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VECTOR CALCULUS

Introduction :

Vector calculus is concerned with differentiation and integration of vector fields
primarily in 3-dimensional Euclidean space R3. The term "vector calculus" is sometimes used
as a synonym for the broader subject of multivariable calculus. Vector calculus plays an
important role in differential geometry and in the study of partial differential equations. It is
used extensively in physics and engineering, especially in the description of electromagnetic
fields, gravitational fields and fluid flow. Vector analysis is very important in many fields
of engineering such as mechanical, civil, computer, structural and electrical engineering.
Scalar values, such as mass and temperature convey only a magnitude, but vectors such as
velocity employ both a magnitude and a direction. In physics, the term work is used to
describe the energy that is added to or removed from an object or system when a force is
applied to it. The work done by a force can be described by the dot product of the force
vector and the displacement vector.

Vector finds many applications in Electrical Engineering: The generator that generates
Electrical Energy or the Motor that Generates mechanical power work on the principles of
physics which are based on vector manipulation. Since vectors and matrices are used in linear
algebra, anything that requires the use of arrays that are linear dependent requires vectors. A
few well-known examples in Computer engineering are Internet search, Graph analysis,
Machine learning, Graphics, Bioinformatics, Data mining, Computer vision, Speech
recognition, Compilers, Parallel computing and Scientific computing. Robotics also have
Vector Calculus applications. Vectors can be used by air-traffic controllers when tracking
planes, by meteorologists when describing wind conditions, and by computer programmers
when they are designing virtual worlds.

Definitions :

Scalar : A quantity which is completely specify by its magnitude only.

Ex: Time, Temperature.

Vector : A quantity which is completely specify by its magnitude and direction.

Ex: Force ,Velocity.
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Position Vector: Let A and B are two vectors then the position vector of AB is
AB=0B-OA.

If @ =a,i+ ayj+ askthen|al=\/a,;?+ a,?+ a?
If @ is any vector then its unit vector is given by %

Dot Product

a.b=|al|b| cosd where @ is angle between two vectors

Weknowi.i = j.j = k.k =1and i.j = j.k = k.i=0

if a=a;i+ayj+ask,b=>byi+b,j+bkthen a.b = aibi+asho+ashs

Cross Product

axb=lal|b| 7sind
i j k

=la; a, az| sinceixi =jxj =kxk=0
by b, b3

ixj=k; jxk=1i; kxi=j; jxi=-k; ixk=-j; kxj =i
Scalar and Vector Point Functions

Consider a region in three dimensional space. To each point P(X,y,z), suppose we associate a
unique real number (called scalar) say ¢. This ¢(x,y,z) is called a scalar point function. Scalar
point function defined on the region. Similarly if to each point P(x,y,z) we associate a unique

vector f (x,y,z), f iscalled vector point functions.

Examples:

For example take a heated solid. At each point P(x,y,z)of the solid, there will be temperature

T(x,y,z). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a
position P(x,y,z) in space, it will be having some speed, say, v. This speed v is a scalar point

function.

Consider a particle moving in space. At each point P on its path, the particle will be having a
velocity V which is vector point function. Similarly, the acceleration of the particle is also a

vector point function.

Tangent vector to a curve in space
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Consider an interval [a,b].
Letx = x(t),y = y(t),z = z(t)be continuous and derivable for a<t <b.
Then the set of all points (x(t), y(t), z(t)) is called a curve in a space.

Let A= (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points

of the curve. If A =B, the curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.

Let OP = 7(¢),0Q = #(t + 8t) = 7 + 67.Then 87 = 00 — 0P'= PQ

o — — PQ.
Then EIS along the vector PQ. As Q—P, PQ and hence rl tends to be along the tangent

to the curve at P.

& _dr _dr .
Hence &ItOE: m will be a tangent vector to the curve at P. (This m may not be a unit

vector)
Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can

ar . .
observe that m IS unit tangent vector at P to the curve.

Vector Differential Operator

Def. The vector differential operator V(read as del) is defined as

\%

-0 w0 =0
—+ J—+k—.
ox "oy oz

This operator possesses properties analogous to those of ordinary vectors as well as

differentiation operator.

We will define now some quantities known as “gradient”, “divergence” and “curl”
involving this operator V. We must note that this operator has no meaning by itself unless it

operates on some function suitably

Gradient of a Scalar Point Function
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Let ¢(x,y,z) be a scalar point function of position defined in some region of space. Then the

vector function i'%+ ]% + E% is known as the gradient of ¢ or V¢
OX oy oz
Vo= (i_i+ ]QHZEM) -9, ]%HZ%
ox "oy oz ox oy 0z

Directional Derivative

Let ¢(x,y, z) be a scalar function defined throughout some region of space. Let this function
have a value ¢ at a point P whose position vector referred to the origin O is OP = r. Let

d+Ad be the value of the function at neighbouring point Q. If @0 =7 = Ar . Let Ar be the

A

length of A7. — gives a measure of the rate at which ¢ change when we move from P to Q.
Ar

The limiting value of i—'I' as Ar — 0 is called the derivative of ¢ in the direction of % or

simply directional derivative of ¢ at P and is denoted by dg/dr.

The physical interpretation of V¢

The gradient of a scalar function ¢(x,y,z) at a point P(x,y, z) is a vector along the normal to
the level surface ¢(x,y,z) = cat P and is in increasing direction. Its magnitude is equal to
the greatest rate of increase of ¢ .

Greatest value of directional derivative of @ at a point P = |grad ¢| at that point.

NOTE:

1.Let F:xi+yj+zlz. Then dF:dxi+dyj+dzI2 if ¢ is any scalar point function, then

dp=Laxs @y P [ 1924 19 P Vfigy + oy + kaz)= vopr
OX oy oz OX oy 0z

2. grad® at any point is a vector normal to the surface ®(X,Y,z)=C through that point w

P(X,Y,z) where c is a constant.

3. The directional derivative of a scalar point function ¢ at a point P(x, y,z) in the direction

of a unit vector eisequalto e. grad ¢=e. V.

4.1f 6 is angle between two surfaces @,, @, then
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Vg, VO,
Cosf = ——=
[VO11IVD]

. . Vo.

5.Unit Normal vector of a surface @ is ﬁ

Solved Problems
1.Show that V[f(r)] = @r where 7= Xxi +yj+zk .
Sol: Since F= xi + yj + zk , we have r’= x*+y?+z?

Differentiating w.r.t. ‘x’ partially, we get

OX oX r oy r oz r

(192012 02 oSO i
V[f(r)]—(l 8X+jay+kazjf(r) Y if (r)ax Dif (r)r

1 —
Note : From the above result, V(log r) = r—zr, V™) = nr"-2r.

2.Find the directional derivative of f = xy +yz+zx in the direction of vector

i +2]+ 2k at the point (1,2,0).

Sol: Given f = xy + yz + zx.

~of . of of - . _
Gradf=1—+]J—+Z—=(y+2)1 +(z+X) ]+ (X+ y)k
x5y a (Y+2) +(Z+x)]+(x+Y)

If € is the unit vector in the direction of the vector T +2j + 2k , then

ézﬂzé([-FZj'FZE)

V12 +22 422
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1

W

=
\-.hl

Directional  derivative of f along the given direction

= %(I +2j+ ZE)[(y +2)i+(z+x)j+ (x + yE)]at (1,2,0)
L 10
=3+ +2E+0) +2(x + 11120 = —

3. Find the directional derivative of the function xy?+yz®+zx? along the tangent to the
curve x =ty = t%,z = tdat the point (1,1,1).

Sol: Here f = xy?+yz*+zx?

Vi = i_i+ ]iHZaf

Eatky E:(y2+2xz)i+(zz+2xy)]+(x2+2yz)l?
At (1,1,1), Vf=3i+3j+3k

Let r be the position vector of any point onthe curve x =t,y = t%z = t3 then

r=xi+yj+zk=ti+t> j+t°k

0 - - _ _ _ _
é: F+26 +3t°k = (i + 2j+ 3k)at (1,1,1)

or -,
We know that a2t Is the vector along the tangent to the curve.

Unit vector along the tangent = . = T+2)+3k _1+2)+3K

1+ 22+3 V4

. L - 1 - . - -

Directional derivative along the tangent = Vfe = — (i+2]+3k).3(i+j+k
g g \/1—4( J ) 3@+ j+k)

3 18

—1+2+3)=—

N7 R Ny,

4. Find the directional derivative of the function f = x?>—y?+22? at the point P =(1,2,3) in
the direction of the line PQ where Q = (5,0,4).

Sol: The position vectors of P and Q with respect to the origin are OP = i+2j+3k and
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OQ=5i+4k ; PQ=0Q 0P = 4i-2j+k

Let & be the unit vector in the direction of PQ. Then & = a-2)+k
J21

grad f = i, ]qHZi = 2xi —2yj +4zk
OX oy 0z

The directional derivative of f at P (1,2,3) in the direction of PQ = &.Vf

1
J21

1
J21

N

41 —27+K).(2xi —2vj + 4zk
( J+k).( yj ) N,

(Bx+4y+4z) at(L2,3) — (28)

5. Find the greatest value of the directional derivative of the function f = x?yz® at (2,1,-1).

Sol: we have

grad f = i ]ﬂﬂzi = 2xyZ°1 + x?2° +3x%yz?k =—4i—4] +12k at (2,1,-1).
OX oy oz

Greatest value of the directional derivative of f = [Vf| = v16+16+144 = 4J/11.

