
Set Operators

1

• Set operators are used to combine the results from different
SELECT statements into one single result output.

• Sometimes you want a single output from more than one
table.

• If you join the tables, the rows that meet the join criteria are
returned, but what if a join will return a result set that
doesn't meet your needs?

• This is where SET operators come in.

• They can return the rows found in multiple SELECT
statements, the rows that are in one table and not the other,
or the rows common to both statements.

2

A_ID
1

2

3

4

5

B_ID
4

5

6

7

8

• In order to explain the SET operators, the following two lists
will be referred to throughout this lesson:

A = {1, 2, 3, 4, 5}
B = {4, 5, 6, 7, 8}

• Or in reality: two tables, one called A and one called B.

A B

Rules to Remember

3

• There are a few rules to remember when using SET operators:
– The number of columns and the data types of the columns must

be identical in all of the SELECT statements used in the query.
– The names of the columns need not be identical.
– Column names in the output are taken from the column names

in the first SELECT statement.

• So any column aliases should be entered in the first
statement as you would want to see them in the finished
report.

UNION

4

• The UNION operator returns all rows from both tables, after
eliminating duplicates.

• The result of listing all elements in A and B eliminating
duplicates is {1, 2, 3, 4, 5, 6, 7, 8}.

• If you joined A and B you would get only {4, 5}. You would
have to perform a full outer join to get the same list as above.

SELECT a_id
FROM a
UNION
SELECT b_id
FROM b;

A B
6
7
8

4
5

1
2
3

UNION ALL

5

• The UNION ALL operator returns all rows from both tables,
without eliminating duplicates.

• The result of listing all elements in A and B without
eliminating duplicates is {1, 2, 3, 4, 5, 4, 5, 6, 7, 8}.

A B
6
7
8

4
5
4
5

1
2
3

SELECT a_id
FROM a
UNION ALL
SELECT b_id
FROM b;

INTERSECT

6

• The INTERSECT operator returns all rows common to both
tables.

• The result of listing all elements found in both A and B is {4,
5}.

SELECT a_id
FROM a
INTERSECT
SELECT b_id
FROM b;

A B

4
5

MINUS

7

• The MINUS operator returns all rows found in one table but
not the other.

• The result of listing all elements found in A but not B is {1, 2,
3}.

• The result of B MINUS A would give {6, 7, 8}.

SELECT a_id
FROM a
MINUS
SELECT b_id
FROM b;

A B
1
2
3

Set Operator
Examples

8

• Sometimes if you are selecting rows from tables that do not
have columns in common, you may have to create your own
columns in order to match the number of columns in the
queries.

• The easiest way to do this is to include one or more NULL
values in the select list.

• Remember to give each one a suitable alias and matching
data type.

Set Operator
Examples

9

• For example:
– The employees table contains a hire date, employee id and a job

id.
– The job history table contains employee id and job id, but does

not have a hire date column.
– The two tables have the employee id and job id in common, but

job history does not have a start date .

• You can use the TO_CHAR(NULL) function to create matching
columns as in the next slide.

Set Operator
Examples

10

SELECT hire_date, employee_id, job_id
FROM employees
UNION
SELECT TO_DATE(NULL),employee_id, job_id
FROM job_history;

HIRE_DATE EMPLOYEE_ID JOB_ID
17/Jun/1987 100 AD_PRES
17/Sep/1987 200 AD_ASST
21/Sep/1989 101 AD_VP
03/Jan/1990 103 IT_PROG
21/May/1991 104 IT_PROG
13/Jan/1993 102 AD_VP
07/Jun/1994 205 AC_MGR
07/Jun/1994 206 AC_ACCOUNT
17/Oct/1995 141 ST_CLERK
17/Feb/1996 201 MK_MAN
11/May/1996 174 SA_REP
29/Jan/1997 142 ST_CLERK
17/Aug/1997 202 MK_REP
15/Mar/1998 143 ST_CLERK
24/Mar/1998 176 SA_REP
09/Jul/1998 144 ST_CLERK
07/Feb/1999 107 IT_PROG
24/May/1999 178 SA_REP
16/Nov/1999 124 ST_MAN
29/Jan/2000 149 SA_MAN
- 101 AC_ACCOUNT
- 101 AC_MGR
- 102 IT_PROG
- 114 ST_CLERK
- 122 ST_CLERK
- 176 SA_MAN
- 176 SA_REP
- 200 AC_ACCOUNT
- 200 AD_ASST
- 201 MK_REP

Set Operator
Examples

11

• The keyword NULL can be used to match columns in a SELECT
list.

