
1

LECTURE NOTES

ON

SOFTWARE ENGINEERING

2020 – 2021

II B. Tech I Semester (R19)

Mr. P. Suresh Babu, Assistant Professor

www.Jntufastupdates.com 1

UNIT- 2

Agile Development: Agility , Agility and the Cost of Change, Agile Process, Extreme

Programming, Other Agile Process Models. A Tool Set for the Agile Process, Software

Engineering Knowledge, Core Principles, Principles That Guide Each Framework Activity,

Understanding Requirements: Requirements Engineering, Establishing the groundwork,

Eliciting Requirements, Developing Use Cases, Building the requirements model, Negotiating

Requirements, Validating Requirements.

www.Jntufastupdates.com 2

AGILE DEVELOPMENT

WHAT IS AGILITY?

Agile is a software development methodology to build software incrementally using short

iterations of 1 to 4 weeks so that the development process is aligned with the changing business

needs.

An agile team is a nimble team able to appropriately respond to changes. Change is what

software development is very much about. Changes in the software being built, changes to the

team members, changes because of new technology, changes of all kinds that may have an impact

on the product they build or the project that creates the product. Support for changes should be

built-in everything we do in software, something we embrace because it is the heart and soul of

software. An agile team recognizes that software is developed by individuals working in teams

and that the skills of these people, their ability to collaborate is at the core for the success of the

project.

AGILITY AND THE COST OF CHANGE

An agile process reduces the cost of change because software is released in increments

and change can be better controlled within an increment.

Agility argue that a well-designed agile process “flattens” the cost of change curve shown

in following figure, allowing a software team to accommodate changes late in a software project

without dramatic cost and time impact. When incremental delivery is coupled with other agile

practices such as continuous unit testing and pair programming, the cost of making a change is

attenuated. Although debate about the degree to which the cost curve flattens is ongoing, there is

evidence to suggest that a significant reduction in the cost of change can be achieved.

www.Jntufastupdates.com 3

AGILE PROCESS

Any agile software process is characterized in a manner that addresses a number of key

assumptions about the majority of software projects:

1. It is difficult to predict in advance which software requirements will persist and which will

change. It is equally difficult to predict how customer priorities will change as the project

proceeds.

2. For many types of software, design and construction are interleaved. That is, both activities

should be performed in tandem so that design models are proven as they are created. It is

difficult to predict how much design is necessary before construction is used to prove the

design.

3. Analysis, design, construction, and testing are not as predictable

Agility Principles

Agility principles for those who want to achieve agility:

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with

a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self– organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then

www.Jntufastupdates.com 4

tunes and adjusts its behavior accordingly.

Human Factors

Agile development focuses on the talents and skills of individuals, molding the process to specific

people and teams.” The key point in this statement is that the process molds to the needs of the

people and team

• Competence. In an agile development context, “competence” encompasses innate talent,

specific software-related skills, and overall knowledge of the process that the team has

chosen to apply. Skill and knowledge of process can and should be taught to all people

who serve as agile team members.

• Common focus. Although members of the agile team may perform different tasks and

bring different skills to the project, all should be focused on one goal—to deliver a working

software increment to the customer within the time promised. To achieve this goal, the

team will also focus on continual adaptations (small and large) that will make the process

fit the needs of the team.

• Collaboration. Software engineering (regardless of process) is about assessing, analyzing,

and using information that is communicated to the software team; creating information

that will help all stakeholders understand the work of the team; and building information

(computer software and relevant databases) that provides business value for the customer.

To accomplish these tasks, team members must collaborate—with one another and all other

stakeholders.

• Decision-making ability. Any good software team (including agile teams) must be

allowed the freedom to control its own destiny. This implies that the team is given

autonomy—decision-making authority for both technical and project issues.

 Fuzzy problem-solving ability. Software managers must recognize that the agile team

will continually have to deal with ambiguity and will continually be buffeted by change.

