Indicating removal of approximately one-third of the unsearched array from

front end.

3. Since there might be a single element remaining for comparison, check if F(M-1) is '1'. If Yes, compare

x with that remaining element. If match, return index value.

Example: The Elements in array & Search key is

Search_Key 85

elements 10 22 35 40 45 50 80 82 85 90 95

Index 0 1 2 3 4 5 6 7 8 9 10

Initially the Fibonacci series is …

0 1 1 2 3 5 8 13 21 34

1 2 3 4 5 6 7 8 9 10

 F(m-2) F(m-1) F(m)

To calculate index position i = min(offset+F(m-2), n-1), Initially offset value is -1.

F(m) F(m-1) F(m-2) Offset i(index) a[i] Consequence

13 8 5 -1 (-1+5,10) = 4 45 1 steps down, Reset offset

8 5 3 4 (4+3, 10)=7 82 1 steps down, Reset offset

5 3 2 7 (7+2, 10) =9 90 2 steps down

2 1 1 7 (7+1, 10) = 8 85 Return i

Finally our desired element is found at the location of 8.

 Definition: Sorting is a technique to rearrange the list of records(elements) either in ascending

or descending order, Sorting is performed according to some key value of each record.

Categories of Sorting:

The sorting can be divided into two categories. These are:

 Internal Sorting

 External Sorting

SORTINGS:

www.Jntufastupdates.com

16

 Internal Sorting: When all the data that is to be sorted can be accommodated at a time in the

main memory (Usually RAM). Internal sortings has five different classifications: insertion,

selection, exchanging, merging, and distribution sort

 External Sorting: When all the data that is to be sorted can’t be accommodated in the memory

(Usually RAM) at the same time and some have to be kept in auxiliary memory such as hard disk,

floppy disk, magnetic tapes etc.

Ex: Natural, Balanced, and Polyphase.

 In Insertion sort the list can be divided into two parts, one is sorted list and other is unsorted list.

In each pass the first element of unsorted list is transfers to sorted list by inserting it in appropriate

position or proper place.

 The similarity can be understood from the

style we arrange a deck of cards. This sort

works on the principle of inserting an

element at a particular position, hence the

name Insertion Sort.

Following are the steps involved in insertion sort:

1. We start by taking the second element of the given array, i.e. element at index 1, the key.

The key element here is the new card that we need to add to our existing sorted set of cards

2. We compare the key element with the element(s) before it, in this case, element at index 0:

o If the key element is less than the first element, we insert the key element before the first

element.

o If the key element is greater than the first element, then we insert it after the first element.

3. Then, we make the third element of the array as key and will compare it with elements to it's left

and insert it at the proper position.

4. And we go on repeating this, until the array is sorted.

Example 1:

INSERTION SORT:

www.Jntufastupdates.com

17

Example 2:

 Given a list of data to be sorted, we simply select the smallest item and place it in a sorted list.

These steps are then repeated until we have sorted all of the data.

 In first step, the smallest element is search in the list, once the smallest element is found, it is

exchanged with the element in the first position.

 Now the list is divided into two parts.

One is sorted list other is unsorted list.

Find out the smallest element in the

unsorted list and it is exchange with the

starting position of unsorted list, after

that it will added in to sorted list.

 This process is repeated until all the elements are sorted.

Ex: asked to sort a list on paper.

Algorithm:

SELECTION SORT(ARR, N)

Step 1: Repeat Steps 2 and 3 for K = 1 to N-1

Step 2: CALL SMALLEST(ARR, K, N, Loc)

Step 3: SWAP A[K] with ARR[Loc]

Step 4: EXIT

SELECTION SORT:

www.Jntufastupdates.com

18

Algorithm for finding minimum element in the list.

SMALLEST (ARR, K, N, Loc)

Step 1: [INITIALIZE] SET Min = ARR[K]

Step 2: [INITIALIZE] SET Loc = K

Step 3: Repeat for J = K+1 to N

IF Min > ARR[J]

SET Min = ARR[J]

SET Loc = J

[END OF IF]

[END OF LOOP]

Step 4: RETURN Loc

Example 1:

www.Jntufastupdates.com

19

Example 2: Consider the elements 23,78,45,88,32,56

Time Complexity:

Number of elements in an array is ‘N’

Number of passes required to sort is ‘N-1’

Number of comparisons in each pass is 1st pass N-1, 2nd Pass N-2 …

Time required for complete sorting is:

T(n) <= (N-1)*(N-1)

T(n) <= (N-1)2

Finally, The time complexity is O(n2).