• One NULL is included for each missing column.

• Furthermore, NULL is formatted to match the data type of the
column it is standing in for, so TO_CHAR, TO_DATE, or
TO_NUMBER functions are used to achieve identical SELECT
lists.

SET Operations
ORDER BY

12

• If you want to control the order of the returned rows when
using SET operators in your query, the ORDER BY statement
must only be used once, in the last SELECT statement in the
query.

• Using the previous query example, we could ORDER BY
employee_id to see the jobs each employee has held.

SELECT hire_date, employee_id, job_id
FROM employees
UNION
SELECT TO_DATE(NULL),employee_id, job_id
FROM job_history
ORDER BY employee_id;

SET Operations
ORDER BY

13

SELECT hire_date, employee_id, job_id
FROM employees
UNION
SELECT TO_DATE(NULL),employee_id, job_id
FROM job_history
ORDER BY employee_id;

HIRE_DATE EMPLOYEE_ID JOB_ID
17/Jun/1987 100 AD_PRES
21/Sep/1989 101 AD_VP
- 101 AC_ACCOUNT
- 101 AC_MGR
13/Jan/1993 102 AD_VP
- 102 IT_PROG
03/Jan/1990 103 IT_PROG
21/May/1991 104 IT_PROG
07/Feb/1999 107 IT_PROG
- 114 ST_CLERK
… … …

SET Operations
ORDER BY

14

• We could improve the readability of the output, by including
the start date and end date columns from the job history
table, to do this, we would need to match the columns in
both queries by adding two more TO_DATE(NULL) columns to
the first query.
SELECT hire_date, employee_id, TO_DATE(null) start_date,

TO_DATE(null) end_date, job_id, department_id
FROM employees
UNION
SELECT TO_DATE(null), employee_id, start_date, end_date, job_id,

department_id
FROM job_history
ORDER BY employee_id;

SET Operations
ORDER BY

15

HIRE_DATE EMPLOYEE_ID START_DATE END_DATE JOB_ID DEPARTMENT_ID

17/Jun/1987 100 - - AD_PRES 90
21/Sep/1989 101 - - AD_VP 90
- 101 21/Sep/1989 27/Oct/1993 AC_ACCOUNT 110
- 101 28/Oct/1993 15/Mar/1997 AC_MGR 110
13/Jan/1993 102 - - AD_VP 90
- 102 13/Jan/1993 24/Jul/1998 IT_PROG 60
03/Jan/1990 103 - - IT_PROG 60
21/May/1991 104 - - IT_PROG 60
07/Feb/1999 107 - - IT_PROG 60
- 114 24/Mar/1998 31/Dec/1999 ST_CLERK 50
- 122 01/Jan/1999 31/Dec/1999 ST_CLERK 50
16/Nov/1999 124 - - ST_MAN 50
17/Oct/1995 141 - - ST_CLERK 50
29/Jan/1997 142 - - ST_CLERK 50
15/Mar/1998 143 - - ST_CLERK 50
… … … … … …

Terminology

16

Key terms used in this lesson included:
• INTERSECT
• MINUS
• SET operators
• TO_CHAR(null) – matching the select list
• UNION
• UNION ALL

Summary

17

 In this lesson, you should have learned how to:

• Define and explain the purpose of Set Operators

• Use a set operator to combine multiple queries into a single
query

• Control the order of rows returned using set operators

Functions
 Functions are very powerful feature of SQL used to

manipulate data items .
 SQL functions are built into oracle database and are operated

for use in various appropriate SQL statements.
 If you call a SQL function with a null argument, then the SQL

function automatically returns null. The only SQL functions
that do not necessarily follow this behavior
are CONCAT, NVL, REPLACE, and REGEXP_REPLACE.

 Functions are similar to operators in that they manipulate data
items and return a result.

SQL FUNCTION

Functions

Arg 1

arg2

Arg n

Resullt value

Function performs action

Advantages of function
 Function can be used to perform complex calculations on

data.
 Functions can modify individual data items
 Function can very easily manipulate output for groups of

rows. Function can manipulate character as well as numeric
type of data.

 function can alter date formats for display

TYPES OF FUNCTION
 There are two types of function:

 Single row functions

 Multiple row functions

Single row function

 These function operate on single rows only and return one
value for ach row, column name or an expression. Single-row
functions can be used in SELECT. WHERE and ORDER by
clauses.

 Syntax of using a single-row function is
function_name [(arg1, arg2,…..)]

 Where, function_name is the name of the function.
arg1,arg2 is any argument to be used by the function. This
can be represented by a user-supplied constant value,
variable value, column name or an expression.

Types of single row functions
 There are different types of single row function:
 Character functions
 Number functions/arithmatic functions
 Date functions
 conversion functions
 General functions
 Aggregate functions

String/character function
 1.LOWER:- returns char, with all letters in lowercase

Syntax:-lower(char)
e.g. select lower(‘IVAN
BAYROSS’)”Lower” from dual;
Output=ivan bayross

2.INITCAP:- returns a string with the first letter of
each word in upper case.

Syntax:- initcap(char)
e.g. select initcap(‘IVAN BAYROSS’)”Title case”

from dual;
Output=Ivan Bayross

 3.UPPER:- returns char, with all letters in uppercase.

syntax:- upper(char)
e.g. select upper(‘ivan bayross’)”capitalized” from

dual;
Output= IVAN BAYROSS

4.SUBSTR:-returns a portion of characters beginning at
character m, and going up to character n. if n is omitted
the result returned is up to the last character in the
string. The first position of char is 1.

Syntax:- substr(<string>,<start_position>,[<length>])

 Where string is source string
 start_position is the position for extraction. The first

position in the string is always 1.
 Length is the number of character is extract.

e.g. select substr(“secure”,3,4) ”Substring”
from dual;

Output= cure

5.ASCII:-returns the number code that represents the
specified character. If more than one character is
entered, the function will return the value for the first
character and ignore all the characters after the first.

syntax:-ascii(character)
e.g. select ascii(‘a’) “Ascii 1”,
ascii(‘A’)”ascii 2”, ascii(‘cure’)”ascii “ from dual;
ouput= 97 65 99

 6.COMPOSE:- return a unicode string. It can be a
char, ncahr, nvchar2, clob or nclob.

Syntax:-compose(<single>)
Below it is a listing of unistring values that can be

combined with other characters in compose
function.
unistring value resulting character
UNISTR(‘\0300’) grave accent(‘)
UNISTR(‘\0301’) acute accent(`)
UNISTR(‘\0302’) circumflex(^)
UNISTR(‘\0303’) tilde(~)
UNISTR(‘\0308’) umlauted(“)

 7.DECOMPOSE:- accept a string and returns as
unicode string.

Syntax:-decompose(<single>)

8. LENGTH:- returns a length of a word.

Syntax:- length(word)
e.g. select length(‘sharanam’) “length” from dual;
Output= 8

 9.LTRIM:- returns characters from the left of char
with initial characters removed upto the first character
not in set.

Syntax:-ltrim(char[,set])
e.g. select ltrim(‘nisha’,’n’)”ltrim” from dual;
Output= isha

10. RTRIM:- returns char, with final characters removed
after the last character not in set. ‘set’ is optional, it
defaults to spaces.

Syntax:- rtim(char[,set])
e.g. select rtrim(‘sunila’,’a’)”rtrim” from dual;
Output= sunil

 11. TRIM:- remove all specified character either from
beginning or the ending of a string.

Syntax:-
trim([leading|trailing|both[<trim_charac ter>

from]]<string>)
e.g. select trim(‘ hansel ‘)”trim both side” from

dual;
Output=hansel
e.g. select trim(leading ‘x’ from
‘xxxhanselxxx’)”remove prefixes” from dual;
Output= hanselxxx
e.g. select trim(both ‘x’ from ‘xxxhanselxxx’)

from dual;
Output=hansel

 12.LPAD:- returns char1, left-papped to length n with
the sequence of character specified in char2.

Syntax:- lpad(‘char1,n[,char2])
E.g. select lpad(‘page1’,10,’*’)”lpad” from dual;
Output=*****page1

13. RPAD:- returns char1, right papped to length n with
the character specified in char2.

Syntax:- rpad(char1,n[,char2])
e.g. select rpad(ivan,10,’x’)”rpad” from dual;
Output=ivanxxxxxx

 14. VSIZE:- returns the number of bytes in the internal
representation of an expression.

Syntax:- vsize(<expression>)
e.g. select vsize(‘sct on the net’)”size” from dual;
Output= 14

15. INSTR:-returns a location of a substring in a string.

Syntax:-
instr(<string1>,<string2>,[<start_position
>],[<nth_appearance>])
e.g. select instr(‘sct on the net’,’t’), instr(‘sct on

the net’,’t’,1,2) from dual;
Output= 8 14

NUMERIC FUNCTIONS…..
• 1. ABS:- returns the absolute value of ‘n’.

syntax:- ABS(-15)
e.g. Select ABS(-15) “absolute” from

dual;

• 2.POWER:- returns m raised to the nth power. n
must be an integer else an error is returned.

syntax:-power(m,n)
e.g. Select power(3,2)”raised” from

dual;

 3.Round:-returns n, rounded to m places to the right
of the decimal point. If m is omitted, n is rounded to 0
places, m can be negative to round off digits to the left of
the decimal point. m must be an integer

syntax:-round(n,[m])
e.g. select round(15.91,1) from dual;
output=15.2

4.SQRT:- returns square root of n.

syntax:-sqrt(n)
e.g. select sqrt(25) from dual;
output=5

 5.EXP:-returns e raised t the nth power where
e=2.71828183

syntax:- exp(n)
E.g. select exp(5) from dual;
Output=148.413159

 6.EXTRACT:-returns a value extracted from a date
or an integer value. A date can be used only to extract
year, month and day, while a timestamp with a time zone
data type can be used only to extract timezone_hour and
timezone_minute.

E.g. select extract(year from date ‘2004-07-
02’)”year”, extract(month from
sysdate)”month” from dual;
Output=2004 7

• 7. GREATEST :- returns a greatest value in a list of
expressions.

Syntax:-greatest(expr1,expr2,expr3…expr n)

e.g.:- select greatest(4,5,17)”num”,
greatest(‘4’,’5’,’17’)”text” from dual;

output= 17 5

• 8.LEAST:- returns the least value in a list of expressions.

Syntax:- least(expr1,expr2,…..,exprn);

e.g. select least(4,5,17)”num”,
least(‘4’,’5’,’17’)”text” from dual;

Output= 4 17

• 9.MOD :-returns the remainder of a first number
divided by second number passed a parameter. If the
second number is zero the result of the same as the first
number

Syntax:-mod(m,n)
e.g. select mod(15,7)”mod1”,
mod(15.7,7)”mod2” from dual;
Output= 1 1.7

• 10.TRUNC:- returns a number truncated to a certain
no. of decimal places. The decimal place value is must be
an integer.

Syntax:- trunc(no,[decimal_places])
e.g. select trunc(125.815,1)”trunc1”,
trunc(125.815,-2)”trunc2” from dual;
Output= 125.8 100

11. FLOOR:- return a largest integer value that is equal
to less than a number.

Syntax:-floor(n)
e.g. select floor(24.8)”flr1”, floor(13.15)”flr2”

from dual;
Output=24 13

12.CEIL:-return the smallest integer value that is greater
than or equal to a number.

Syntax:-ceil(n)
e.g. select ceil(24.8)”ceil”, ceil(13.15)”ceil2”

from dual;
Output= 25 14

CONVERSION FUNCTIOSNS
 These are functions that help us to convert a value in one form to

another form. For example: a null value into an actual value, or a
value from one datatype to another datatype . Few of the conversion
functions available in oracle are:

 TO CHAR(d,f)
This function converts the date ’d’ to character format ‘f’.

Example:
SELECT SYSDATE, TO_CHAR(SYSDATE,’DAY’) FROM

DUAL;
OUTPUT:
SYSDATE TO _CHAR(S

-------------- ------------- --

03-SEP-13 TUESDAY

 TO_DATE(char,f)
This function converts the character string representing date into a date format
according to ‘f’ format specified. If no format is specified, then the default format is
DD-MON-YY.
Example:
SELECT SYSDATE, TO_DATE(‘JAN2007’,’MON YYYY’) FROM DUAL;
Output:
SYSDATE TO_DATE(
------------------- ---------------------------
03-SEP-13 01-JAN-07

 NVL(col,value)
This function helps in substituting a value in place of a null value. The data type
of the value to substitute must match with the col data type.
Example:
Select nvl(null,101) from dual;
Output:
Nul(null.101)

101

 DECODE(a,b,c,d,e,default_value)
 This function substitutes on a value-by value basis, it actually dows an ‘if-then –else’

test. It checks the value of ‘a’, if a=b, then returns ‘c’. If a=d, then results ‘e’. Else,
returns default value.

Example:
SELECT ENAME, JOB,

DECODE(JOB,’CLERK’,EXECUTIVE’,’MANAGER’,’GM’,’

CASHIER’) FROM EMP;

Output:

ENAME JOB DECODE(JO
- -- -

SMITH CLERK EXECUTIVE

ALLEN SALESMAN CASHIER

WARD SALESMAN CASHIER

JONES MANAGER GM

General functions
 The general comparison functions determine the greatest and least value

from a set of values. Some general functions also help to find the detail of
current database user. Few of the general functions available in oracle are:

Greatest(exp1,exp2,exp3….)
 This function returns the greatest value in the list of expressions. Each

expression is implicitly converted to the type of expression (exp1) before
the comparison are made .

 If the first expression is numeric, then the oracle determines the argument
with the highest numeric precedence, implicitly converts the remaining
arguments to that data type before the comparison , and return that data
type.

 If the first expression(exp1) is not numeric, then each expression after the
first is implicitly converted to the data type of the first expression before the
comparison.

Example:
SELECT GREATEST(33,55,66) FROM DUAL;
OUTPUT:
GREATEST(33,55,66)

66
EXAMPLE:
SELECT GREATEST (‘R’,’A’,’Z’) FROM DUAL;
OUTPUT:
G

Z
EXAMPLE :
GREATEST(‘HARD’,’HARRY’,’HAROLD’) FROM DUAL;
OUTPUT:
GREAT
- - - - - - - - - - -

HARRY

 Least(exp1,exp2,exp3…)
This function returns the least value in the list of expressions. LEAST function behaves same like

Greatest , in which all expressions are implicitly converted to the data type of the first.
EXAMPLE:
Select least(44,22,7) from dual;
Output:
Least(44,22,7)

7

UID
THIS FUNCTION RETURNS AN INTEGER THAT UNIQUELY IDENTIFIES THE CURRENT

DATABASE USER. UID TAKES NO ARGUMENTS.
EXAMPLE:
SELECT UID FROM DUAL;
OUTPUT:
UID

57

 USER
This function returns a vaharchar2 value containing the name of the

current oracle user. User function takes no arguments.
EXAMPLE:

SELECT USER FROM DUAL;

OUTPUT:

USER
-------_- ---

SCOTT

AGGREGATE FUNCTIONS.....

• 1.AVG :- returns the average value

syntax:- Select avg(sal) from emp;

• 2.MIN :- return the minimum value of expr.

syntax :-select min(sal) from emp;

• 3.COUNT :- returns the no. of rows where expr. Is not
null

syntax:-select count(acct_no) from
acct_mstr;

• 4.COUNT(*) :- Returns the no. of rows in a
table including duplicates and those

with null.
syntax:- select count(*)”no of records”
from acct_mstr;

• 5.MAX:- Returns the minimum value of expr.

syntax:-select max(curbal) from
acct_mstr;

• 6.SUM:-Returns the sum of the value of ‘n’

syntax:-select sum(curbal) from acct_mstr;

DATE FUNCTIONS
 Oracle database stores date in an internal numeric format,

representing the century , Year, month, day hours, minutes, and
seconds. The default date display format is DD_MON_YY.

 Date function operates on oracle dates. These are the function
that takes values of DATE datatype as input and return values of
date datatype as output, except for the MONTHS_BETWEEN
function, which returns a number as output. Few date functions
are as given below.

 SYSDATE
SYSDATE is a pseudo-column that returns the system’s current date and

time of type DATE. The SYSDATE can be used just as any other column name.
it takes no arguments. When used in distributed SQL statements, SYSDATE
returns the date and time of the local database.

