
Dept. of Computer Science and Engineering Page 3

UNIT -1

COMPUTER SYSTEM AND OPERATING SYSTEM OVERVIEW

OVER VIEW OF OPERATING SYSTEM

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:

Execute user programs and make solving user problems easier

Make the computer system convenient to use

Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components

 Hardware – provides basic computing resources

CPU, memory, I/O devices

 Operating system
Controls and coordinates use of hardware among various applications and users

 Application programs – define the ways in which the system resources are used to solve the computing
problems of the users

Word processors, compilers, web browsers, database systems, video games

Users

People, machines, other computers

Four Components of a Computer System

Operating System Definition

OS is a resource allocator

Manages all resources

Decides between conflicting requests for efficient and fair resource use

OS is a control program

Controls execution of programs to prevent errors and improper use of the computer

No universally accepted definition

Everything a vendor ships when you order an operating system” is good approximation
But varies wildly

Dept. of Computer Science and Engineering Page 4

 “The one program running at all times on the computer” is the kernel. Everything else is either a
system program (ships with the operating system) or an application program

Computer Startup

bootstrap program is loaded at power-up or reboot

Typically stored in ROM or EPROM, generally known as firmware

Initializes all aspects of system

Loads operating system kernel and starts execution

Computer System Organization

Computer-system operation

One or more CPUs, device controllers connect through common bus providing access to shared memory

Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

I/O devices and the CPU can execute concurrently

Each device controller is in charge of a particular device type

Each device controller has a local buffer

CPU moves data from/to main memory to/from local buffers

I/O is from the device to local buffer of controller

Device controller informs CPU that it has finished its operation by causing An interrupt

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which
contains the addresses of all the service routines

Interrupt architecture must save the address of the interrupted instruction

Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interruptnA

trap is a software-generated interrupt caused either by an error or a user request

 An operating system is interrupt driven

Interrupt Handling

The operating system preserves the state of the CPU by storing registers and the program counter

Determines which type of interrupt has occurred:

polling

Dept. of Computer Science and Engineering Page 5

vectored interrupt system

Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure

After I/O starts, control returns to user program only upon I/O completion

Wait instruction idles the CPU until the next interrupt

Wait loop (contention for memory access)

At most one I/O request is outstanding at a time, no simultaneous I/O processing

After I/O starts, control returns to user program without waiting for I/O completion

System call – request to the operating system to allow user to wait for I/O completion

Device-status table contains entry for each I/O device indicating its type, address, and state

Operating system indexes into I/O device table to determine device status and to modify table entry to

include interrupt

Direct Memory Access Structure

Used for high-speed I/O devices able to transmit information at close to memory speeds

Device controller transfers blocks of data from buffer storage directly to main memory without CPU

intervention

 Only one interrupt is generated per block, rather than the one interrupt per byte

Storage Structure

Main memory – only large storage media that the CPU can access directly

Secondary storage – extension of main memory that provides large nonvolatile storage capacity

Magnetic disks – rigid metal or glass platters covered with magnetic recording material

Disk surface is logically divided into tracks, which are subdivided into sectors

The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

Storage systems organized in hierarchy

Speed

Cost

Volatility

Caching – copying information into faster storage system; main memory can be viewed as a last cache for
secondary storage

Dept. of Computer Science and Engineering Page 6

Caching

Important principle, performed at many levels in a computer (in hardware, operating system, software)

Information in use copied from slower to faster storage temporarily

Faster storage (cache) checked first to determine if information is there

If it is, information used directly from the cache (fast)

If not, data copied to cache and used there

Cache smaller than storage being cached

Cache management important design problem

Cache size and replacement policy

Computer-System Architecture

Most systems use a single general-purpose processor (PDAs through mainframes)

Most systems have special-purpose processors as well

Multiprocessors systems growing in use and importance

Also known as parallel systems, tightly-coupled systems

Advantages include
1.Increased throughput

2.Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

Two types

1. Asymmetric Multiprocessing

2.Symmetric Multiprocessing

Dept. of Computer Science and Engineering Page 7

A Dual-Core Design

Clustered Systems

Like multiprocessor systems, but multiple systems working together

Usually sharing storage via a storage-area network (SAN)

Provides a high-availability service which survives failures

Asymmetric clustering has one machine in hot-standby mode

Symmetric clustering has multiple nodes running applications, monitoring each other

 Some clusters are for high-performance computing (HPC)
Applications must be written to use parallelization