• Mutual trust and respect. The agile team must become what DeMarco and Lister call a

“jelled” team. A jelled team exhibits the trust and respect that are necessary to make them

“so strongly knit that the whole is greater than the sum of the parts.”

Self-organization. In the context of agile development, self-organization implies three

things: (1) the agile team organizes itself for the work to be done, (2) the team organizes the

process to best accommodate its local environment, (3) the team organizes the work

www.Jntufastupdates.com 5

schedule to best achieve delivery of the software increment. Self-organization has a number

of technical benefits, but more importantly, it serves to improve collaboration and boost team

morale.

EXTREME PROGRAMMING (XP)

Extreme Programming (XP), the most widely used approach to agile software development,

emphasizes business results first and takes an incremental, get-something-started approach to

building the product, using continual testing and revision.

XP Values

Beck defines a set of five values that establish a foundation for all work performed as part of

XP—communication, simplicity, feedback, courage, and respect. Each of these values is used

as a driver for specific XP activities, actions, and tasks.

In order to achieve effective communication between software engineers and other

stakeholders, XP emphasizes close, yet informal collaboration between customers and developers,

the establishment of effective metaphors3 for communicating important concepts, continuous

feedback, and the avoidance of voluminous documentation as a communication medium.

To achieve simplicity, XP restricts developers to design only for immediate needs, rather

than consider future needs. The intent is to create a simple design that can be easily implemented

in code). If the design must be improved, it can be refactored at a later time.

Feedback is derived from three sources: the implemented software itself, the customer, and

other software team members. By designing and implementing an effective testing strategy the

software provides the agile team with feedback. XP makes use of the unit test as its primary testing

tactic. As each class is developed, the team develops a unit test to exercise each operation according

to its specified functionality.

Beck argues that strict adherence to certain XP practices demands courage. A better word

might be discipline. An agile XP team must have the discipline (courage) to design for today,

recognizing that future requirements may change dramatically, thereby demanding substantial

rework of the design and implemented code.

By following each of these values, the agile team inculcates respect among it members,

between other stakeholders and team members, and indirectly, for the software itself. As they

www.Jntufastupdates.com 6

achieve successful delivery of software increments, the team develops growing respect for the

XP process.

The XP Process

Extreme Programming uses an object-oriented approach as its preferred development

paradigm and encompasses a set of rules and practices that occur within the context of four

framework activities: planning, design, coding, and testing. Following figure illustrates the XP

process and notes some of the key ideas and tasks that are associated with each framework activity.

Key XP activities are

Fig : The Extreme Programming process

• Planning. The planning activity (also called the planning game) begins with listening—a

requirements gathering activity that enables the technical members of the XP team to

understand the business context for the software and to get a broad feel for required output

and major features and functionality.

• Design. XP design rigorously follows the KIS (keep it simple) principle. A simple design is

always preferred over a more complex representation. In addition, the design provides

www.Jntufastupdates.com 7

implementation guidance for a story as it is written—nothing less, nothing more. The design

of extra functionality If a difficult design problem is encountered as part of the design of a

story, XP recommends the immediate creation of an operational prototype of that portion of

the design. Called a spike solution, the design prototype is implemented and evaluated. XP

encourages refactoring—a construction technique that is also a method for design

optimization.

Fowler describes refactoring in the following manner: Refactoring is the process of changing

a software system in such a way that it does not alter the external behavior of the code yet

improves the internal structure. It is a disciplined way to clean up code [that minimizes the

chances of introducing bugs].

• Coding. After stories are developed and preliminary design work is done, the team does

not move to code, but rather develops a series of unit tests that will exercise each of the

stories that is to be included in the current release Once the code is complete, it can be

unit-tested immediately, thereby providing instantaneous feedback to the developers.

A key concept during the coding activity is pair programming. XP recommends that two people

work together at one computer workstation to create code for a story. This provides a

mechanism for real time problem solving (two heads are often better than one) and real-time

quality assurance.

• Testing. The creation of unit tests before coding commences is a key element of the XP

approach. The unit tests that are created should be implemented using a framework that

enables them to be automated. This encourages a regression testing strategy whenever code is

modified. As the individual unit tests are organized into a “universal testing suite” integration

and validation testing of the system can occur on a daily basis. This provides the XP team

with a continual indication of progress and also can raise warning flags early if things go

awry. Wells states: “Fixing small problems every few hours takes less time than fixing huge

problems just before the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer and focus

on overall system features and functionality that are visible and reviewable by the customer.

Acceptance tests are derived from user stories that have been implemented as part of a software

release.

www.Jntufastupdates.com 8

Industrial XP

Joshua Kerievsky describes Industrial Extreme Programming (IXP) in the following manner:

“IXP is an organic evolution of XP. It is imbued with XP’s minimalist, customer-centric, test-

driven spirit. IXP differs most from the original XP in its greater inclusion of management, its

expanded role for customers, and its upgraded technical practices.” IXP incorporates six new

practices that are designed to help ensure that an XP project works successfully for significant

projects within a large organization.

• Readiness assessment. Prior to the initiation of an IXP project, the organization should

conduct a readiness assessment. The assessment ascertains whether (1) an appropriate

development environment exists to support IXP, (2) the team will be populated by the

proper set of stakeholders, (3) the organization has a distinct quality program and supports

continuous improvement, (4) the organizational culture will support the new values of

an agile team, and (5) the broader project community will be populated appropriately.

• Project community. Classic XP suggests that the right people be used to populate the

agile team to ensure success. The implication is that people on the team must be well-

trained, adaptable and skilled, and have the proper temperament to contribute to a self-

organizing team. When XP is to be applied for a significant project in a large organization,

the concept of the “team” should morph into that of a community. A community may have

a technologist and customers who are central to the success of a project as well as many

other stakeholders (e.g., legal staff, quality auditors, manufacturing or sales types) who

“are often at the periphery of an IXP project yet they may play important roles on the

project”. In IXP, the community members and their roles should be explicitly defined and

mechanisms for communication and coordination between community members should be

established.

• Project chartering. The IXP team assesses the project itself to determine whether an

appropriate business justification for the project exists and whether the project will further

the overall goals and objectives of the organization. Chartering also examines the context

of the project to determine how it complements, extends, or replaces existing systems

or processes.

www.Jntufastupdates.com 9

• Test-driven management. An IXP project requires measurable criteria for assessing the

state of the project and the progress that has been made to date. Test-driven management

establishes a series of measurable “destinations” and then defines mechanisms for

determining whether or not these destinations have been reached.

• Retrospectives. An IXP team conducts a specialized technical review after a software

increment is delivered. Called a retrospective, the review examines “issues, events, and

lessons-learned” across a software increment and/or the entire software release. The intent

is to improve the IXP process.

• Continuous learning. Because learning is a vital part of continuous process improvement,

members of the XP team are encouraged (and possibly, incented) to learn new methods

and techniques that can lead to a higher quality product.

OTHER AGILE PROCESS MODELS

Other agile process models have been proposed and are in use across the industry.

Among the most common are:

• Adaptive Software Development (ASD)

• Scrum

• Dynamic Systems Development Method (DSDM)

• Crystal

• Feature Drive Development (FDD)

• Lean Software Development (LSD)

• Agile Modeling (AM)

• Agile Unified Process (AUP)

Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith as a

technique for building complex software and systems. The philosophical underpinnings of ASD

focus on human collaboration and team self-organization.

High smith argues that an agile, adaptive development approach based on collaboration is “as much

a source of order in our complex interactions as discipline and engineering.” He defines an ASD

“life cycle” that incorporates three phases, speculation, collaboration, and learning.

www.Jntufastupdates.com 10

Fig : Adaptive software development

During speculation, the project is initiated and adaptive cycle planning is conducted.

Adaptive cycle planning uses project initiation information—the customer’s mission statement,

project constraints (e.g., delivery dates or user descriptions), and basic requirements—to define

the set of release cycles (software increments) that will be required for the project.

Motivated people use collaboration in a way that multiplies their talent and creative

output beyond their absolute numbers. This approach is a recurring theme in all agile methods.

But collaboration is not easy. It encompasses communication and teamwork, but it also emphasizes

individualism, because individual creativity plays an important role in collaborative thinking. It is,

above all, a matter of trust. People working together must trust one another to (1) criticize without

animosity, (2) assist without resentment, (3) work as hard as or harder than they do, (4) have the

skill set to contribute to the work at hand, and (5) communicate problems or concerns in a way that

leads to effective action.

www.Jntufastupdates.com 11

As members of an ASD team begin to develop the components that are part of an

adaptive cycle, the emphasis is on “learning” as much as it is on progress toward a completed

cycle.

ASD teams learn in three ways: focus groups, technical reviews , and project postmortems.

ASD’s overall emphasis on the dynamics of self-organizing teams, interpersonal collaboration,

and individual and team learning yield software project teams that have a much higher likelihood

of success.

Scrum

Scrum is an agile software development method that was conceived by Jeff Sutherland

and his development team in the early 1990s. Scrum principles are consistent with the agile

manifesto and are used to guide development activities within a process that incorporates the

following framework activities: requirements, analysis, design, evolution, and delivery. Within

each framework activity, work tasks occur within a process pattern called a sprint. The work

conducted within a sprint is adapted to the problem at hand and is defined and often modified

in real time by the Scrum team. The overall flow of the Scrum process is illustrated in following

figure

www.Jntufastupdates.com 12

Scrum emphasizes the use of a set of software process patterns that have proven effective

for projects with tight timelines, changing requirements, and business criticality. Each of these

process patterns defines a set of development actions:

• Backlog—a prioritized list of project requirements or features that provide business value

for the customer. Items can be added to the backlog at any time. The product manager

assesses the backlog and updates priorities as required.

• Sprints—consist of work units that are required to achieve a requirement defined in the

backlog that must be fit into a predefined time-box (typically 30 days). Changes (e.g.,

backlog work items) are not introduced during the sprint. Hence, the sprint allows team

members to work in a short-term, but stable environment.

• Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum team.

Three key questions are asked and answered by all team members

o What did you do since the last team meeting?

o What obstacles are you encountering?

o What do you plan to accomplish by the next team meeting?

A team leader, called a Scrum master, leads the meeting and assesses the responses from each

person. The Scrum meeting helps the team to uncover potential problems as early as possible.

Also, these daily meetings lead to “knowledge socialization”

• Demos—deliver the software increment to the customer so that functionality that has

been implemented can be demonstrated and evaluated by the customer. It is important to

note that the demo may not contain all planned functionality, but rather those functions

that can be delivered within the time-box that was established.

Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) is an agile software development approach

that “provides a framework for building and maintaining systems which meet tight time constraints

through the use of incremental prototyping in a controlled project environment” The DSDM

philosophy is borrowed from a modified version of the Pareto principle—80 percent of an

application can be delivered in 20 percent of the time. It would take to deliver the complete

(100 percent) application. DSDM is an iterative software process in which each iteration follows

the 80 percent rule. That is, only enough work is required for each increment to

www.Jntufastupdates.com 13

facilitate movement to the next increment. The remaining detail can be completed later when

more business requirements are known or changes have been requested and accommodated.

The DSDM life cycle that defines three different iterative cycles, preceded by two additional life

cycle activities:

• Feasibility study—establishes the basic business requirements and constraints associated

with the application to be built and then assesses whether the application is a viable

candidate for the DSDM process

• Business study—establishes the functional and information requirements that will allow

the application to provide business value; also, defines the basic application architecture

and identifies the maintainability requirements for the application.

• Functional model iteration—produces a set of incremental prototypes that demonstrate

functionality for the customer.

• Design and build iteration—revisits prototypes built during functional model iteration

to ensure that each has been engineered in a manner that will enable it to provide

operational business value for end users. In some cases, functional model iteration and

design and build iteration occur concurrently.

• Implementation—places the latest software increment into the operational environment. It

should be noted that (1) the increment may not be 100 percent complete or (2) changes

may be requested as the increment is put into place. In either case, DSDM development

work continues by returning to the functional model iteration activity.

Crystal

Alistair Cockburn and Jim Highsmith created the Crystal family of agile methods in order

to achieve a software development approach that puts a premium on “maneuverability” during

what Cockburn characterizes as “a resource limited, cooperative game of invention and

communication, with a primary goal of delivering useful, working software and a secondary goal

of setting up for the next game”

The Crystal family is actually a set of example agile processes that have been proven

effective for different types of projects. The intent is to allow agile teams to select the member of

the crystal family that is most appropriate for their project and environment.

www.Jntufastupdates.com 14

Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his

colleagues as a practical process model for object-oriented software engineering. Stephen Palmer

and John Felsing have extended and improvedCoad’s work, describing an adaptive, agile process

that can be applied to moderately sized and larger software projects.

Like other agile approaches, FDD adopts a philosophy that (1) emphasizes collaboration

among people on an FDD team; (2) manages problem and project complexity using feature-

based decomposition followed by the integration of software increments, and (3) communication

of technical detail using verbal, graphical, and text-based means.

FDD emphasizes software quality assurance activities by encouraging an incremental

development strategy, the use of design and code inspections, the application of software quality

assurance audits, the collection of metrics, and the use of patterns (for analysis, design, and

construction).

In the context of FDD, a feature “is a client-valued function that can be implemented in two

weeks or less” The emphasis on the definition of features provides the following benefits:

• Because features are small blocks of deliverable functionality, users can describe them

more easily; understand how they relate to one another more readily; and better review

them for ambiguity, error, or omissions.

• Features can be organized into a hierarchical business-related grouping.

• Since a feature is the FDD deliverable software increment, the team develops operational

features every two weeks.

• Because features are small, their design and code representations are easier to inspect

effectively.

• Project planning, scheduling, and tracking are driven by the feature hierarchy, rather than

an arbitrarily adopted software engineering task set.

Coad and his colleagues suggest the following template for defining a feature:

<action> the <result> <by for of to> a(n) <object>

where an <object> is “a person, place, or thing

www.Jntufastupdates.com 15

Fig : Feature Driven Development (FDD)

FDD provides greater emphasis on project management guidelines and techniques than many other

agile methods. FDD defines six milestones during the design and implementation of a feature:

“design walkthrough, design, design inspection, code, code inspection, promote to build”

Lean Software Development (LSD)

Lean Software Development (LSD) has adapted the principles of lean manufacturing to

the world of software engineering. The lean principles that inspire the LSD process can be

summarized as eliminate waste, build quality in, create knowledge, defer commitment, deliver

fast, respect people, and optimize the whole. Each of these principles can be adapted to the

software process.

Agile Modeling (AM)

Agile Modeling (AM) is a practice-based methodology for effective modeling and

documentation of software-based systems. Simply put, Agile Modeling (AM) is a collection of

values, principles, and practices for modeling software that can be applied on a software

development project in an effective and light-weight manner. Agile models are more effective

than traditional models because they are just barely good, they don’t have to be perfect.

Agile modeling adopts all of the values that are consistent with the agile manifesto. The

agile modeling philosophy recognizes that an agile team must have the courage to make decisions

that may cause it to reject a design and refactor. The team must also have the humility

www.Jntufastupdates.com 16

to recognize that technologists do not have all the answers and that business experts and other

stakeholders should be respected and embraced.

Agile Modeling suggests a wide array of “core” and “supplementary” modeling principles, those

that make AM unique are :

• Model with a purpose. A developer who uses AM should have a specific goal in mind

before creating the model. Once the goal for the model is identified, the type of notation to

be used and level of detail required will be more obvious.

• Use multiple models. There are many different models and notations that can be used to

describe software. Only a small subset is essential for most projects. AM suggests that to

provide needed insight, each model should present a different aspect of the system and

only those models that provide value to their intended audience should be used.

• Travel light. As software engineering work proceeds, keep only those models that will

provide long-term value and jettison the rest. Every work product that is kept must be

maintained as changes occur. This represents work that slows the team down. Ambler

notes that “Every time you decide to keep a model you trade-off agility for the convenience

of having that information available to your team in an abstract manner

• Content is more important than representation. Modeling should impart information to

its intended audience. A syntactically perfect model that imparts little useful content is not as

valuable as a model with flawed notation that nevertheless provides valuable content for its

audience.

• Know the models and the tools you use to create them. Understand the strengths and

weaknesses of each model and the tools that are used to create it.

• Adapt locally. The modeling approach should be adapted to the needs of the agile team.

Agile Unified Process (AUP)

The Agile Unified Process (AUP) adopts a “serial in the large” and “iterative in the small”

philosophy for building computer-based systems. By adopting the classic UP phased activities—

inception, elaboration, construction, and transition—AUP provides a serial overlay that enables a

team to visualize the overall process flow for a software project. However, within each of the

activities, the team iterates to achieve agility and to deliver meaningful software increments to end

users as rapidly as possible. Each AUP iteration addresses the following activities.

www.Jntufastupdates.com 17

• Modeling. UML representations of the business and problem domains are created.

• Implementation. Models are translated into source code.

• Testing. Like XP, the team designs and executes a series of tests to uncover errors and

ensure that the source code meets its requirements.

• Deployment. Like the generic process activity deployment in this context focuses on the

delivery of a software increment and the acquisition of feedback from end users.

• Configuration and project management. In the context of AUP, configuration management

addresses change management, risk management, and the control of any persistent work

products that are produced by the team. Project management tracks and controls the progress

of the team and coordinates team activities.

• Environment management. Environment management coordinates a process infrastructure

that includes standards, tools, and other support technology available to the team.

A TOOL SET FOR THE AGILE PROCESS

Some proponents of the agile philosophy argue that automated software tools (e.g.,

design tools) should be viewed as a minor supplement to the team’s activities, and

not at all pivotal to the success of the team. However, Alistair Cockburn [Coc04] suggests

that tools can have a benefit and that “agile teams stress using tools that permit

the rapid flow of understanding. Some of those tools are social, starting even at

the hiring stage. Some tools are technological, helping distributed teams simulate

being physically present. Many tools are physical, allowing people to manipulate

them in workshops.”

Because acquiring the right people (hiring), team collaboration, stakeholder communication,

and indirect management are key elements in virtually all agile process

models, Cockburn argues that “tools” that address these issues are critical success

factors for agility. For example, a hiring “tool” might be the requirement to have a

prospective team member spend a few hours pair programming with an existing

member of the team. The “fit” can be assessed immediately.

Collaborative and communication “tools” are generally low tech and incorporate

any mechanism (“physical proximity, whiteboards, poster sheets, index cards, and

sticky notes” [Coc04]) that provides information and coordination among agile developers.

www.Jntufastupdates.com 18

Active communication is achieved via the team dynamics (e.g., pair programming),

while passive communication is achieved by “information radiators”

(e.g., a flat panel display that presents the overall status of different components of

an increment). Project management tools deemphasize the Gantt chart and replace

it with earned value charts or “graphs of tests created versus passed . . . other agile

tools are used to optimize the environment in which the agile team works (e.g., more

efficient meeting areas), improve the team culture by nurturing social interactions

(e.g., collocated teams), physical devices (e.g., electronic whiteboards), and process

enhancement (e.g., pair programming or time-boxing)” [Coc04].