 Bubble Sort is also called as Exchange Sort

 In Bubble Sort, each element is compared with its adjacent element

a) If he first element is larger than the second element then the position of the elements are

interchanged.

b) Otherwise, the position of the elements are not changed.

c) The same procedure is repeated until no more elements are left for comparison.

 After the 1st pass the largest element is placed

at (N-1)th location. Given a list of n elements,

the bubble sort requires up to n – 1 passes to

sort the data.

Example 1:

 We take an unsorted array for our example.

BUBBLE SORT:

www.Jntufastupdates.com

20

 Bubble sort starts with very first two elements, comparing them to check which one is greater.

 In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33

with 27. We find that 27 is smaller than 33 and these two values must be swapped.

 Next we compare 33 and 35. We find that both are in already sorted positions.

 Then we move to the next two values, 35 and 10. We know then that 10 is smaller 35.

 We swap these values. We find that we have reached the end of the array. After one iteration, the

array should look like this −

 To be defined, we are now showing how an array should look like after each iteration. After the

second iteration, it should look like this

 Notice that after each iteration, at least one value moves at the end.

 And when there's no swap required, bubble sorts learns that an array is completely sorted.

Example 2:

www.Jntufastupdates.com

21

Algorithm:

BUBBLE SORT(ARR, N)

Step 1: Read the array elements

Step 2: i:=0;

Step 3: Repeat step 4 and step 5 until i<n

Step 4: j:=0;

Step 5: Repeat step 6 until j<(n-1)-i

Step 6: if A[j] > A[j+1]

 Swap(A[j],A[j+1])

 End if

 End loop 5

 End loop 3

Step 7: EXIT

Time Complexity:

Number of elements in an array is ‘N’

Number of passes required to sort is ‘N-1’

Number of comparisons in each pass is 1st pass N-1, 2nd Pass N-2 …

Time required for complete sorting is:

T(n) <= (N-1)*(N-1)

T(n) <= (N-1)2

Finally, The time complexity

is O(n2).

 Quick sort follows Divide and Conquer algorithm. It is dividing array in to smaller parts based

on partitioning and performing the sort operations on those divided smaller parts. Hence, it works

well for large datasets.

So, here are the steps how Quick sort works in simple words.

1. First select an element which is to be called as pivot element.

2. Next, compare all array elements with the selected pivot element and arrange them in such a way

that, elements less than the pivot element are to its left and greater than pivot is to it's right.

3. Finally, perform the same operations on left and right side elements to the pivot element.

How does Quick Sort Partitioning Work

1. First find the "pivot" element in the array.

2. Start the left pointer at first element of the array.

3. Start the right pointer at last element of the array.

QUICK SORT:

www.Jntufastupdates.com

22

4. Compare the element pointing with left pointer and if it is less than the pivot element, then move

the left pointer to the right (add 1 to the left index). Continue this until left side element is greater

than or equal to the pivot element.

5. Compare the element pointing with right pointer and if it is greater than the pivot element, then

move the right pointer to the left (subtract 1 to the right index). Continue this until right side

element is less than or equal to the pivot element.

6. Check if left pointer is less than or equal to right pointer, then swap the elements in locations of

these pointers.

7. Check if index of left pointer is greater than the index of the right pointer, then swap pivot element

with right pointer.

Example:

Algorithm:

quickSort(array, lb, ub)

{

 if(lb< ub)

 {

 pivotIndex = partition(arr, lb, ub);

 quickSort(arr, lb, pIndex - 1);

 quickSort(arr, pivotIndex+1, ub);

 }

}

www.Jntufastupdates.com

23

 Radix sort is a linear sorting algorithm for integers and uses the concept of sorting names in

alphabetical order. When we have a list of sorted names, the radix is 26 (or 26 buckets) because

there are 26 letters in the English alphabet. So radix sort is also known as bucket sort.

 Observe that words are first sorted according to the first letter of the name. That is, 26 classes are

used to arrange the names, where the first class stores the names that begin with A, the second

class contains the names with B, and so on.