Operating System Structure

Multiprogramming needed for efficiency

Single user cannot keep CPU and I/O devices busy at all times

Multiprogramming organizes jobs (code and data) so CPU always has one to Execute

A subset of total jobs in system is kept in memory

How a Modern Computer Works

Symmetric Multiprocessing Architecture

Dept. of Computer Science and Engineering Page 8

One job selected and run via job scheduling

When it has to wait (for I/O for example), OS switches to another job

Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users

can interact with each job while it is running, creating interactive computing

Response time should be < 1 second

Each user has at least one program executing in memory [process

If several jobs ready to run at the same time [CPU scheduling

If processes don’t fit in memory, swapping moves them in and out to run

Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Operating-System Operations

Interrupt driven by hardware

Software error or request creates exception or trap

Division by zero, request for operating system service

Other process problems include infinite loop, processes modifying each Other or the operating system

Dual-mode operation allows OS to protect itself and other system components

User mode and kernel mode

Mode bit provided by hardware

Provides ability to distinguish when system is running user code or kernel code

Some instructions designated as privileged, only executable in kernel mode

System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

Timer to prevent infinite loop / process hogging resources

Set interrupt after specific period

Operating system decrements counter

When counter zero generate an interrupt

Set up before scheduling process to regain control or terminate program that exceeds allotted time

Dept. of Computer Science and Engineering Page 9

OPERATING SYSTEM FUNCTIONS

Process Management

 A process is a program in execution. It is a unit of work within the system. Program is a passive entity,
process is an active entity.

Process needs resources to accomplish its task

CPU, memory, I/O, files

Initialization data

Process termination requires reclaim of any reusable resources

Single-threaded process has one program counter specifying location of next instruction to execute

Process executes instructions sequentially, one at a time, until completion

Multi-threaded process has one program counter per thread

Typically system has many processes, some user, some operating system running concurrently on one or

more CPUs

 Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

 The operating system is responsible for the following activities in connection with process
management:

Creating and deleting both user and system processes

Suspending and resuming processes

Providing mechanisms for process synchronization

Providing mechanisms for process communication

Providing mechanisms for deadlock handling

Memory Management

All data in memory before and after processing

All instructions in memory in order to execute

Memory management determines what is in memory when

Optimizing CPU utilization and computer response to users

UNIT - 1

Memory management activities

Keeping track of which parts of memory are currently being used and by whom

Deciding which processes (or parts thereof) and data to move into and out of memory

Allocating and deallocating memory space as needed

Storage Management

OS provides uniform, logical view of information storage

Abstracts physical properties to logical storage unit - file

Each medium is controlled by device (i.e., disk drive, tape drive)

Varying properties include access speed, capacity, data-transfer rate, access method (sequential or

random)

File-System management

Files usually organized into directories

Access control on most systems to determine who can access what

OS activities include

Creating and deleting files and directories

Primitives to manipulate files and dirs

Mapping files onto secondary storage

Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or data that must be kept for a “long”
period of time

Proper management is of central importance

Entire speed of computer operation hinges on disk subsystem and its algorithms

MASS STORAGE activities

Free-space management

Storage allocation

Disk scheduling

Some storage need not be fast

Tertiary storage includes optical storage, magnetic tape

Still must be managed

Varies between WORM (write-once, read-many-times) and RW (read-write)

Performance of Various Levels of Storage

Page 10 Dept. of Computer Science and Engineering

Dept. of Computer Science and Engineering Page 11

Migration of Integer A from Disk to Register

 Multitasking environments must be careful to use most recent value, no matter where it is stored in the
storage hierarchy

 Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the
most recent value in their cache

Distributed environment situation even more complex

Several copies of a datum can exist

I/O Subsystem

One purpose of OS is to hide peculiarities of hardware devices from the user

I/O subsystem responsible for

Memory management of I/O including buffering (storing data temporarily while it is being transferred),

caching (storing parts of data in faster storage for performance), spooling (the overlapping of output of

one job with input of other jobs)

General device-driver interface

Drivers for specific hardware devices

Protection and Security

Protection – any mechanism for controlling access of processes or users to resources defined by the OS

Security – defense of the system against internal and external attacks

Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

Systems generally first distinguish among users, to determine who can do what

User identities (user IDs, security IDs) include name and associated number, one per user

User ID then associated with all files, processes of that user to determine access control

Group identifier (group ID) allows set of users to be defined and controls managed, then also associated
with each process, file

 Privilege escalation allows user to change to effective ID with more rights

DISTRIBUTED SYSTEMS

Computing Environments

Traditional computer

Blurring over time

Office environment

PCs connected to a network, terminals attached to mainframe or minicomputers providing batch
and timesharing

Now portals allowing networked and remote systems access to same resources

 Home networks

Used to be single system, then modems

Now firewalled, networked

Client-Server Computing

Dept. of Computer Science and Engineering Page 12

Dumb terminals supplanted by smart PCs

Many systems now servers, responding to requests generated by clients

Compute-server provides an interface to client to request services (i.e. database)