6.Find the directional derivative of xyz>+xz at (1, 1 ,1) in a direction of the normal to
the surface 3xy2 + y = z at (0,1,1).

Sol: Let f(x,y, z) =3xy*+y — z=0
Let us find the unit normal e to this surface at (0,1,1). Then
of _ 3y?, of of

—=6xy+1,—=-1
OX oy 0z

Vf = 3y?i+(6xy+1)j-k
(Vo1 = 3itj-k = n

oo _3i+j-k_3i+j-k

il Jo+1+1 V11

Let g(x,y,z) = xyz? +xz, then
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6_9=yz2 +2, a—g=x22,8—g=2xy+x
OX oy 0z

Vg = (yz°+2)i + xz2j + 2xyz + )k
And [V0] @11 = 2i+j+3k

Directional derivative of the given function in the direction of € at (1,1,1) = Vg.€

:QHFGM.(&+1—kj:6+1—3_ 4

Vi1 NIRRT

7.Evaluate the angle between the normal to the surface xy = z? at the points (4,1,2) and
(3,3,-3).
Sol: Given surface is f(x,y,z) = xy — z°

Let n, and i, be the normal to this surface at (4,1,2) and (3,3,-3) respectively.

Differentiating partially, we get

grad f= yi +xj —2zk
n,=(grad f) at (4,1,2) =i+4j—4k

coso o My (i+4j—4k) (§i+3)+6K)
*[nfn)] V14126416 “V9+9+36

B412-24) -9
V3354 /3354

8. Find a unit normal vector to the surface x?+y?+2z> = 26 at the point (2, 2,3).
Sol: Let the given surface be f(x,y,z) = x>+y?*+2z? — 26=0. Then

= 2X, i: 2y,i =4z.
oy oz

2=
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grad f = Zl'g—f =2xi + 2yj + 4zk
X

Normal vector at (2,2,3) = [Vf ]2z =4i+4 j+12 k

VE 4@ +j+3k) i+]j+3k
N Vi1

Unit normal vector =

9. Find the values of aand b so that the surfaces ax’>~byz = (a + 2)x and 4x*y +
z°= 4 may intersect orthogonally at the point (1, -1,2).

(or) Find the constants a and b so that surface ax?>~byz = (a + 2)x will orthogonal to

4x’y + z°= 4 at the point (1,-1,2).
Sol: Let the given surfaces be f(x,y, z) = ax’~byz = (a + 2)x ------------- (1)
And g(x,y,z) = 4x°y + 2°= 4 -—---emee- (2)
Given the two surfaces meet at the point (1,-1,2).
Substituting the point in (1), we get
a+2b—(a+2) =0=b=1

Now a =2ax—(a+2), e =—-bzand pr =—hy.
OX oy oz

- of
vi= ZI%=[(2ax—(a+2)]i—bz+bk = (a —2)i—2bj + bk
= (a=2)i — 2j + k= n, normal vector to surface 1.
a9 a9

Also — =8xy, —:4x2,a—g:322.
ox oy B

Vg = ZI_Z—?( =8xyi + 4x% + 3z°%k

(V9)a,-12 =—8i + 4j + 12k = n,, normal vector to surface 2.

Given the surfaces f(x,y,z), g(x,y, z) are orthogonal at the point (1,-1,2).
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[Vt ][Va]=0= ((a — 2)i — 2j + k). (=8i + 4j + 12k) = 0
—-8a+16-8+12 =a =5/2

Hencea = 5/2and b = 1.

Divergence of a vector

+
oll
SIS
=

+j.

2|2
2|,

Let f be any continuously differentiable vector point function. Then i.

called the divergence of f and is written as div f .

i.e., div f_:i_.i+ ].iﬂz.q: i'2+ji+lz2 £
OX oy 0z ox “oy. oz

Hence we can write div f as
div f=V. f
This is a scalar point function.

oy oy o
ox oy oz

NOTE: If the vector f= fi+f, j+f,k,thendiv f =
Solenoidal Vector

A vector point function f is said to be solenoidal if div f =0.
Physical interpretation of divergence:

Depending upon f  in a physical problem, we can interpret div f (V. f).

Suppose F (x,y,zt) is the velocity of a fluid at a point(x,y, z) and time ‘t’. Though time
has no role in computing divergence, it is considered here because velocity vector depends on

time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to

measure the rate per unit volume at which the fluid flows out at any given time. The
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divergence of F measures the outward flow or expansions of the fluid from their point at

any time. This gives a physical interpretation of the divergence.

Solved Problems
1. Find div f when grad(x*+y*+z°—3xyz)

Sol: Let ¢ = x*+y*+2z3—3xyz

Then % =3x? —3yz, — op =3y? —3zx, % _ =3z =3xy
OX 0z
¢ 8¢ o9 _ R AT SN S
grad ¢=1— 8x 8y +k 22 o = 3[(X° —yz)l +(y° —2xX) J+ (z© = xy)k]
.- _of % of, _ 0 B 0 ~
div f—&+ Y 8 [ (x* =y2)]+ [3(y zx)]+ [3(2 xy)]

= 3(2x)+3(2y)+3(22) = 6(x+y+z)
2.1f f= (x+3y)i +(y—22)j+(x+ pz)k is Solenoidal, find P.

Sol: Let f= (x+3y)i+(y=2z)j+(x+pz)k = fi+f, j+fk

Wehaveizli 16f
OX oy 0z
- of of
div f:a—1+%+—3:1+1+p=2+p

oXx oy oz
since f issolenoidal, we havediv f =0 =2+p=0=p=-2
3.Finddiv f= r"r. Find n if it is solenoidal?

Sol: Given f= r"r. where T =xi+yj+zk and r =]
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We have 12 = x?+y?+2z°

Differentiating partially with respect to x , we get

2rg:2x:>q:§,

OX oX r
similarly & = Yand L =2
oy r oz r

f=r"(xi+yj+2zk)

div f= %(r“x)+%(r"y)+%(r”z)

n

qor L or qor
= nr”1—x+r”+nr”1—y+r“+nr“a—z+r

OX oy z
2 2 2 2
X z r )
=nrn{_+y—+—}+3r” =nr"t ( +3r" = nr"+3r"= (n+3)r"
ror r r

Let f= r"f besolenoidal. Thendiv f = 0
m+3)r"=0=>n= -3

r
3

-

4. Evaluate V.( there F=xi+Yyj+zkandr =|f| .

Sol: We have I =xi +yj + zk and r = x> + y? + z°

r3=1r3xi+r3j+1r3zk = fii+ fof + f3k

F]_afl+%+6_f3

Hence V. (—3 —
r oXx oy oz
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We have fi=r’x = x, =r21+ x(—3)r‘4.g
OX OX

M _ re_3xr X o p? g3
OX y
r of
V.| —|= Y =3r—3 _3r—5 X2 — 3.,,,—3_37,.—5 T2 =0
(r?’j OX 2

Curl of a Vector

Let f be any continuously differentiable vector point function. Then the vector function

defined by ix %+ IX%HZX% is called curl of f and is denoted by curl f or (Vx f).

i ] ok

Note : curl f = R ° W =Vx f
oX oy oz
fl f2 f3

Note (2) : If f isa constant vector then curl f= 0.

Physical Interpretation of curl

If W is the angular velocity of a rigid body rotating about a fixed axis and V is the

velocity of any point P(x,y, z) on the body, then W = % curl V. Thus the angular velocity
of rotation at any point is equal to half the curl of velocity vector. This justifies the use of the

word “curl of a vector”.

Any motion in which curl of the velocity vector is a null vector i.e curl V.= 0 is said to be

Irrotational.
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Def: A vector f is said to be Irrotational if curl f = 0.

If fis Irrotational, there will always exist a scalar function ¢(x, y, z) such that F
= grad ¢ This ¢ is called scalar potential of f .

It is easy to prove that, if f = grad ¢,thencurl f=0.

Hence Vx f = 0 < there exists a scalar function ¢ such that f = V.
This idea is useful when we study the “work done by a force later.
Solved Problems

1. Find curl f where f=grad(x*+y*+z°—3xyz)

Sol: Let ¢ = x*+y*+z°—3xyz Then

grad ¢ = ZI% =3(x? = y2)i +3(y* = 2x) j +3(z% — xy)k

curl grad ¢ = Vx grad ¢ =3 82
X

X*—yz y =X z°-Xxy

k
o
0z

2o

Ai(=x+x)— j(y+y)+rk(=z+2)]=0

“curl f = 0.

Note: We can prove in general that curl (grad ¢) = 0. (i.e) grad ¢is always irrotational.

2.Show that the vector (x? —yz)i +(y?—2x) j+(z®> —xy)k is irrotational and find its

scalar potential.

Sol: let f= (x> —yz2)i +(y? —2x) j+ (2> —xy)k
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» X

=>i(-x+x)=0

i
Then curl f = 9 8 -
OX oy oz

x> —yz  y’—-zx z®—xy
. f is Irrotational. Then there exists ¢ such that f =V¢.

-0p -0p ~0p_ . , e 002 = (2 "
:>|—+15+k5— (X“=y2)l +(y —2x) J+(z° —xy)k

Comparing components, we get

— =X

Zf P (N yz)dxzx_;_xyH £y, 2).0)

3

a¢:y2_zx:>¢:y?—xyz+ f,(z,%)......(2)

3

o _ —xy:>¢:%—xyz+ f.(x,y).....(3)

oz
From (1), (2),(3), ¢ = 2
¢ =

%(x3 +y®+2°)—xyz+constant

Which is the required scalar potential.

3. Find constants a, b-and c if the vector

f = (2x+3y+az)i +(bx+2y+32) j +(2x+cy +3z)k is Irrotational.

Sol: Given f = (2x+3y+az)i +(bx+2y+32) j+(2x+cy+32)k
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] i K

Curl f: i ﬁ i =
OX oy 0z

2Xx+3y+az bx+2y+3z 2x+cy+3z
(c-3)i—(2—-a) j+(b-3)k
If the vector is Irrotational then curl f= 0

2-a=0=a=2b-3=0=hb=3,c-3=0=c=3

4.1f f(r) is differentiable, show that curl { ¥ f(r)} = 0 where

F=xi+yj+zk .

Lr? = xt 4yt 422

:>2rq:2x:g:5,similarlygzl,andqzE
OX oX r oy r oz r

curl{ F f(N} = curl{f (r)( xi +yj+zk )} = curl (x.f(r)i +y.f(r)j+zf(r)k)

j k
_|o 0 O _yi -2
S | _z{ay[zf(r)] 8Z[yf(r)]}

xf(r) yf (r) zf (r)

A o1, 0r PN O B Y _sinllzg
ZI{Zf (r)a—yf (I’)E}—Z“I‘:Z]c (r)r yf (r)r} 0.

5.Find constants a,b,c S0 that the vector A=
A

(x+2y +az)i + (bx -3y —z) j+ (4x+cy +22)k is Irrotational. Also find ¢ such that

Vo.
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Sol: Given vector is A = (x+2y +az)i + (bx—3y—z) j+ (4x+cy +22)k

Vector A is Irrotational = curl A = 0
i j k
N L 2 -0
OX oy 0z

X+2y+az bx-3y-z 4x+cy+2z

= (c+D)i+(@—4)j+(0O-2)k=0

= (c+Di+(@-4)j+(b-2)k = 0i +0j+0k
Comparing both sides,
c+1=0a—-4=0b-2=0
c=—-1l,a=4b=2

Now A= (x+2y+42)i +(2x-3y—2) j+(4x—y+2z)k, on substituting the values of

a,b,c

we have A = V.

= A= (X+2y+42)i + (2x—3y—2) j+(4x—y+22)k = aan i%HZ%

OX oy 0z
Comparing both sides, we have

D —x +2y+ 4z = 4= T2y + 4224/, 2)
X

%:Zx— 3y —z = ¢=2xy —3y*/2 —yz + f,(x, 2)
%:M — ¥+ 2z =¢=4xz - yz + 2+ f3(¥, %)
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Hence ¢ = x?/2 —3y?/2 + z*4+2xy + 4zx —yz +

Laplacian Operator

[0¢ 0 o (¢ o ), o,
VoL (6X ay k@z} Z8x [ax2+ay2+822]¢_v¢

2 2 2
Thus the operator V2 = 68 >+ jyz + s > Is called Laplacian operator.
X z

Note : (i). V2= V.(Vd) = div(grad ¢)

(ii). 1f V2 ¢=0 then ¢ is said to satisfy Laplacian equation. This ¢ is called a harmonic

function.

Solved Problems

1.Prove that div. (grad ™) = m(m + 1)r"-2 (or)V*(r™) = m(m1)r™-2 (or)
V2(r" = n(n+ Dr"-2

Sol: Let T =xi +yj+zk andr = || then r? = x*+y?+2*

. - . r r_ X
Differentiating w.r.t. 'x’ partially, wet get 2r or =2x :a— =—.
OX ox r

Similarly ] and -z
oy r az r

-0 - or - X -
Now grad(r™ = D i—(r™)=> imr™* —=>"imr™* = =>"imr™*x
grad(r™) ax( ) P ;
. m 0 m-2,,7— m-3 or m-2
~div (gradr™) = E —ax[mr X]=m E (m-2)r &x+r

= mZ[(m 2)r™ix® 4+ ] [(m rmEY XE > ™ 2]
= m[(m — 2)r"—4(r®) + 3r™-2]

= m[(m—2)r"=2 + 3r"-2]
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MATHEMATICS -1 VECTOR CALCULUS
= m[(m—2+3)r"-2] = m(m+ 1)r"-2.
Hence V?(r™) = m(m + 1)r™-2

2
2. Show that V2[f(r)]= 2f y 20 gy, 2
dr rdr r

f*(r) where r = |f.
Sol: grad [f(r)] = Vf(r) = Zl—[f(r)] =>if! (r)— Yif! (r)—
div[grad f(r)] = VIfM] = V.Vf(r)= Z%[fl(r)é}

0 re1 1 0
o LT Ox]= T mx = ()

2

r

r(f”(r)arx+ fl(r)j— fl(r)x[xj
OoX r
=2

r2

rf “(r))r(x+ rfL(r)— fl(r)x[)r(j

2

=2

r

Dorf 11(r)§x+ rfi(r)—x* £4(r)

2

r

- PO I s Y

:$2(r)(r2)+§ fl(r)—r—l3 f1(r)r?

- 150+ 2 14(r)

3. If ¢ satisfies Laplacian equation, show that V¢ is both solenoidal and irrotational.
Sol: Given V¢ = 0 =div(grad ¢) = 0 = grad ¢ is solenoidal
We know that curl (grad ¢§) = 0=grad ¢ is always irrotational

4. Prove that curl grad ¢ = 0.
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MATHEMATICS -l VECTOR CALCULUS

Sol: Let ¢ be any scalar point function. Then

0¢p -0 09
grad(,/ﬁ_la +jay kaz

curl(gradg) =

SRl -
@|& Q| —
,Q,)|& Qo =

: 9 9 j Oy 9 AN
=\ oyar  azoy X0z Ozox axay Oy
Note : Since Curl(grad¢):6 , Wwe have grad ¢ is always irrotational.

5. Prove that div curl f =0

Proof : Let f =fi+f,j+ f.k

i 7 k
seurl f =Vx f_zi o o
OX oy 0z
fl f2 f3

[6& afzj-— (6& ﬁljv (a‘z aflj—
=| =2——= |- === |]+| =-—1k
oy oz oX 0z oX oy

div curl f =V.(Vx f_)=g a5 oy _i(%_i}rﬁ o,
ox\oy o0z ) oy\ox oz) oz\ ox oy

_62f3_62f2_82f3+82f 0°f, 62f
OX0y OX0z OyoXx ©oyor  01oX 826‘y

Note : Since div(curl f) =0, we have curl f is always solenoidal.
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VECTOR INTEGRATION

Line Integral

Any integral which is to be evaluated over a Curve C is called Line integral of F .

Note : Work done bylE along a curve c is IIEd r

Solved Problems

11f F= (2-27) i -6yz j+8xz2 K, evaluate| 7. drfrom the point (0,0,0) to the point
(1,1,1) along the Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to
(1,1,1).

Sol : Given F = (x2-27)i -6yz]+8xzzl_<
Now r=xi+yj+zk = dr=dxi+dyj+dzk

F.dr = (x®=27)dx - (6yz)dy + 8xz%dz
(1) Along the straight line from O = (0,0,0) to A =(1,0,0)

Here y = 0 =zand dy = dz = 0. Also x changes from 0 to 1.

_ « 1 3 1 _
of Fudr=[ oe2ndx= | X -27x| = 2-27-22
b g 3 o 3 3

(i) Along the straight line from A = (1,0,0) to B = (1,1,0)

Herex =1,z=0 = dx = 0,dz = 0.y changes from 0 to 1.

o Fudr= j(—syz)dy:o

AB y=0

(iii)  Along the straight line from B = (1,1,0) to C = (1,1,1)
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MATHEMATICS -1I VECTOR CALCULUS

x =1 =y dx=dy=0and z changes from 0 to 1.

j F.dr= i08xzzdz = ZLszzdz = {8—;3} l :g

0
BC

S (i) o (i -~ - _ 88
(|)+(||)+(|||):>£ F.dr_?

2. If F :(Sxy—6x2)i +(2y—4x)], evaluate ]lli.df along the curve C in xy-

plane y = x*from (1,1) to (2,8).

Sol: Given F _ (5xy — 6x%) | + (2y — 4x) j,~-=(1)

Along the curve y = x3,dy = 3x%dx
F = (5x4—6x2)i_ + (2x*—4x) j, [Putting y = % in (1)]
dr = dxi + dyj = dxi +3x2dx |
F.dr = [(5x*—6x)); +(2x3-4x)_j].[ dxi+3x2dx]}
= (5x*- 6x%) dx + (2x° - 4x)3x%dx

= (6x°+5x*~12x° —6x?)dx

- -
Hence j F.dr :J'(st +5x* —12x° - 6x%)dx

y:)(3 1

6 5 4 3
-6 45X 10X 5% =(x6+x5—3x4—2x3)2
6 5 4 4 1

= 16(4+2-3-1) — (1+1-3-2) = 3243 = 35
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3. Find the work done by the force F = zi +x]+ yE, when it moves a particle along the

arcofthecurve 1 = costi + sint j —t k fromt = Otot = 21
Sol : Givenforce F = zi + xj +y kandthearcisr = cost i + sint j — tk
i.e.,x = cost,y= sint,z = —t

~dr = (=sinti +cost j — k)dt

. F.dr= (-t i+cost ]+sint E). (-sint i + cost ] E)dt = (t sint + cos? t — sin t)dt

o I
Hence work done = J F.dr = ] (tsint + cos?t—sint) dt
0 0

¢ 1+ cos 2t

[t(- cost) _[( S|nt)dt+j dt —Tsintdt

1(, sina2t)”
— 27— (cost)?” +E(t +T) +(cost )"
0

:—27z—(1—1)+%(27r)+(1—1):—27z+7z=—7r

Surface Integral
Any integral which'is to be evaluated over a surface S is called surface integral

and it is denoted by IIE.ﬁds
S

Let F = F1 i+F2 j+F3 k, where F1 |F2 |F3 are continuous and differentiable functions of

X,Y,Z.

Then  [F.ndS = [ Fdydz + F,dxdz + F,dxdy
S S
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Note: 1.Let R be the projection of S on xy plane.then fF ndS = J'J.‘ k‘ dxdy
n.
2. Let R be the projection of S on yz plane.then _[F ndS = H ‘__ dydz
3. Let R be the projection of S on zx plane.then _[F ndS = H‘__| dxdz
n.J

Solved Problems

1.Evaluate II_:.ndS where F = zi + xj— 3y?zk and S is the surface x> + y?> = 16

included in the first octant between z =0 and z=5.

Sol: The surface S is x? + y? = 16 included in the first octant between z = 0 and z = 5.

Let p=x>+y*=16

Ten vy =i R0 kD oy ay]
X oy oz

unit  normal

ne YO _ XYL L ye e = 16)
Vel 4

Let R be the projection of S on yz-planeThen
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[Frds= [[Fa®% . .
s R ‘n.l‘
Given F =zi + xj — 3y%zk
= =1
F.n==(Xz+Xxy)
4
— : X
and n.l=—
4

Inyz-plane, x =0,y =4

In first octant, y varies from 0 to 4 and z varies from 0 to 5.

[Fnds

= r " (y+2)dz dy= 9.
0

y=0  z=
2:1f F = zi + xj— 3y’zk, evaluate jIE.ﬁdSwhere S is the surface of the cube
S

boundedbyx = 0,x = ay = 0,y=a,z = 0,z = a

Sol: Given that S is the surface of the x = 0,x = a,y = 0,y = a,z = 0,z = q,
and

F = zi + xj— 3y2zk

we need to evaluate jl_:.ﬁdS.
S
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(1)For OABC

Equation isz =0 and dS = dxdy

n =—k

S_fl_:.ﬁdS: —Ia y—_J;a(yz)dxdy:O

x=0

(I)For PQRS

Equation isz =a and dS = dxdy

n =k
Ends= [( [ _A
JZ FndS = | ( | y(a)dy) dx = )

(I1)For OCQR

Equation isx =0, and n =-i,ds= dydz

S[F.ndS: | jo 4xzdydz =0

y=0
(IV)For ABPS

Equation is x = a, and n =—i,ds= dydz

S[ FndS= | ( ZL dazdz )y =2a*

(V)For OASR Equation isy =0, and n = —], dS = dxdz

[Fnds = ja jayzdzdx:o

y=0 z=0
(VI)For PBCQ Equationisy =a, and n = —], dS = dxdz

[Fnds= - [" [ yidzdx=0
Sg y=0 z=0
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Adding (i) to (vi)

4 4

we get J.I_:.ﬁdS:O+a?+O+ 2a* +0 —a4:3%
Ss

Volume Integrals

Let V be the volume bounded by a surface r=f (u,v). Let F ( ;) be a vector point function

define over V. Divide V into m sub-regions of volumes &V,,dV,,...0V .0V,

Let P; ( r i ) be a point in oV, .Then form the sum Iy = Z IE(ri)éVi. Let m —> 0 insuch a way

i=1
that oV, shrinks to a point,. The limit of I if it exists, is called the volume integral of F ( ;)

in the region V is denoted by J.li(r_) dvor I Fdv.
\ Vv

Cartesian Form : Let IE(r)=F1i+ F,i+F,kwhere F1, F2, Fs are functions of xy,z. We

know that dv = dx dy dz. The volume integral given by_[ Fdv = J.”(F1 i+ F, i+ F 12) dx dydz

= ;J'” F_dxdydz +jj”F2 dxdydz + Ii”j F, dxdydz
Solved Problems

1If F=2xzi- xj+ y?’k evaluate [ F dv over V where V is the region bounded by

thesurfacesx = 0,x =2,y =0,y =6,z = x?,z = 4.
Given F =2xzi—xj+ y?k.
The volume integral is given by

[F dv = foz fyio fz4=x2(2xz i—xj+y*k)dxdydz

DEPARTMENT OF HUMANITIES & SCIENCES | ©MRCET (EAMCET CODE: MLRD) WakH




MATHEMATICS -1I VECTOR CALCULUS

(26 4 2 6 4
= i fy=0 J,—2Qxz)dxdydz - j [; fy=0 J,_2(x)dxdydz +

2 6 4
k fO fy:o fz=x2(y2)dXdde

(2 06 2 6 2 6
=i fyzox(16—x4) dxdy —j [ fyzox(4—x2) dxdy +k fyzoyz(x2 —

4) dxdy

(2 06 2 6 2 6
=i fy=0(16x —x%)dxdy —j [ fy=0(4x —x*)dxdy + k fyzoyz(x2 —

4) dxdy
=i foz 6(16x —x>) dx — j foz 6(4x —x3¥)dx +k foz 72(x% — 4) dx
=i [1(96x — 6x%) dx — j [ (24x — 6x3)dx + k [ (72x*— 218) dx

=128i — 24j — 384k
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Vector Integral Theorems
Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss
divergence theorem, (ii) Green’s theorem in plane and (iii) Stokes theorem. These theorems

deal with conversion of

(i)
I F.nds into a volume integral where S is a closed surface.
S
(ii)
I F.dr into a double integral over a region in a plane when C is a closed
C
curve in the plane and.
(iii)

I (V% A) -nds into a line integral around the boundary of an open two sided
S

surface.
Gauss Divergence Theorem

(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If F is a continuously differentiable vector

point function, then
[divFdv=[F.n ds
\Y S

When nis the outward drawn normal vector at any point of S.
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Solved Problems

1. Verify Gauss Divergence theorem for F = (x* — yz)T— 2x*yJ + zk taken over the

surface of the cube bounded by the planes x =y =z = a and coordinate planes.

Sol: By Gauss Divergence theorem we have

j F.ndS = j divFdv
S \Y

; _(of f
Now div f=>"i. a :a_l+%+%
OX ox oy oz
= 3x%—2x*+1

Here the cube bounded by the planes x =y =z = a and coordinate planes.

Hence

x +0toa

y *0toa

z ®0toa
o e o o a @ @ oo _':(_'3 o

RHS = Jff[zxf—zxf—ijdxd}'dz=fff(x:—l}dxd}'dz=ff(?—x) dy dz
000 000 oo ¢

!ﬂ%+a}dydz =J'{%+a}(y)gdz :[%+aja£dz :(%+aj(a2)=%+a3 ...... (1)

0

Verification: We will calculate the value of IE.ﬁdS over the six faces of the cube.
S

(i)

For S1 = PQAS; unit outward drawn normal 11 =1
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x=a,ds=dydz; 0<y<a0<z<a y

~Fn=x}-yz=a’—yzsincex=a o

a

j j F.ndS = j j (>~ yz)dydz

S, z=0y=0
= J‘ [ag_‘;-‘—l—_z} dz
z=0 2 ¥=0
_ f s @
a* ——z|dz
==0
.oat
= —1{_2}
(ii)
For S, = OCRB; unit outward drawn normal 1 = —ix =0; ds = dydz; 0 <y <
ay<z<a
F.il=—(x%— yz)= yzsincex =0
_ v21”
fand5= f f_';zmaz= [—] zdz
2] _
g z=0 =0 ==0 ¥=u
= % fzaz = % (3)
==
(iii)
For S3=RBQP;z=a;ds = dxdy; i=k
0<x<aq0<y<a
FAl=z=a sincez=a
[Fnds = [ [ adxdy=a’...(4)
S3 y=0 x=0
(iv)

For S = OASC;z=0; 7 =—k, ds = dxdy;

0<x<a0<y<a
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Fia=—-z=0 sincez =0

f f F.id5=0..(5
Sa

(V)
For Ss=PSCR;y=a; 1 =],ds = dzdx;
0<x<aq0<z<a
F.i=—-2x%y=—2ax? sinceyv=a
f f F.ndS = f f{—zaxf}dza‘x
Es x=0z=0
a
j (—2ax?z)? ,dx
x=0
2 ”(xg)a 22 (®)
- —222(2) =
3),7 3
(vi)

For Ss = OBQA;y=0;n =], ds = dzdx;
0<x<aq0<y<a

F.i=2xy=0sincey=10

szf.ﬁa‘s:ﬂ
”Fn5=”+”+”+”+”+”

as _ )
=3 +ad= J‘ J‘ J‘I-’.F dvusing (1)
v

Hence Gauss Divergence theorem is verified

2. Use divergence theorem to evaluate [ [ F.ds where F = 4xi — 2y%j + z*k and S is

the surface bounded by the region x>+y?>=4, z=0 and z=3.

Sol: We have
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divF = VF——(4x)+5( 2y)+ (z) 4-4y+2z

Bv divergence theorm,

[{ra[f frra

V=T

- f f f(a; 4y + 22)dx dy dz

y=—x Z—xT =z=0

-

o
& Va—x*

:f f [(4— 4y)z + 2°]2 dx dy

L = ._—x

-

rp——
2 Ale—x*

=f f [12(1—y) + 9] dx dy

2 r——-3
= —va—x*©

-

]
- vg—x

=f f (21— 12y)dx dy

- ‘—_I

n I
& WX

=f f 21dy—12 f vdy

ry——
—a—x* —

_ i {21>< 2 4] dy —12(0)]dx

0

[Since the integrans in first integral is even and in 2" integral it is on add function]

-

=42 f ()™ dx

2 2
:42j\/4—x2dx=42x2j\/4—x2dx
-2 0

x — 4 _ X"
= 84 [— 4 —x°+—-sin —]
2 2 21,

T
— 84 [0—2..5—cr] — 84r

3. Verify divergence theorem for 2x%yi -y? j +4xz%k taken over the region of first octant

of the cylinder y?+z2=9 and x=2.
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(or) Evaluate ”E.ﬁds,where E:2x2yi-y2]+4xzziand S is the closed surface of the

region in the first octant bounded by the cylinder y?>+z2 = 9 and the planes x=0,x =
2,y=0,z=0

Sol: Let F=2x%yi-y?j +4xz2k .'.V.E=—(2X )+8y( y )+ (4xz) 4xy —2y +8xz

-

{k
E D
C 4?
(0 = 3 Z
S A

72
(4xy— 2v)z + 8x ?] dy dx

z=0

(43— 29)48 = 37 + 4x(9 = %) | dy dx

f f [(1— 2x)(=23)v/9 — y2 + 4x(9 — y?)] dy dx

373

9 _ vz L33
=f I:]_—E-xjg + dx (91'—'1—) dx
3 ; 3
) 3 0 o
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_[remtt

n+1

{ Since [ (<01 dx

= f{g(l_ng[ﬂ—zﬂ—4x[2.?—9]}dx= f[—lS(l—Ex]—?Ex]cix
i &

2 2
[—18(x —x2)+ 72%} — _18(2—4) +36(4) = 36 +144 —180...(1)
0

Now we sall calculate f F.it ds for all the five faces.
5

>

B

ds = j F.ndS + j FndS+... . .+ j F.ndS
S S5

S2

Where S; is the face OAB, S; is the face CED, Ss is the face OBDE, Sy is the face OACE and
Ss is the curved surface ABDC.

(i)
Oon S :x=0,n=-i -.F.n=0 Hence jE-ﬁdS
S
(i) On S2iX=2n=l F.n=8y
3022 3 V2 9-2*
F.ndS = 8ydydz =8| — d
[ o Ja( 7] e
3 ZE 3
=4 f(?—z:]dz=4 (erz——) =4(27-9)=72
o 3 1]
(i) On  S,iy=0n=-j..Fn=0  Hence [F.ndS

(iv)OnS,:z=0nr=—-k. F.n=0. Hence f F.nds=0

S

V(Y2 +2%)  2yj+2zk yj+zk yj+zk
‘V(y2 +22)‘ Jay?+4z2 NAx9 3
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F_n:y;mand nk:E
3 3
dx dy

Hence Jo Foads=[[ F.& —

Where R is the projection of S; on xy — plane.

z 3
dxz? — 8 . I
f f dx dy = f f[4x(9—_1*‘] — e (9 — %) :}d}'dx
1"9_1- x=0 y=0

Tofindj y(\9-y?)dy
0

sub

y=3sind

dy =3cosé

3 2
.[y3(«/9— y*)dy = [sin°6do
0 0

sub

sin® @ =3sin & —sin 36

We get

iy"’(JQ— y*)dy = Jz.sin39d0 =-18
0 0

Hence

j F.nds
S3

x? -
= f??—xd.;‘c—ls J-d.x='?2(?) —18(:'(}5:144—36: 108
o Yo

Thus [ Fids=0+72+0+0+108=180...... (2)

Hence the Divergence theorem is verified from the equality of (1) and (2).

4. Verify Gauss divergence theorem for F=x°T+y*7+ 2%k taken over the cube

boundedbyx = 0,x = a,y= 0,y = a,z = 0,z = a

Sol: We have F = x°T + v+ 23k
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=—(x)+5(y)+ (z) 3x* +3y? +37°

[[[oran [ [ [ ssmmea

3 a
x 5 5
(?— Xy + Z'I) dy dz
0

a
a’ .
=3 J. (——ar—a:z‘)&dz
a
=0 y=0
(ird
ol .- e
=3 f ?}—a——az‘} fdz
o 0

To evaluate the surface integral divide the closed surface S of the cube into 6 parts.
ie.,
S1: The face DEFA . ; S4: The face OBDC

S, : The face AGCO ; Ss: The face GCDE

Ss: The face AGEF  :Sg: The face AFBO
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!fF_.ﬁds=_E!-fﬁ.ﬁds—j!fﬁ,ﬁds_..._é{fﬁﬁds

OnS,wehaven=1Tx=a

a

”Fnds_j _[(a i+yij+z k)ldydz

z=0 y=0

o

ffﬁ.ﬁds f f(az—mj—zgk}:dxdz

5, =0 y=0
= J f a;gd}*da':a:EJ[l]g dz
E=0 ¥=0 H]

OnS5,wehaven=—-Lx =20
”Eﬁds—j j(y j+2 k)( i)dydz:O
z=0y=0

OnS;,wehaven=J,y=a

7 | ] () o)t ] e fe o2

z=0x=0 z=0 x=0

5

=a
OnS,we haven=—fv=10 y
{ird (g ~ rc g
ffﬁ.ﬁds= f f(ng—zgk}.[—j]dxdz= 0 . »
5, z=0x=0
OnS.,we havei=k,z=a A S
B
Q
£

ffF fids = f f[x I+vii+a k} k dx dy

yEQx=0

f fadxdx—a f[x},}dm—a[mj,}—a

y=0x=0

On S, we have i = —k,z=0
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ifﬁ'ﬁds: f ftng_}'gﬂ'[—’z)dx dy= 0

y=EQx=0

Th1wffﬁ.ﬁds= a®+0+a*+0+a*+0=3a°
5

Hence f fﬁ.ﬁdj = f fFF dv
5 v

.. The Gauss divergence theorem is verified.