 During the second pass, names are grouped according to the second letter. After the second pass,

names are sorted on the first two letters. This process is continued till the nth pass, where n is the

length of the name with maximum number of letters.

 When radix sort is used on integers, sorting is done on each of the digits in the number. The sorting

procedure proceeds by sorting the least significant (LSD) to the most significant (MSD) digit.

While sorting the numbers, we have ten buckets, each for one digit (0, 1, 2, …, 9) and the number

of passes will depend on the length of the number having maximum number of digits.

Example 1: Sort the numbers given below using radix sort.

345, 654, 924, 123, 567, 472, 555, 808, 911

 In the first pass, the numbers are sorted according to the digit at ones place.

 After this pass, the numbers are collected bucket by bucket. In the second pass, the numbers are

sorted according to the digit at the tens place.

 In the third pass, the numbers are sorted according to the digit at the hundreds place.

RADIX SORT:

www.Jntufastupdates.com

24

 The numbers are collected bucket by bucket. After the third pass, the list can be given as final

sorted list. 123, 345, 472, 555, 567, 654, 808, 911, 924.

Algorithm:

1. Let A be a linear array of n elements A[1], A[2], A[3]............A[n]. Digit is the total number of digit in

the largest element in array A.

2. Input n number of elements in an array A.

3. Find the total number of digits in the largest element in the array.
4. Initialize i=1 and repeat the steps 4 and 5 until(i<=Digit).

5. Initialize the bucket j=0 and repeat the steps 5until (j<n).

6. Compare the ith position of each element of the array with bucket number and place it in the
corresponding bucket.

7. Read the elements (S) of the bucket from 0th bucket to 9th bucket and from the first position to the higher

one to generate new array A.
8. Display the sorted array A.

9. Exit.

Divide and Conquer:

 Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a

dispute on a huge input, break the input into minor pieces, decide the problem on each of the small

pieces, and then merge the piecewise solutions into a global solution. This mechanism of solving

the problem is called the Divide & Conquer Strategy.

 Divide and Conquer algorithm consists of a dispute using

the following three steps.

1. Divide the original problem into a set of sub-problems.

2. Conquer: Solve every sub-problem individually,

recursively.

3. Combine: Put together the solutions of the sub-problems

to get the solution to the whole problem.

Merge sort is one of the most efficient sorting algorithms. It works on the principle of Divide and

Conquer. Merge sort repeatedly breaks down a list into several sublists until each sublist consists of a

single element and merging those sublists in a manner that results into a sorted list.

MERGE SORT:

www.Jntufastupdates.com

25

Implementation Recursive Merge Sort:

 The merge sort starts at the Top and proceeds downwards, “split the array into two, make a

recursive call, and merge the results.”, until one gets to the bottom of the array-tree.

Example: Let us consider an example to understand the approach better.

1. Divide the unsorted list into n sub-lists based on mid value, each array consisting 1 element

2. Repeatedly merge sub-lists to produce newly sorted sub-lists until there is only 1 sub-list

remaining. This will be the sorted list

Recursive Mere Sort Example:

Example 2:

MergeSort Algoritm:

MergeSort(A, lb, ub)

{

 If lb<ub

 {

 mid = floor(lb+ub)/2;

 mergeSort(A, lb, mid)

 mergeSort(A, mid+1, ub)

 merge(A, lb, ub , mid)

 }

}

www.Jntufastupdates.com

26

Two- Way Merge Sort:

Merge Algorithm:

Step 1: set i,j,k=0

Step 2: if A[i]<B[j] then

copy A[i] to C[k] and increment i and k

else

 copy B[j] to C[k] and increment j and k

Step 3: copy remaining elements of either A or B into Array C.

Time Complexities All the Searching & Sorting Techniques:

www.Jntufastupdates.com

	Example:
	How does Quick Sort Partitioning Work
	Algorithm:
	Divide and Conquer:
	Two- Way Merge Sort:
	Step 1: set i,j,k=0
	Step 2: if A[i]<B[j] then
	copy A[i] to C[k] and increment i and k
	else
	copy B[j] to C[k] and increment j and k
	Step 3: copy remaining elements of either A or B into Array C.
	Time Complexities All the Searching & Sorting Techniques:

