
UNIT 5 PART -1

EXCEPTION HANDLING

Errors and Exceptions:The programs that we write may behave abnormally or unexpectedly

because of some errors and/or exceptions.

Errors:

• The two common types of errors that we very often encounter are syntax errors and logic

errors.

Syntax errors: And syntax errors, arises due to poor understanding of the language. Syntax

errors occur when we violate the rules of Python and they are the most common kind of

error that we get while learning a new language.

Example :

i=1

while i<=10

print(i)

i=i+1

if you run this program we will get syntax error like below,

 File "1.py", line 2

 while i<=10

 ^

SyntaxError: invalid syntax

Logical errors: While logic errors occur due to poor understanding of problem and its

solution. Logic error specifies all those type of errors in which the program executes but

gives incorrect results. Logical error may occur due to wrong algorithm or logic to solve

a particular program.

• However, such errors can be detected at the time of testing.

www.Jntufastupdates.com 1

Exceptions:

• Even if a statement is syntactically correct, it may still cause an error when executed. • Such

errors that occur at run-time (or during execution) are known as exceptions. • An exception

is an event, which occurs during the execution of a program and disrupts the normal flow of

the program's instructions.

• Exceptions are run-time anomalies or unusual conditions (such as divide by zero, accessing

arrays out of its bounds, running out of memory or disk space, overflow, and underflow)

that a program may encounter during execution.

• Like errors, exceptions can also be categorized as synchronous and asynchronous

exceptions.

• While synchronous exceptions (like divide by zero, array index out of bound, etc.) can be

controlled by the program

• Asynchronous exceptions (like an interrupt from the keyboard, hardware malfunction, or

disk failure), on the other hand, are caused by events that are beyond the control of the

program.

• When an exception occurs in a program, the program must raise the exception. After that

it must handle the exception or the program will be immediately terminated. • if exceptions

are not handled by programs, then error messages are generated..

Example:

num=int(input("enter numerator"))

den=int(input("enter denominator"))

quo=num/den

print(quo)

output:

C:\Users\PP>python excep.py

enter numerator1

enter denominator0

www.Jntufastupdates.com 2

Traceback (most recent call last):

 File "excep.py", line 3, in <module>

 quo=num/den

ZeroDivisionError: division by zero

Handling Exceptions:

We can handle exceptions in our program by using try block and except block. A critical

operation which can raise exception is placed inside the try block and the code that handles

exception is written in except block.

The syntax for try–except block can be given as

try:

statements

except ExceptionName:

statements

Example:

num=int(input(“Numerator: ”))

deno=int(input(“Denominator: “))

try:

quo=num/deno

print(“QUOTIENT: “,quo)

except ZeroDivisionError:

print(“Denominator can’t be zero”)

Output:

Numerator: 10

Denominator: 0

www.Jntufastupdates.com 3

Denominator can’t be zero

Multiple except blocks:

Python allows you to have multiple except blocks for a single try block. The block which

matches with the exception generated will get executed.

syntax:

try:

 You do your operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list,

 then execute this block.

else:

 If there is no exception then execute this block.

e.g.

string = input("Enter a String:")

try:

 num = int(input("Enter a number"))

 print(string+num)

except TypeError as e:

 print(e)

except ValueError as e:

 print(e)

(OR)

string = input("Enter a String:")

www.Jntufastupdates.com 4

try:

 num = int(input("Enter a number"))

 print(string+num)

except (TypeError,ValueError) as e:

 print(e)

OUTPUT :

>>>

Enter a String:hai

Enter a number3

Can't convert 'int' object to str implicitly

>>>

Enter a String:hai

Enter a numberbye

invalid literal for int() with base 10: 'bye'

Raising Exceptions:

The raise keyword is used to raise an exception.You can define what kind of error to raise,

and the text to print to the user.

The raise statement allows the programmer to force a specific exception to occur. The sole

argument in raise indicates the exception to be raised. This must be either an exception instance or

an exception class (a class that derives from Exception)

You can Explicitly raise an exception using the raise keyword.

The general syntax for the raise statement is

raise [Exception [, args [, traceback]]]

Here, Exception is the name of exception to be raised. args is optional and specifies a value for

the exception argument. If args is not specified, then the exception argument is None. The final

argument, traceback, is also optional and if present, is the traceback object used for the exception.

num=int(input("enter numerator"))

www.Jntufastupdates.com 5

den=int(input("enter denominator"))

try:

 quo=num/den

 raise Exception("I want an exception anyway")

 print(quo)

except ZeroDivisionError:

 print("Denominator cant be zero")

OUTPUT:

>>>

enter numerator4

enter denominator0

Denominator cant be zero

>>>

enter numerator4

enter denominator2

Traceback (most recent call last):

 File "C:\Python32\raisex.py", line 5, in <module>

 raise Exception("I want an exception anyway")

Exception: I want an exception anyway

Defining clean-up actions(The finally Block)

The finally block is always executed before leaving the try block. This means that the

statements written in finally block are executed irrespective of whether an exception has

occurred or not.

Syntax:

try:

Write your operations here

......................

www.Jntufastupdates.com 6

Due to any exception, operations written here will be skipped

finally:

This would always be executed.

......................

e.g.

num=int(input("enter numerator"))

den=int(input("enter denominator"))

try:

 quo=num/den

 print(quo)

except ZeroDivisionError:

 print("Denominator cant be zero")

else:

 print("This line is executed when there is no exception")

finally:

 print("TASK DONE")

OUTPUT:

>>>

enter numerator4

enter denominator2

2.0

This line is executed when there is no exception

TASK DONE

www.Jntufastupdates.com 7

>>>

enter numerator4

enter denominator0

Denominator cant be zero

TASK DONE

Built-in and User-defined Exceptions:

Built-in Exceptions:

Exceptions that are already defined in python are called built in or pre-defined

exception. In the table listed some built-in exceptions

EXCEPTION

NAME

DESCRIPTION

Exception Base class for all exceptions

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisionErro

r

Raised when division or modulo by zero takes place for all numeric types.

EOFError Raised when there is no input from either the raw_input() or input()

function

and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt Raised when the user interrupts program execution, usually by pressing

Ctrl+c.

IndexError

KeyError

Raised when an index is not found in a sequence.

Raised when the specified key is not found in the dictionary.

NameError Raised when an identifier is not found in the local or global namespace.

www.Jntufastupdates.com 8

IOError Raised when an input/ output operation fails

SyntaxError

IndentationError

Raised when there is an error in Python syntax.

Raised when indentation is not specified properly.

User –defined exception:

Python allows programmers to create their own exceptions by creating a new exception

class. The new exception class is derived from the base class Exception which is predefined in

python.

Example:

class myerror(Exception):

def __init__(self,val):

self.val=val

try:

raise myerror(10)

except myerror as e:

print(“user defined exception generated with value”,e.val)

OUTPUT:

 user defined exception generated with value 10

www.Jntufastupdates.com 9

UNIT 5

Graphical User Interface:

Python provides various options for developing graphical user interfaces (GUIs). Most
important are listed below.

• Tkinter

• wxPython

• JPython

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter
provides a fast and easy way to create GUI applications. Creating a GUI application using
Tkinter is an easy task. All you need to do is perform the following steps –

• Import the Tkinter module.

• Create the GUI application main window.
• Add one or more of the above-mentioned widgets to the GUI application.
• Enter the main event loop to take action against each event triggered by the user.

Example:

From import Tkinter *

top = Tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

This would create a following window –

Tkinter Widgets:

www.Jntufastupdates.com 10

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI
application. These controls are commonly called widgets.

There are currently 15 types of widgets in Tkinter. We present these widgets as well as
a brief description in the following table –

• Button

• Canvas

• Check button

• Entry

• Frame

• Label

• List box

• Menu button

• Menu

• Message

• Radio button

• Scale

• Scrollbar

• Text

• Top level.

• Spin box

• Paned Window

• Label Frame

• Tk Message Box

Standard attributes for widgets

• Dimensions

• Colors

• Fonts

• Relief styles

• Bitmaps

• Cursors

Geometry Management:

All Tkinter widgets have access to specific geometry management methods, Tkinter exposes

the following geometry manager classes: pack, grid, and place. •

• The pack() Method - This geometry manager organizes widgets in blocks before

placing them in the parent widget.

• The grid() Method - This geometry manager organizes widgets in a table-like

www.Jntufastupdates.com 11

structure in the parent widget.

• The place() Method -This geometry manager organizes widgets by placing

them in a specific position in the parent widget.

1) Creation of a window/widget

First, we will import Tkinter package and create a window and set its title. The last line which calls

mainloop function, this function calls the endless loop of the window, so the window will wait for

any user interaction till we close it. If you forget to call the mainloop function, nothing will appear

to the user.

Program:

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

window.mainloop()

www.Jntufastupdates.com 12

2) Creating a window with specific dimensions and a label

To add a label to our previous example, we will create a label using the label class like this:

lbl = Label(window, text="Hello")

Then we will set its position on the form using the grid function and give it the location like this:

lbl.grid(column=0, row=0)

So the complete code will be like this:

Program

from tkinter import *

window = Tk()

window.geometry("500x600")

window.title("CSE")

lbl = Label(window, text="HelloWorld",font=("Arial Bold", 50))

lbl.grid(column=0, row=0)

window.mainloop()

www.Jntufastupdates.com 13

3)Adding a Button to window/widget

Let’s start by adding the button to the window, the button is created and added to the window the

same as the label:

btn = Button(window, text="Click Me")

btn.grid(column=1, row=0)

Program:

from tkinter import *

window = Tk()

window.geometry("300x300")

window.title("CSE")

lbl = Label(window, text="HelloWorld")

lbl.grid(column=0, row=0)

btn = Button(window, text="Click Me")

btn.grid(column=1, row=0)

window.mainloop()

www.Jntufastupdates.com 14

4)Creating 2 text fields to enter 2 numbers, and a button when clicked gives sum of the 2

numbers and displays it in 3rd text field

You can create a textbox using Tkinter Entry class like this:

 = Entry(window,width=10)

Then you can add it to the window using grid function as usual

Program:

from tkinter import *

window = Tk()

window.geometry('350x200')

lbl1 = Label(window, text="enter the first value")

lbl1.grid(column=0, row=0)

lbl2 = Label(window, text="enter the second value")

lbl2.grid(column=0, row=1)

txt1 = Entry(window,width=10)

txt1.grid(column=1, row=0)

txt2 = Entry(window,width=10)

txt2.grid(column=1, row=1)

txt3 = Entry(window,width=20)

txt3.grid(column=1, row=2)

def clicked():

 res=int(txt1.get())+int(txt2.get())

 txt3.insert(0,"Sum is {}".format(res))

btn = Button(window, text="Click Me", command=clicked)

btn.grid(column=2, row=1)

window.mainloop()

www.Jntufastupdates.com 15

www.Jntufastupdates.com 16

5) Creating 2 checkboxes

To create a checkbutton, you can use Checkbutton class like this:

chk = Checkbutton(window, text='Choose')

Here we create a variable of type BooleanVar which is not a standard Python variable, it’s a Tkinter

variable, and then we pass it to the Checkbutton class to set the check state as the highlighted line in

the above example. You can set the Boolean value to false to make it unchecked.

the following program creates a check box.

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

chk_state = BooleanVar()

chk_state.set(True) #set check state

chk1 = Checkbutton(window, text='CSE A', var=chk_state)

chk2 = Checkbutton(window, text='CSE B', var=chk_state)

chk1.grid(column=0, row=0)

chk2.grid(column=0, row=1)

window.mainloop()

www.Jntufastupdates.com 17

6)Creating 3 radio buttons

To add radio buttons, simply you can use RadioButton class like this:

rad1 = Radiobutton(window,text='First', value=1)

Note that you should set the value for every radio button with a different value, otherwise, they

won’t work.

the following program creates a check box

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

rad1 = Radiobutton(window,text='First', value=1)

rad2 = Radiobutton(window,text='Second', value=2)

rad3 = Radiobutton(window,text='Third', value=3)

rad1.grid(column=0, row=0)

rad2.grid(column=1, row=0)

rad3.grid(column=2, row=0)

window.mainloop()

www.Jntufastupdates.com 18

7) Creating a message box on clicking a button

You can show a warning message or error message the same way. The only thing that needs to

be changed is the message function.

You can show a warning message or error message the same way. The only thing that needs to

be changed is the message function

messagebox.showwarning('Message title', 'Message content') #shows warning message

messagebox.showerror('Message title', 'Message content')

from tkinter import *

window = Tk()

window.geometry('350x200')

def clicked():

 messagebox.showinfo('Message title ', 'Message content')

 # messagebox.showerror('Message title ', 'Message content')

 # messagebox.show('Message title ', 'Message content')

btn = Button(window,text='Click here', command=clicked)

btn.grid(column=0,row=0)

window.mainloop()

www.Jntufastupdates.com 19

www.Jntufastupdates.com 20

8) Creating various message boxes

To show a yes no message box to the user, you can use one of the following messagebox Functions.

• If you click OK or yes or retry, it will return True value, but if you choose no or cancel, it

will return False.

• The only function that returns one of three values is askyesnocancel function, it

returns True or False or None.

from tkinter import messagebox

res = messagebox.askquestion('Message title','Message content')

res = messagebox.askyesno('Message title','Message content')

res = messagebox.askyesnocancel('Message title','Message content')

res = messagebox.askokcancel('Message title','Message content')

res = messagebox.askretrycancel('Message title','Message content')

www.Jntufastupdates.com 21

9) Creating a Spinbox

To create a Spinbox widget, you can use Spinbox class like this:

spin = Spinbox(window, from_=0, to=100)

Here we create a Spinbox widget and we pass the from_ and to parameters to specify the

numbers range for the Spinbox.

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

spin = Spinbox(window, from_=0, to=100)

spin.grid(column=0,row=0)

window.mainloop()

Introduction to programming concepts of scratch

Programming is core of computer science, it’s worth taking some time to really get to grips with

programming concepts and one of the main tools used in schools to teach these concepts, Scratch.

Programming simply refers to the art of writing instructions (algorithms) to tell a computer what

to do. Scratch is a visual programming language that provides an ideal learning environment for

doing this. Originally developed by America’s Massachusetts Institute of Technology, Scratch is

a simple, visual programming language. Colour coded blocks of code simply snap together. Many

media rich programs can be made using Scratch, including games, animations and interactive

stories. Scratch is almost certainly the most widely used software for teaching programming to

Key Stage 2 and Key Stage 3 (learners from 8 to 14 years).

www.Jntufastupdates.com 22

Scratch is a great tool for developing the programming skills of learners, since it allows all manner

of different programs to be built. In order to help develop the knowledge and understanding that

go with these skills though, it’s important to be familiar with some key programming concepts that

underpin the Scratch programming environment and are applicable to any programming language.

Using screenshots, we will understand the scratch concepts.

Sprites

The most important thing in any Scratch program are the sprites. Sprites are the graphical

objects or characters that perform a function in your program. The default sprite in Scratch is the

cat, which can easily be changed. Sprites by themselves won’t do anything of course, without

coding!

Sequences

In order to make a program in any programming language, you need to think through the

sequence of steps.

www.Jntufastupdates.com 23

Iteration (looping)

Iteration simply refers to the repetition of a series of instructions. This is accomplished in

Scratch using the repeat, repeat until or forever blocks.

Conditional statements

A conditional statement is a set of rules performed if a certain condition is met. In Scratch,

the if and if-else blocks check for a condition.

www.Jntufastupdates.com 24

Variables

A variable stores specific information. The most common variables in computer games for

example, are score and timer.

Lists (arrays)

A list is a tool that can be used to store multiple pieces of information at once.

Event Handling

When key pressed and when sprite clicked are examples of event handling. These blocks

allow the sprite to respond to events triggered by the user or other parts of the program.

www.Jntufastupdates.com 25

Threads

A thread just refers to the flow of a particular sequence of code within a program. A thread

cannot run on its own, but runs within a program. When two threads launch at the same time it is

called parallel execution.