5. Compute [(ax® + by* + cz*)dS over the surface of the sphere x2+y?+z2 = 1

Sol: By divergence theorem IE.ﬁdS = J,, V.F dv
S

GivenFa=ax>+bv? +czlletp=x+wi+z" -1

. Normal vector .1 to the surface ¢ is
— -0 =0 0 o= =
Vo=|i—+]j—+k—[(x*+y*+2*=1)=2(xi+Yy]+zk
¢ [ax i 8yJ( y )=2(xi+yj+zK)
2(xi+y]+zE)

2x% +y? +7°

-~ En=F.(xi+yj+zK) = (ax? +by? + cz?) = (a xi + by j +czk).(xi + y j + zK)

=Xi+yj+zk Since x> +y’+z°=1

Unit normal vector =n=

ie, F=axi+byj+czk W.F=a+h+c

Hence by Gauss Divergence theorem,

. . . 4497
[(a:c‘ + by +cz )dS = f(a;— bt+cldv=(atb+c)V= ?(a— b+c)
= Vv
dm
[SInce V= EY is the volume of the sphere of unit ra:diu.s}

6. Use divergence theorem to evaluate ”E.dgwhere F =x%i+y%j+z%k and S is the surface
S

of the sphere x?+y?+z? = r?
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MATHEMATICS -l VECTOR CALCULUS

Sol: We have VF——(X)+—(y)+ (z) 3 +y*+17%)

oy
» By divergence theorem,
= [, JV.Fav = [ [ [30¢ +y* +2*)dxdlydz

= f f f:r"[r sin 8 dr df d ¢)

r=08=0¢=0
Applying spherical coordinates,
ffﬁ.rﬂ=3 f fr sin 8 f ‘rdﬁ'
£ r=08=0 =0
:3I Ir4sin6(2n—0)drd9:6 J'r‘{fsm@de}

r=06=0 =0 0

=6m | r*(—cos@)] dr = —67?[1"*((:057? —cosQ) dr
r o
127ma®
5

=12m

Bf—p d~=n

. r5]"
rdr = 12 |—| =
> 0

7. Verify divergence theorem for F = x*i = y*j + z> k over the surface S of the solid cut

off by the plane x+y+z=a in the first octant.

Sol: By Gauss theorem, jE.ﬁdS = jdivfdv
0P _1 09 _q 0P _
OX oy 0z
:8¢ =1 -~ T
sgradg= > i—=i+j+k
gradg=> 1= =i+ ]

gradg¢ 1+j7+k
Unit normal = = —
|grad ¢| V3

Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a = y=a-x

Also when y=0, x=a

DEPARTMENT OF HUMANITIES & SCIENCES | ©MRCET (EAMCET CODE: MLRD) Ww#Z




MATHEMATICS -l VECTOR CALCULUS

(== F.ndxdy
..jF.ndS—I£ ‘H-E‘

S

- [8 [57°[2x2 + 2% — 2ax + 2xy — 2ay + a%]dx dy

4

IE._dS =J'(_§ X2 + 3ax? _2a2x+ga3)dx =a—, on simplification...(1)
S 3 3 4

Given F =x%i+vy?j+2%k
LV =2 0+ D00+ 2 (@) =2y )

a a—-xa—x-y

Nowﬂ_[dldev ZJI _[ (X+ y -+ z)dxdydz
x=0y=0 z=0
=2 f [(I—lj——] dx dy
x=0y=0 o
=2f @x—1) [r =y £ T e gy
x=0y=0
= f f (a—x=y)a+tx+yldcdy
x=0y=0
=f —(x+y)?] dyvdx = ff(a'—X'—1'—2x1jdxd1
o 0
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=]
~]
a
1
-

3
¥ -
= f[a‘}'—X'}'—'—E —xy-] §7F dx
o

4

= f[a—xj[ﬂ-a:—x:—deI=I ------ (2)

Hence from (1) and (2), the Gauss Divergence theorem is verified.

8. Use Gauss Divergence theorem to evaluate [ [ (yz*T+ zx?j+ 22°k).ds,where S is

the closed surface bounded by the xy-plane and the upper half of the sphere x?+y?+z?=a2
above this plane.

Sol: Divergence theorem states that

| [ras=[][rFa
Here =—(yz)+ (zx)+ (22) 47

oy
j !E.ds _ _[ J _[4zdxdydz

Introducing spherical polar coordinates X =rsin@cosg,y =rsindsin g,

z =rcos@ then dxdydz = r’drd@d ¢

T

”Fds 4] I I(rcos@)(r sin @drdod ¢)

r=06=0 ¢=0

J. sinf cosf f r:ic,b] dr df

r=04=0

f sin @ cosf (2w — Q)dr df

||
||&-____“:I

i}

' 26\7
= 45 f 3 [[ sin 268 dﬁ'] dr = 4w f 73 (— CDZ ) dr
: o

r=0 i r=0

=(—2m) [[r*(1—1)dr=0
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9. Use Divergence theorem to evaluate”(xh y]+ ZZE).ﬁds. Where S is the surface

bounded by the cone x?+y?=z? in the plane z = 4.

Sol: Given [ [(xT+ vj +z%k).7i.ds Where S is the surface bounded by the cone x?+y?=2

in the plane z = 4, Let F=xi+vi+z%k

By Gauss Divergence theorem,we have

”[ﬂ—ﬁ—zfﬁ}.ﬁ.ds - ”fﬁ.mﬂ

= 0 0 0, oy B
V.F _&(x)+5(y)+§(z )=1+1+2z2=2(1+12)

On the cone, X’ +y*=z"and 7=4 = X°4y* =16

The limitsarez=0tod, vy =oto+/16—x?,x =0te 4.

—_—

416 —x* 4

[[[rra=] [ [a0sofae
[T fne [ e
Nrea

e

16— 16 sin” & .4 cosfdf

ey ©

=24 fw-"lﬁ—x:rix =24

]

[putx =4sin@ = dx=4cosfdb. Also x=0=>6=0 and X=4:>9=%]

Va IZ'

.'.“J.V.Edv:96x4'2[ 4y/1-sin? @ cosOd 96><4J'cos 0do
\%

[ [rrenmsexs

41 —sin? 1 —5in 28 cos8d8 =96 X4 | cos28 d8

n=..____“_1|1
O —
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Green’s Theorem in a Plane(Transformation b/w Line Integral and Surface Integral )

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are

continuous functions of x and y having continuous derivativesin R, then

dex+ Ndy = ”(@—M]dxdy Where C is traversed in the anti clock-wise direction
il y = d =
~ _A°
Al
Yy=¢ | E
S R x = b#= »
o

Solved Problems

EVerify Green’s theorem in plane for $(3x%— 8y7)dx + (4v — 6xy)dy where C is the
region bounded by y=+/x and y=x7 .

Sol: Let M=3x7-83* and N=4y-6xy. Then

= —16y, 5= —6y

]

M

(s F]

-
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\\ » X

We have by Green’s theorem,

mlvldx+ Ndy = H(@—ﬂ} dy.

Now Lj(%—':—% xdy=.|;[(16y—6y)dxdy
&
—1oﬂ ydxdy = 1oxj0ij ydydx =10 j ( J dx
5 ftandi=s(5-5) = s(t-1) =
(1)
Verification:

We can write the line integral along c
=[line integral along y=x*(from O to A) + [line integral along v *=x(from A to O)]
=1, +1,(say)

Now f,=[ {[3x% = 8(x?)?]dx + [4x7 — 6x(x)]2xdx} [y = 2% = 2 = 24]

dx
=[1(3x3 + 8x% — 20x¥)dx = —1

And l, = H(sz —8x)dx+(4\/§—6x%)idx} - jl(sz —11x+2)dx _2°

] 2Jx
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Sl T hoyizn=a

From(1) and (2), we have [ﬁ Mdx + Ndy = U [ﬁ—ﬂ]dxdy.
= T\ OX oy

Hence the verification of the Green’s theorem.

2.Evaluate $(3x* — 8y)dx + (4y —6xy)dy over triangle enclosed by the linesy =

0,x= ;'3, y = Zﬂ—x using Green’s theorem.
Sol : Let M=y-sinx and N = cosx Then

84-1and  E==sinx
dw dx

P

. By Green’s theorem [ﬁ Mdx + Ndy = H (% a xdy.
¢ ox oy

R

=N I(y—sin X)dx + cos xdy = _U(—l—sin x)dxdy
c R

i

:-J:;D fil}(l + sinx) dxdy

= - _J:;; (sin " 1:| [_'L":l ;:t‘ S dx

=

=K > x(sinx + 1)dx

T =0

7
— I 1(—cos x + x)dx

0

s

:%Z[x(—cosx+ x)]o

—_

=T[:c[— cosx + x) +sinx —IT]

-

Zf[—x cosx —x:—‘—sinx];} = i["__ 1] Z_G_EJ

3.A Vector field is given by F =(siny)i+x(1+cos y) j
Evaluate the line integral over the circular path x*+v* = a*, 7=0

(i) Directly (ii) By using Green’s theorem
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Sol: (i) Using the line integral

Q%;F. dr = 95.: Fidx + Fdy = 95.: sin vdx + x(1 + cosy)dy
:msin ydx + x COS ydy + xdy = Ujd(xsin v)+ xdy

Given Circle is x*+v* = a®. Take x=a cos#@ and y=a sin & so that dx=-a sin & 48 and

dy=acesfdf and 8 =0 = 2=

. $F.dr = f d[a cos@sin(a sind)] —f" a( cosf)a cosf df
=[a cosfsin(a sin 8)]3* + 4a’ _J:;: cas® 6 d@

2

=o+4a2.%.%:7za

(11)Using Green’s theorem

Let M=sin v and N=x({1 + cosv]). Then

aM an
—=cosy and  —=(1—+ cosy)
dy ' & -

By Green’s theorem,
[ﬁ Mdx + Ndy = ”[a—'\'—@jd dy
[ﬁsin ydx +x(1+cos y)dy = ” (—cosy+1+cosy)dxdy = ” dxdy
¢ R
= ”dA: A= ra®(. area of circle =za%)
R

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is

verified.
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Show that area bounded by a simple closed curve C is given by %95 xdy — vdx and

hence find the area of

2 2
(i)The ellipse x=acos 6, y = bsind (i.e)%+;’—2 -1

(ii )The Circle x=acos#,v = asin 8 (i.e)x® +v? = a’

Sol: We have by Green’s theorem m Mdx + Ndy = “.[——— xdy
= 2 L OX oy

Here M=-y and N=x so that% = —1 and Z_; =1

[I]xdy —ydx = 2.[ dxdy = 2Awhere A is the area of the surface.
c R

%fxd}' —ydx =A
()For the ellipse x=acesf and y=bsin & and § = 0 — 2n

AT'EDZJA:%Eﬁxd}'— vidx = if;x[(a cos@)(bcosd) — (b sinf (—a sind))]d @

:%a;b _JF;TECDS:H + sin" @) df = % ab(B);™ = Eﬂ—b (2w — Q) = wab
(ii)Put a=b to get area of the circle A=ma’
5. Verify Green’s theorem for [ [(xy + v?)dx + x?dy], where C is bounded by y=x and

y=x*

Sol: By Green’s theorem, we have m Mdx + Ndy = _”(a—N oM xdy
C R

ox oy

Here M=xy +v~* and N=x"
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C2

Cq

Now [ﬂde+ Ndy:Ide+ Ndy+jde+ Ndy......() (D)
c [ Cy

Along ¢, (i.e.yv = x7), the line integral is

1
[ M+ Nely = [[x(x?) +x*Td+ x2d () [ (x° +x“ 4 2x)dx = [ (3x%+ x*)dx
o o c 0

=(31__x_): ST . @)

Along €, (i.e.v = x) from (1,1) to (0,0), the line integral is

I Mdx + Ndy = I(x.x+ X2)dx + x?dX [ dy = dx]

[ aatdr=3 [Ltdr =3 (D) = (:N2=04=1 ()
E: 1 3 1 1 oo
From (1), (2) and (3), we have

[ Mdx+Ndy= Z—1==

20 20
...(4)

Now
”(@—ﬂjd xdy :”(2x—x—2y)dxdy

=102 = 2% = (6 —x9)]dx = [ (x* — x¥)dx
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From(4)and(5), We have [ﬁde+ Ndy = j j [aa_'\'_%v'jdxdy
c R X

Hence the Green’s Theorem is verified.

E Verify Green’s theorem for [ [(3x* — 8y*)dx + (4v — 6xy)dy] where ¢ is the region

bounded by x=0, y=0 and x+y=1.

Sol : By Green’s theorem, we have

oN oM
.Cfde+ Ndyzj_l(g—g xdy

Here M=3x~ — 8y~ and N=4y-6xy

y ¢
B &
\\
x =0\ s ‘J’\\,
e y =0 A (1,0) =
ON
.-,ﬂ:—my and — =-06y
oy OX

Now [Mdx+Ndy= [ Mdx-+Ndy+ [ Mdx+Ndy+ [ Mdx+Ndy...(1)
c OA AB BC
Along OA, y=0 =dy =20

3

gy 1
— g 2y fEY
[, Mdx +Ndy = [*3x%dx = {—]E =1

Along AB, x+y=1 .. dyv = —dx and x=1-y and y varies from 0 to 1.

| Mdx-+Ndy = [[3(y-1)? -8y*1(~dy)+[4y +6y(y ~D]dy
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=[}(—5y% — 6y + 3)(—dy) + (6y* — 2y)dy

_l 2 _ ¥4 '
=} (11y? + 4y - 3)dy = (115 + 45 - 3_1:]'}

Along BO, x=0 - dx = 0 and limits of y are from 1 to 0

2+ 0

[, Mdx + Ndy = [ 4ydy = (4 %)1 =295 =-

from (1), we have [ Mdx+ Ndy =1 + S —2=

ol | o

“[@—ﬂjd xdy = j lj (=6y +16y)dxdy

x=0y=0

24 1—&

=10 [ |72 vay|dx = 10 £(5) 7 ax

(1]

=5 f;(l —x)idx =5 ['11—12-5]1

-3

= [@-1D°*-(1-0°)=

From (2) and (3), we have J'de+ Ndy = ”(G—N—%Ajd dy

Hence the Green’s Theorem is verified.
Apply Green’s theorem to evaluate ¢ (2x* — y*)dx + (x* + y*) dy,where c is

the boundary of the area enclosed by the x-axis and upper half of the circle

x“+ v - =a°
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Sol: Let M=2x* — y* and N=x? + v7 Then
yA
/\@\ .
Figure

[5F)

M an
= =2y and — = 2x
- dx

s T)

r

By Green'sTheorem, JMdX+ Ndy =II(@_ﬂ xdy
c R

ox oy

[]j[(sz — ) dx+(X* + y?)dy] = ”(2x+ 2y)dxdy

=2”(x+ y)dy

=2f|: f; r(cos@ + sin8).rd Bdr

[Changing to polar coordinates (r,&], r varies from 0 to a and 8 varies from 0 to ]

Uc_][(Zx2 —y%)dx + (X% + y?)dy] = 2] rzdrj(c059+sin 0)do
c 0 0

=2. 5 (1+1)= T
E. Verify Green’s theorem in the plane for [ (x* — xy®) dx + (y* — 2xy)dy

Where C is square with vertices (0,0), (2,0), (2,2), (0,).

Sol: The Cartesian form of Green’s theorem in the plane is

oN oM
!de+Ndy:I£(&—E xdy

Here M=x? — xv* and N=v* — 2xvy
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Z—j =-3xy?and Z—; = =2y
Y4 y=2
(cf.:2> B.2)
\
x=0 Y x=2
o l
(0.0 y=0 AT
2.0

Evaluation of j{(Md,r + Ndy)

To Evaluate [_(x® — xy®)dx + (¥* — 2xy)dy, we shall take C in four different segments

viz (i) along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).

(i)Along OA(y=0)

JoGe? = xy®) dx + (2 —2xy)dy = [ xPdx = (I;) = :
0 i
(1)
(i)Along AB(x=2)

L2 =2y dx + (724 2xy)dy = [2( — 49y [+ x = 2,dx = 0]

L), - o) (-3) - -4

Q)
(iii)Along BC(y=2)

[ = 2y + (7 =20y dy = [[(x* — 8x) dx [y = 2,dy = 0]

:(X;_MJ :_(g_mj:“—: ...... ©)

(iv)Along CO(x=0)

[ =y de+ (v* —20)dy = [[ 2 dx [<x=0,dx=0]= (&) = -2

2 3
.(4)
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Adding(1),(2),(3) and (4), we get

j(xz—xy3)dx+( 2xy)dy—§—§+“'—?f)—§=2—;1 8 ..(5)

Evaluation of H(a—N—%\A]d dy

Here x ranges from 0 to 2 and y ranges from 0 to 2 .

”(@ - ﬂ]dxdy :'zfj'(—Zy +3xy?)dxdy

-
-

=l —E-xv—Ev: dy
[y (m2xy+3-y7) d
: 0

N

_[( 4y +6y*)dy =(= 2y2+2y3)z

0
= -8+16=8 ..(6)

From (5) and (6), we have

Ide+ Ndy = ”(%—% xdy

Hence the Green’s theorem is verified.

Stoke’s Theorem (Transformation between Line Integral and Surface Integral)

Let S be a open surface bounded by a closed, non intersecting curve C. If F is any
differentiable vector point function then

¢ F.d 7=[_curl F.fids where cis traversed in the positive direction and

fl is unit outward drawn normal at any paint af the surface.
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MATHEMATICS -II

Solved Problems

1. Apply Stokes theorem, to evaluate [ﬁ(yd»c+zdy+xdz) where ¢ is the curve of

intersection of the sphere x* + v* + z* = a* and x+z=a.
Sol: The intersection of the sphere x? + v* + =% = a® and the plane x+z=a is a circle in

the plane x+z=a with AB as diameter.

I=1

Equation of the plane is x+z=a= - + =

..OA=0B=al.e,, A=(a,0,0) and B=(0,0,a)

- Length of the diameter AB =+/a?+a’+0=ay/2

Radius of the circle, r=§

Let F.df = ydx + zdy + xdz = F.d¥ = F.( tdx + jdy + kdz) = ydx + zdy + xdz

+xk

)

=F=y14+:z

~ curl F= =—(i+j+k)

L Hq_-.ln_., |
ST
O m

T

'S

Let 7 be the unit normal to this surface. 7 = ==

Lrd TL

=l

vE —

Then s=x+z-a, VS =i+k « i =r% ="

DEPARTMENT OF HUMANITIES & SCIENCES | ©MRCET (EAMCET CODE: MLRD) WAL

=




MATHEMATICS -1I VECTOR CALCULUS

Hence QSEF_. di = [ curl F.fids (by Stokes Theorem)

=[(T+5+8). (F)as == J (G5 + ) s

2.Prove by Stokes theorem, Curl grad ¢ = &

Sol: Let S be the surface enclosed by a simple closed curve C.