File-server provides interface for clients to store and retrieve files

Peer-to-Peer Computing

Another model of distributed system

P2P does not distinguish clients and servers

Instead all nodes are considered peers

May each act as client, server or both

Node must join P2P network

Registers its service with central lookup service on network, or
Broadcast request for service and respond to requests for service via discovery protocol

 Examples include Napster and Gnutella

Web-Based Computing

Web has become ubiquitous

PCs most prevalent devices

More devices becoming networked to allow web access

New category of devices to manage web traffic among similar servers: load balancers

Use of operating systems like Windows 95, client-side, have evolved into Linux and Windows XP,

which can be clients and servers

Open-Source Operating Systems

Operating systems made available in source-code format rather than just binary closed-source

Counter to the copy protection and Digital Rights Management (DRM) movement

Started by Free Software Foundation (FSF), which has “copyleft” GNU Public License (GPL)

Examples include GNU/Linux, BSD UNIX (including core of Mac OS X), and Sun Solaris

Operating System Services

One set of operating-system services provides functions that are helpful to the user:

User interface - Almost all operating systems have a user interface (UI)

Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

Program execution - The system must be able to load a program into memory and to run that program,

end execution, either normally or abnormally (indicating error)

I/O operations - A running program may require I/O, which may involve a file or an I/O device

Dept. of Computer Science and Engineering Page 13

 File-system manipulation - The file system is of particular interest. Obviously, programs need to read
and write files and directories, create and delete them, search them, list file Information, permission
management.

A View of Operating System Services

Operating System Services

 One set of operating-system services provides functions that are helpful to the user

Communications – Processes may exchange information, on the same computer or between computers

over a network Communications may be via shared memory or through message passing (packets

moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors May occur in the CPU and memory

hardware, in I/O devices, in user program For each type of error, OS should take the appropriate action
to ensure correct and consistent computing Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

 Another set of OS functions exists for ensuring the efficient operation of the system itself via resource

sharing

 Resource allocation - When multiple users or multiple jobs running concurrently, resources must be
allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, others (such as I/O devices) may have general request and release code

Accounting - To keep track of which users use how much and what kinds of computer resources

Protection and security - The owners of information stored in a multiuser or networked computer

system may want to control use of that information, concurrent processes should not interfere with each

other

Protection involves ensuring that all access to system resources is controlled

Security of the system from outsiders requires user authentication, extends to defending external I/O

devices from invalid access attempts

 If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as
strong as its weakest link.

User Operating System Interface - CLI

Command Line Interface (CLI) or command interpreter allows direct command entry

Dept. of Computer Science and Engineering Page 14

Sometimes implemented in kernel, sometimes by systems program

Sometimes multiple flavors implemented – shells

Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of programs

If the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI

User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor

Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various actions (provide information, options,
execute function, open directory (known as a folder)

Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces

Microsoft Windows is GUI with CLI “command” shell

Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells available

Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

Dept. of Computer Science and Engineering Page 15

The Mac OS X GUI

System Calls

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct

system call usenThree most common APIs are Win32 API for Windows, POSIX API for POSIX-based

systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java

virtual machine (JVM)

 Why use APIs rather than system calls?(Note that the system-call names used throughout this text are
generic)

Example of System Calls

Dept. of Computer Science and Engineering Page 16

Standard C Library Example

Example of Standard API

Consider the ReadFile() function in the

Win32 API—a function for reading from a file

A description of the parameters passed to ReadFile()

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written from

DWORD bytesToRead—the number of bytes to be read into the buffer

LPDWORD bytesRead—the number of bytes read during the last read

LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

Typically, a number associated with each system call

System-call interface maintains a table indexed according to these

Numbers

The system call interface invokes intended system call in OS kernel and returns status of the system call

and any return values

The caller need know nothing about how the system call is implemented

Just needs to obey API and understand what OS will do as a result call

Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into libraries included with compiler)

API – System Call – OS Relationship

Dept. of Computer Science and Engineering Page 17

System Call Parameter Passing

Often, more information is required than simply identity of desired system call

Exact type and amount of information vary according to OS and call

Three general methods used to pass parameters to the OS

Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a
register

This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating
system

Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

Dept. of Computer Science and Engineering Page 18

Types of System Calls

Process control

File management

Device management

Information maintenance

Communications

Protection

Examples of Windows and Unix System Calls

MS-DOS execution

(a) At system startup (b) running a program

Dept. of Computer Science and Engineering Page 19

FreeBSD Running Multiple Programs

System Programs

System programs provide a convenient environment for program development and execution. The can be

divided into:

File manipulation

Status information

File modification

Programming language support

Program loading and execution

Communications

Application programs

Most users’ view of the operation system is defined by system programs, not the actual system calls

Provide a convenient environment for program development and execution

Some of them are simply user interfaces to system calls; others are considerably more complex

File management - Create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories

Status information

Some ask the system for info - date, time, amount of available memory, disk space, number of users

Others provide detailed performance, logging, and debugging information

Typically, these programs format and print the output to the terminal or other output devices

Some systems implement a registry - used to store and retrieve configuration information

File modification

Text editors to create and modify files

Special commands to search contents of files or perform transformations of the text

Programming-language support - Compilers, assemblers, debuggers and interpreters sometimes

provided

 Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

Dept. of Computer Science and Engineering Page 20

 Communications - Provide the mechanism for creating virtual connections among processes, users, and
computer systems

 Allow users to send messages to one another’s screens, browse web pages, send electronic-mail
messages, log in remotely, transfer files from one machine to another

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some approaches have proven successful

Internal structure of different Operating Systems can vary widely

Start by defining goals and specifications

Affected by choice of hardware, type of system

User goals and System goals

User goals – operating system should be convenient to use, easy to learn, reliable, safe, and fast

System goals – operating system should be easy to design, implement, and maintain, as well as flexible,

reliable, error-free, and efficient

Important principle to separate

Policy: What will be done?

Mechanism: How to do it?

Mechanisms determine how to do something, policies decide what will be done

The separation of policy from mechanism is a very important principle, it allows maximum flexibility if

policy decisions are to be changed later

Simple Structure

MS-DOS – written to provide the most functionality in the least space

Not divided into modules

Although MS-DOS has some structure, its interfaces and levels of Functionality are not well separated

MS-DOS Layer Structure

Layered Approach

 The operating system is divided into a number of layers (levels), each built on top of lower layers. The
bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions (operations) and services of only
lower-level layers

Dept. of Computer Science and Engineering Page 21

Traditional UNIX System Structure

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating system had limited structuring.

The UNIX OS consists of two separable parts

Systems programs

The kernel

Consists of everything below the system-call interface and above the physical hardware

Provides the file system, CPU scheduling, memory management, and other operating-system

functions; a large number of functions for one level

Layered Operating System

Micro kernel System Structure

Moves as much from the kernel into “user” space

Communication takes place between user modules using message passing

Benefits:

Easier to extend a microkernel

Easier to port the operating system to new architectures

More reliable (less code is running in kernel mode)

Dept. of Computer Science and Engineering Page 22

More secure

Detriments:

Performance overhead of user space to kernel space communication

Mac OS X Structure

Modules

Most modern operating systems implement kernel modules

Uses object-oriented approach

Each core component is separate

Each talks to the others over known interfaces

Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible

Solaris Modular Approach

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the
operating system kernel as though they were all hardware

Dept. of Computer Science and Engineering Page 23

A virtual machine provides an interface identical to the underlying bare hardware

The operating system host creates the illusion that a process has its own processor and (virtual memory)

Each guest provided with a (virtual) copy of underlying computer

Virtual Machines History and Benefits

First appeared commercially in IBM mainframes in 1972

Fundamentally, multiple execution environments (different operating systems) can share the same

hardware

Protect from each other

Some sharing of file can be permitted, controlled

Commutate with each other, other physical systems via networking

Useful for development, testing

Consolidation of many low-resource use systems onto fewer busier systems

“Open Virtual Machine Format”, standard format of virtual machines, allows a VM to run within many

different virtual machine (host) platforms

Para-virtualization

Presents guest with system similar but not identical to hardware

Guest must be modified to run on paravirtualized hardwareF

Guest can be an OS, or in the case of Solaris 10 applications running in containers

Solaris 10 with Two Containers

Dept. of Computer Science and Engineering Page 24

VMware Architecture

The Java Virtual Machine

Operating-System Debugging

Debugging is finding and fixing errors, or bugs

OSes generate log files containing error information

Failure of an application can generate core dump file capturing memory of the process

Operating system failure can generate crash dump file containing kernel memory

Beyond crashes, performance tuning can optimize system performance

Kernighan’s Law: “Debugging is twice as hard as writing the code in the rst place. Therefore, if you

write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production systems

Probes fire when code is executed, capturing state data and sending it to consumers of those probes

Dept. of Computer Science and Engineering Page 25

Solaris 10 dtrace Following System Call

Operating System Generation

 Operating systems are designed to run on any of a class of machines; the system must be configured for
each specific computer site

SYSGEN program obtains information concerning the specific configuration of the hardware system

Booting – starting a computer by loading the kernel

Bootstrap program – code stored in ROM that is able to locate the kernel, load it into memory, and start

its execution

System Boot

Operating system must be made available to hardware so hardware can start it

Small piece of code – bootstrap loader, locates the kernel, loads it into memory, and starts it

Sometimes two-step process where boot block at fixed location loads bootstrap loader

When power initialized on system, execution starts at a fixed memory location Firmware used to hold

initial boot code