Example:
SELECT SYSDATE FROM DUAL;

output: O3-SEP-13

 ADD_MONTH(d,n)

This function adds or subtract months to or from date, it returns a date as result.
Example:

SELECT SYSDATE, ADD_MONTHS(SYSDATE,4) FROM DUAL;
OUTPUT:

SYSDATE ADD_MONTHS
------------ ------------------
03-APR-13 03-AUG-13

 MONTHS_BETWEENd1,d2)
This function returns the number of months between two dates, d1and d2. if d1 is

later than d2, then the result is positive. If d1 is earlier than d2, then the result is
negative. The output will be a number.

Example
SELECT MAONTHS_BETWEEN(“25-DEC-81’,25-DEC-79’) AS DATE1,

MONTHS_BETWEEN(‘25-DEC-79’,’25-DEC-81’) AS DATE2 FROM DUAL;
OUTPUT:
DATE1 DATE2
--------- ----------
24 -24

 NEXT_DAY(DATE,DAY)
THIS FUNCTION RETURNS THE DATE OF NEXT SPECIFIED DAY OF THE WEEK
AFTER THE ‘DATE’.
EXAMPLE
SELECT SYSDATE, NEXT_DAY(SYSDATE,’FRIDAY) FROM DUAL;
OUTPUT:
SYSDATE NEXT_Day(
------------- ---------------
03-SEP-13 06-SEP-13

 LAST_DAY(d)
This function returns the date of the last day of the month specified. The result will be a date.

Example:
SELECT SYSDATE, LAST_DAY(SYSDATE) FROM DUAL;
OUTPUT:
SYSDATE LAST_DAY(
------------ ---- -------------------
03-SEP-13 30-SEP-13

 ROUND(d[,format])

This function rounds the date d to the unit specified by format. If format is not specified, is default to
‘DD’ , which rounds d to the nearest day.
Example:
SELECT SYSDATE, ROUND(SYSDATE,’MM’) AS “NEAREST MONTH” FROM DUAL;
OUTPUT:
SYSDATE NEAREST M
-------------- ---------------
03-SEP-13 01-SEP-13

 TRUNC(d[,formt])
This function returns the date d truncated to the unit specified by

format. If format is omitted, then it defaults to ‘DD’, which truncates d to
the nearest day.

Example:
SELECT SYSDATE, TRUNC(SYSDATE,’YEAR’) AS “FIRST DAY” FROM DUAL;

OUTPUT:

SYSDATE FIRST DAY

--------------- ------------------

03-SEP-13 01-JAN-13

SPECIAL DATE FORMAT USING
TO_CHAR FUNCTION
 Sometimes the date value is required to be displayed in

special format for e.g. instead of 03-jan-81, displays the date
as 3rd of January 1981. for this oracle provides special
attributes, which can be used in the format specified with the
to char and to date functions. The significance and use of
these characters are explained in the examples…….

Use of th in the to_char() function

 DDTH places TH, RD, ND for the date like 2nd, 3rd, 8th

etc……
e.g. select cust_no,To_char(dob_inc,’ddth-mon-yy’)
“DOB_INC” from cust_master;
OUTPUT====
CUST_NO DOB_INC
C1 25TH-JUN-52
C2 29TH-OCT-82
C3 28TH-OCT-75
C4 02ND-APR-79
…. ………………..

USE OF SP IN THE TO_CHAR() FUNCTION

 indicates that the date(dd) must be displayed by spelling such
as one, twelve.

e.g. select
cust_no,to_char(dob_inc,’DDSP’)”DOB_DDSP ”

from cust_master;
Output=========

CUST_NO DOB_DDSP
C1 TWENTY-FIVE
C2 TWENTY -NINE
C3 TWENTY-EIGHT
C4 TWO
…. ………………..

USE OF SPTH IN THE TO_CHAR FUNCTION

 Displays the date (dd) with th added to the spelling like
fourteenth, twelfth.

e.g. select
cust_no,to_char(dob_inc,’DDSPTH’)”DOB_D
DSPTH” from cust_master;

Output=========
CUST_NO DOB_DDSPTH
C1 TWENTY-FIFTH
C2 TWENTY -NINTH
C3 TWENTY-EIGHTH
C4 SIXTH
…. ………………..

SQL Joins

Types of Joins
• Inner Join

• Natural Join
• Left (Outer) Join
• Right (Outer) Join
• (Full) Outer Join
• Left (Outer) Join Excluding Inner

Join
• Right (Outer) Join Excluding Inner

Join
• (Full) Outer Join Excluding Inner

Join
• Cross Join
• Equi-Join

Sample Tables

PK Value
1 FOX
2 COP
3 TAXI
6 WASHINGTO

N
7 DELL
5 ARIZONA
4 LINCOLN
10 LUCENT

Table
A PK Value

1 TROT
2 CAR
3 CAB
6 MONUMENT
7 PC
8 MICROSOFT
9 APPLE
11 SCOTCH

Table
B

Inner Join
• Inner join

produces only the
set of records that
match in both
Table A and Table
B

• Most
commonly
used, best
understood
join

Inner Join

SELECT * FROM TableA INNER JOIN TableB
ON
TableA.PK = TableB.PK
• This is the same as doing

SELECT * FROM TableA, TableB WHERE
TableA.PK = TableB.PK

Table
A
Value

PK
Table
B PK Value

FOX 1 1 TROT
COP 2 2 CAR
TAXI 3 3 CAB
WASHINGTO
N

6 6 MONUMENT

DELL 7 7 PC

Inner Join (continued)
• Inner Joins do not have to use

equality to join the fields
• Can use <, >, <>

Inner Join (continued)
SELECT *
FROM
TableA INNER
JOIN TableB
ON
TableA.PK >
TableB.PK

Table
A PK Value

Table
B PK Value

2 COP 1 TROT
3 TAXI 1 TROT
3 TAXI 2 CAR
4 LINCOLN 1 TROT
4 LINCOLN 2 CAR
4 LINCOLN 3 CAB
5 ARIZONA 1 TROT
5 ARIZONA 2 CAR
5 ARIZONA 3 CAB

… More… Rows…

Inner Join/Natural Join
• A NATURAL join is just an inner equi-join where the

join is implicitly created using any matching columns
between the two tables

• Example:
• SELECT * FROM TableA NATURAL JOIN TableB
• Same results as inner equi-join?
• Which columns match?

Left Outer Join
• Left outer join

produces a
complete set of
records from Table
A, with the
matching records
(where available)
in Table B. If there
is no match, the
right side will
contain null.

Left Outer Join

• SELECT * FROM TableA LEFT OUTER
JOIN TableB ON TableA.PK = TableB.PK

Table
A
Value

PK
Table
B PK Value

FOX 1 1 TROT
COP 2 2 CAR
TAXI 3 3 CAB
LINCOLN 4 NULL NULL
ARIZONA 5 NULL NULL
WASHINGTON 6 6 MONUMENT
DELL 7 7 PC
LUCENT 10 NULL NULL

Right Outer Join
• Right outer join

produces a
complete set of
records from Table
B, with the
matching records
(where available)
in Table A. If there
is no match, the
left side will
contain null.

Right Outer Join

• SELECT * FROM TableA RIGHT
OUTER JOIN TableB ON TableA.PK =
TableB.PK

Table
A
Value

PK
Table
B PK Value

FOX 1 1 TROT
COP 2 2 CAR
TAXI 3 3 CAB
WASHINGTON 6 6 MONUMENT
DELL 7 7 PC
NULL NULL 8 MICROSOFT
NULL NULL 9 APPLE
NULL NULL 11 SCOTCH

Full Outer Join
• Full outer join

produces the set
of all records in
Table A and Table
B, with matching
records from both
sides where
available. If there
is no match, the
missing side will
contain null.

Full Outer Join

• SELECT * FROM TableA FULL OUTER JOIN TableB ON
TableA.PK
= TableB.PK

TableA
Value PK

TableB
PK Value

FOX 1 1 TROT
COP 2 2 CAR
TAXI 3 3 CAB
LINCOLN 4 NULL NULL
ARIZONA 5 NULL NULL
WASHINGTON 6 6 MONUMENT
DELL 7 7 PC
LUCENT 10 NULL NULL
NULL NULL 8 MICROSOFT
NULL NULL 9 APPLE
NULL NULL 11 SCOTCH

Full Outer Join inMySQL
• MySQL doesn’t have FULL OUTER JOIN
• Simulate using UNION, LEFT and RIGHT

JOINs
• SELECT * FROM TableA LEFT JOIN

TableB ON TableA.PK = TableB.PK
UNION
SELECT * FROM TableA RIGHT JOIN
TableB
ON TableA.PK = TableB.PK

Left Join Excluding InnerJoin
• This query will

return all of the
records in the left
table (table
A)that do not
match any records
in the right table
(table B).