~ By Stokes theorem

[ (curl grandg).i ds = [ (VxV¢).7i dS = §_V.dF =§ Vo.dF

m['? ] ‘?f +k a¢j (idx-+ ey -+ kdz )
x Ty

=@[%dx+g—fdy+g—fdzJ:Id¢=[¢]p where P is any point
onC.

. [eurl grad¢.fi ds =0 = curl gradgp =0

3. Verify Stokes theorem for F = —+3t — 27, Where S is the circular disc

¥+ yi=1,z=0.

Sol: Given that F = —1*7 + x 7. The boundary of C of S is a circle in xy plane.

xt+yi=1,z=0We use the parametric co-ordinates X=C0S

B, v=sinf,z=0,0=§8 = 2m;
dx=-siné d& and dy =cosé d&
~ ¢ Fdr=[ Fdx+Fdy+Fdz = [ —y¥dx +x3dy
:_JFI;E [—sin®@(—sind) + cos®Bcosh]dl = f;x[caséﬁ' + sin*6)deé

—f (1 - 2sin’6 cos’8)dE=["" de ——j “(2sinf cosB)* dé
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— 102w , 2 _ 1 p2m
=J, " de —;fﬂ sin?2df8 = (27— 0) — :fﬂ (1— cos48)de

1 1 . 2 . _
:27?—[——9——51?145’] =0, _E _ 5% _ 3%
4 16 o A 4 2
T 7 k
_ a a8 - . .
NowvV x F = %= 3y 22| kE(3x=+3v7)
X o

-y

~ J(Vx F).ads =3 [ (x* + y?)k.Ads
We have (k.n)ds = dxdy and R is the region on xy-plane

~ [[(VxF)ads =3 [[ (x* +y?) dx dy

Put x=r cos@, v = r sin@ . dxdyv = rdr d@

ris varying from0to 1 and 0= @ = 2.
3

-

(VX F)ads =377 1 »2.rdrdo =

L.H.S=R.H.S. Hence the theorem is verified.
4.Verify Stokes theorem for F = (2x — ¥)1— vz°J — ¥ zk over the upper half surface of

the sphere x* + v + =% = 1 bounded by the projection of the xy-plane.
Sol: The boundary C of S is a circle in xy plane i.e x* + y*=1, z=0
The parametric equations are x=cos8, v = sind,8 = 0 — 2x
dix = —sinf df,dv = cosf df

jE.dF = IEldx+Ezdy+E3dz = J.(2x— y)dx — yz?dy — y*zdz

ZLEEx — v)dx(since z =0 and dz = 0)

[
&0

= ;:G 1—52529 dé — _JF:?TSI'TIE-IE' df = EE - 1:_51'712-9 —%. casEE]D
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MATHEMATICS -1I VECTOR CALCULUS

:%EE-GT —0)+0 —%. (cosdm — cos0) =m

T j k
Agai F=| Z 2 2 |=f—2yz+2v)—jlo—0)+k(0+1)=F
gain vx F=| — 5 5 | =H—2vz+2y2) —J(0-0) +k(0+1) =
2x—y —yz® —y’z

o [V x F)ds=[ k. Ads = [ [ dxdy

Where R is the projection of S on xy plane and k.#ids = dxdy

r——1 1

r=a(r Y gvdr =4t VI—xldr= 4|31 — 12+ leip?
Nowffﬂdxd}—d}fxzﬂjl_zﬁ d}dx—dlfx:[}wl % dx—d}:wl x= + —sin x]l}

=4 [%sin_i 1] =2=x
. The Stokes theorem is verified.

5.Evaluate by Stokes theorem gﬁcﬁx +v)dx +(2x — z)dv <+ (v +=z)dz where C is the
boundary of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Sol: Let F.d7 = F.(tdx +Jdy+ kdz) = (x + y)dx + (2x —z)dy + (v + z)dz
ThenF=(x+y)i+(2x-z)j+ (v +2)k
By Stokes theorem, ¢_F.d7 = [ [, curl F.7ids

Where S is the surface of the triangle OAB which lies in the xy plane. Since the z Co-
ordinates of O, A and B

Are zero. Thereforeft = k. Equation of OA is y=0 and

that of OB, y=x in the xy plane.

. curl F.ads=curl F.K dx dv = dx dv

.‘.gﬁcF_.dw_":fJ;dxd}':ffsdA=A=areaaftheeﬁ0ﬂ3
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1 1
=0A x AB= =xlIxl==
il 2 2

<

B8(1,1,0)

YI=«x

[
o ‘ ‘ -
P A(1,0.,0)

6: Verify Stoke’s theorem for F = (x*+ v?)T—2xyj taken round the rectangle

bounded by the lines x=%2a,v =0, v = b.

Sol: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).
Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.

We have to prove that ¢ F.d7 = [_eurl F.fds

$F.d7f = ¢ {(x* = ¥°)T — 203k Tdx + Jdv}

= (x*+y") dx — 2xydy

:fAE_fEc_fCD_fDA (1)
VA
Cl-a,b) y=b Blab)
x=-a _ x=a
D(-a,0) 6 el AuD

(1) Along AB, x=a, dx=0

B .2 b -
= —2aydy = —2a|—| =—ab°
from (), f,s = Jip —2ay dy = ~2a[%] =—a
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(i))Along BC, y=b, dy=0

3 -a o B
|:X€+bzx:| = __EE — E-H,b:

X=a

from (1), j :X_ja(x2 +b?)dx =

BC x=a

(iii) Along CD, x=-a, dx=0

from (1), I = J. 2aydy = Za{y?z} = _ab?

CD y=b
(iv)Along DA, y=0, dy=0

from (1), I = Xr x%dx = {%ET = Z_ag

DA x=-a

(i)+(ii) +(iii)+(iv) gives

gﬁcﬁ.dr_ = —ab:--% — 2ab?® — ab:+:3£ = —4ab?’ ..(2)

Consider [ curl F.dS

Vector Perpendicular to the xy-plane is 7 = k

k

fe!
Ny dvk
0

LR |
o~

~ curl F= ™
(x*+y) S2xy

Since the rectangle lies in the xy plane,

i = k and ds.=dx dy

o= = '|'_ T b & b — T T
J:.; curl F.ids = .J:;- —dvk kdx dy = fx:_ﬂ J;'=D 4y dx dy

a

b b
:an_l}fﬂz E_q_},dx dy = 4 I y[x] dy:—4J. 2aydy

= _
y=0 —-a y=0

=—4aly?]%-, = —4ab® ...(3).Hence from (2) and (3),

Stoke’s theorem verified.
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7.Verify Stoke’s theorem for F = (v —z +2)i+ (vz + 4)j — xzk where S is the surface

of the cube x =0, y=0, z=0, x=2, y=2,z=2 above the xy plane.
Sol: Given F = (y —z + 2)T+ (vz + 4)j — xzk where S is the surface of the cube.
x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.

By Stoke’s theorem, we have [ curl F.iids = [ F.dF

v x F= =10+y) —Jl—z+ 1)+ k(0= =yi—(1-2)]-k

2
y—z+2 y+4 —=x=

[ =
Sl LY
e T

W VXFA=VXxFk=(i—-(1-2)j—k)k=-1
a[VxFads=[[T—1dcdy (v~z=0,dz’=0)=—4
(1)
To find | F.d¥
[F.a7=[((y—z+2)T+ (y2+ 47— x2k) . (o +dyf + dzF)
= [[(v—z +2)dx+ (vz = 4)dy — (x2)dz]

Sis the surface of the cube above the xy-plane

~z=0 =dz=10

o [Edi= [(v+2)dx+ [4dy
Along 04,y =0,z = 0,dy = 0,dz = 0, x change from 0 to 2.
[Fode=2[03=4 )
Along BC,v = 2,z =0,dy = 0,dz = 0,x change from 2 to 0.
i 4de=4[x]2=-s8 .(3)

Along 4B, x = 2,z =0,dx = 0,dz = 0, v change from 0to 2.
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[ F.dr= T4dy:[4y] =8 4)

0
Along €0,x = 0,z = 0,dx = 0,dz = 0, v change from 2 to 0.
S} 4dy = —8 (5)
Above the surface When z=2
Along 0’4, J’: Fdr=0 ....(6)
Along A'B',x = 2,z = 2,dx = 0,dz = 0,y changes from 0 to 2

iE.dF:f(zyM)dy:z{y?z} +4[y] =4+8=12 2 (7)

0

Along B'C',y = 2,z = 2,dv = 0,dz = 0, xchanges from 2 to 0
J;Fdr=0 .(8)

Along €'D",x = 0,z = 2,dx = 0,dz = 0,y changes from 2 to 0.

J'(2y+4):2{y?} +4y] =12 - (9)

2
(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives
JFd7=4-8+8-8+0+1240—-12=—4 .....(10)
By Stokes theorem, We have
[ F.df=[ curl F .fids=-4

Hence Stoke’s theorem is verified.
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