Coordination & Synchronisation

The broadcast and when I receive blocks can coordinate the actions of multiple sprites.

www.Jntufastupdates.com 26

They work by getting sprites to cooperate by exchanging messages with one another. A common

example is when one sprite touches another sprite, which then broadcasts a new level.

Keyboard input

This is a way of interacting with the user. The ask and wait prompts users to type. The

answer block stores the keyboard input.

Boolean logic

Boolean logic is a form of algebra in which all values are reduced to either true or false.

The and, or, not statements are examples of Boolean logic.

User interface design

Interactive user interfaces can be designed in Scratch using clickable sprites to create

buttons.

www.Jntufastupdates.com 27

1) Creation of a window/widget

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

window.mainloop()

www.Jntufastupdates.com 28

2) Creating a window with specific dimensions and a label

from tkinter import *

window = Tk()

window.geometry("500x600")

window.title("CSE")

lbl = Label(window, text="HelloWorld",font=("Arial Bold", 50))

lbl.grid(column=0, row=0)

window.mainloop()

www.Jntufastupdates.com 29

3)Adding a Button to window/widget

from tkinter import *

window = Tk()

window.geometry("300x300")

window.title("CSE")

lbl = Label(window, text="HelloWorld")

lbl.grid(column=0, row=0)

btn = Button(window, text="Click Me")

btn.grid(column=1, row=0)

window.mainloop()

www.Jntufastupdates.com 30

4)Creating 2 text fields to enter 2 numbers, and a button when clicked gives sum of the 2

numbers and displays it in 3rd text field

from tkinter import *

window = Tk()

window.geometry('350x200')

lbl1 = Label(window, text="enter the first value")

lbl1.grid(column=0, row=0)

lbl2 = Label(window, text="enter the second value")

lbl2.grid(column=0, row=1)

txt1 = Entry(window,width=10)

txt1.grid(column=1, row=0)

txt2 = Entry(window,width=10)

txt2.grid(column=1, row=1)

txt3 = Entry(window,width=20)

txt3.grid(column=1, row=2)

def clicked():

 res=int(txt1.get())+int(txt2.get())

 txt3.insert(0,"Sum is {}".format(res))

btn = Button(window, text="Click Me", command=clicked)

btn.grid(column=2, row=1)

window.mainloop()

www.Jntufastupdates.com 31

5) Creating 2 checkboxes

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

chk_state = BooleanVar()

chk_state.set(True) #set check state

chk1 = Checkbutton(window, text='CSE A', var=chk_state)

chk2 = Checkbutton(window, text='CSE B', var=chk_state)

chk1.grid(column=0, row=0)

chk2.grid(column=0, row=1)

window.mainloop()

www.Jntufastupdates.com 32

6)Creating 3 radio buttons

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

rad1 = Radiobutton(window,text='First', value=1)

rad2 = Radiobutton(window,text='Second', value=2)

rad3 = Radiobutton(window,text='Third', value=3)

rad1.grid(column=0, row=0)

rad2.grid(column=1, row=0)

rad3.grid(column=2, row=0)

window.mainloop()

www.Jntufastupdates.com 33

7) Creating a message box on clicking a button

from tkinter import *

window = Tk()

window.geometry('350x200')

def clicked():

 messagebox.showinfo('Message title ', 'Message content')

 # messagebox.showerror('Message title ', 'Message content')

 # messagebox.show('Message title ', 'Message content')

btn = Button(window,text='Click here', command=clicked)

btn.grid(column=0,row=0)

window.mainloop()

www.Jntufastupdates.com 34

8) Creating various message boxes

from tkinter import messagebox

res = messagebox.askquestion('Message title','Message content')

res = messagebox.askyesno('Message title','Message content')

res = messagebox.askyesnocancel('Message title','Message content')

res = messagebox.askokcancel('Message title','Message content')

res = messagebox.askretrycancel('Message title','Message content')

www.Jntufastupdates.com 35

9) Creating a Spinbox

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

spin = Spinbox(window, from_=0, to=100)

spin.grid(column=0,row=0)

window.mainloop()

www.Jntufastupdates.com 36

	Python R20 - Unit-5 PART 1
	UNIT 5 PART 2
	UNIT 5 PART 2 gui outputs