Left Join Excluding InnerJoin

• SELECT * FROM TableA LEFT JOIN
TableB ON TableA.PK = TableB.PK
WHERE TableB.PK IS NULL

• Perform left outer join, then exclude the
records we don't want from the right side
via a where clause.

Table
A
Value

PK
Table
B PK Value

LINCOLN 4 NULL NULL
ARIZONA 5 NULL NULL
LUCENT 10 NULL NULL

Right Join Excluding InnerJoin
• This query will

return all of the
records in the right
table (table
B) that do not
match any records
in the left table
(table A).

Right Join Excluding InnerJoin

• SELECT * FROM TableA RIGHT JOIN
TableB ON TableA.PK = TableB.PK
WHERE TableA.PK IS NULL

• Perform right outer join, then exclude the
records we don't want from the left side
via a where clause.

Table
A
Value

PK
Table
B PK Value

NULL NULL 8 MICROSOFT
NULL NULL 9 APPLE
NULL NULL 11 SCOTCH

Full Outer Excluding InnerJoin
• This query will

return all of the
records in Table A
and Table B that
do not have a
matching record in
the other table.

• (If you find a
useful
application, let
me know!)

Full Outer Excluding InnerJoin

• SELECT * FROM TableA FULL OUTER
JOIN TableB ON TableA.PK = TableB.PK
WHERE TableA.PK IS
NULL OR TableB.PK IS
NULL

Table
A
Value

PK
Table
B PK Value

NULL NULL 8 MICROSOFT
NULL NULL 9 APPLE
NULL NULL 11 SCOTCH
LINCOLN 4 NULL NULL
ARIZONA 5 NULL NULL
LUCENT 10 NULL NULL

How Can We Do This in MySQL?
• MySQL doesn’t have FULL OUTER JOIN
• Simulate using UNION, LEFT and RIGHT

JOINs
• SELECT * FROM TableA LEFT JOIN

TableB ON TableA.PK = TableB.PK
WHERE TableB.PK IS
NULL UNION
SELECT * FROM TableA RIGHT JOIN
TableB
ON TableA.PK =
TableB.PK WHERE
TABLEA.PK IS NULL

Cross Join
• A cross join is a Cartesian Product join –

it is every record in Table A combined
with every record in Table B.

• It gives the same results as not using a
WHERE clause when querying two tables
in MySQL

• SELECT * from TableA CROSS JOIN
TableB

• SELECT * from TableA, TableB

	Set Operators
	Set Operators
	Slide Number 2
	Rules to Remember
	UNION
	UNION ALL
	INTERSECT
	MINUS
	Set Operator Examples
	Set Operator Examples
	Set Operator Examples
	Set Operator Examples
	SET Operations ORDER BY
	SET Operations ORDER BY
	SET Operations ORDER BY
	SET Operations ORDER BY
	Terminology
	Summary

	SQL - FUNCTIONS
	Slide Number 1
	Functions
	SQL FUNCTION
	Advantages of function
	TYPES OF FUNCTION
	Single row function
	Types of single row functions
	Slide Number 8
	String/character function
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	NUMERIC FUNCTIONS…..
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	CONVERSION FUNCTIOSNS
	Slide Number 26
	Slide Number 27
	General functions
	Slide Number 29
	Slide Number 30
	Slide Number 31
	AGGREGATE FUNCTIONS.....
	Slide Number 33
	DATE FUNCTIONS
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	SPECIAL DATE FORMAT USING TO_CHAR FUNCTION
	Use of th in the to_char() function
	USE OF SP IN THE TO_CHAR() FUNCTION
	USE OF SPTH IN THE TO_CHAR FUNCTION

	SQL_Joins
	SQL Joins
	Types of Joins
	Sample Tables
	Inner Join
	Inner Join
	Inner Join (continued)
	Inner Join (continued)
	Inner Join/Natural Join
	Left Outer Join
	Left Outer Join
	Right Outer Join
	Right Outer Join
	Full Outer Join
	Full Outer Join
	Full Outer Join in MySQL
	Left Join Excluding Inner Join
	Left Join Excluding Inner Join
	Right Join Excluding Inner Join
	Right Join Excluding Inner Join
	Full Outer Excluding Inner Join
	Full Outer Excluding Inner Join
	How Can We Do This in MySQL?
	Cross Join