SOFTWARE ENGINEERING KNOWLEDGE

In an editorial published in IEEE Software a decade ago, Steve McConnell [McC99]

made the following comment:

Many software practitioners think of software engineering knowledge almost exclusively

as knowledge of specific technologies: Java, Perl, html, C__, Linux, Windows NT, and so

on. Knowledge of specific technology details is necessary to perform computer programming.

If someone assigns you to write a program in C__, you have to know something

about C__ to get your program to work.

You often hear people say that software development knowledge has a 3-year

half-life: half of what you need to know today will be obsolete within 3 years. In the

domain of technology-related knowledge, that’s probably about right. But there is

another kind of software development knowledge—a kind that I think of as “software

engineering principles”—that does not have a three-year half-life. These software engineering

principles are likely to serve a professional programmer throughout his or her

career.

McConnell goes on to argue that the body of software engineering knowledge

(circa the year 2000) had evolved to a “stable core” that he estimated represented

about “75 percent of the knowledge needed to develop a complex system.” But what

resides within this stable core?

As McConnell indicates, core principles—the elemental ideas that guide software

engineers in the work that they do—now provide a foundation from which software

engineering models, methods, and tools can be applied and evaluated.

www.Jntufastupdates.com 19

CORE PRINCIPLES

Software engineering is guided by a collection of core principles that help in the application

of a meaningful software process and the execution of effective software

engineering methods. At the process level, core principles establish a philosophical

foundation that guides a software team as it performs framework and umbrella activities,

navigates the process flow, and produces a set of software engineering work

products. At the level of practice, core principles establish a collection of values and

rules that serve as a guide as you analyze a problem, design a solution, implement

and test the solution, and ultimately deploy the software in the user community

identified a set of general principles that span software engineering

process and practice:

(1) provide value to end users,

(2) keep it simple,

 (3) maintain the vision (of the product and the project),

(4) recognize that others consume (and must understand) what you produce,

(5) be open to the future,

(6) plan ahead for reuse, and

(7) think! Although these general principles are important, they are characterized

at such a high level of abstraction that they are sometimes difficult to translate

into day-to-day software engineering practice

PRINCIPLES THAT GUIDE EACH FRAMEWORK ACTIVITY

Communication Principles

Principle 1. Listen. Try to focus on the speaker’s words, rather than formulating

your response to those words. Ask for clarification if something is unclear,

but avoid constant interruptions. Never become contentious in your words

or actions (e.g., rolling your eyes or shaking your head) as a person is talking.

Principle 2. Prepare before you communicate. Spend the time to understand

the problem before you meet with others. If necessary, do some research

to understand business domain jargon. If you have responsibility for

conducting a meeting, prepare an agenda in advance of the meeting.

Principle 3. Someone should facilitate the activity. Every communication

meeting should have a leader (a facilitator) to keep the conversation

www.Jntufastupdates.com 20

moving in a productive direction, (2) to mediate any conflict that does occur,

and (3) to ensure than other principles are followed.

Principle 4. Face-to-face communication is best. But it usually works

better when some other representation of the relevant information is present.

For example, a participant may create a drawing or a “strawman” document

that serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of

falling into the cracks. Someone participating in the communication should

serve as a “recorder” and write down all important points and decisions.

Principle 6. Strive for collaboration. Collaboration and consensus occur

when the collective knowledge of members of the team is used to

describe product or system functions or features. Each small collaboration

serves to build trust among team members and creates a common goal for

the team.

Principle 7. Stay focused; modularize your discussion. The more

people involved in any communication, the more likely that discussion will

bounce from one topic to the next. The facilitator should keep the conversation

modular, leaving one topic only after it has been resolved

Principle 8. If something is unclear, draw a picture. Verbal communication

goes only so far. A sketch or drawing can often provide clarity when

words fail to do the job.

Principle 9. (a) Once you agree to something, move on. (b) If you can’t

agree to something, move on. (c) If a feature or function is unclear

and cannot be clarified at the moment, move on. Communication, like

any software engineering activity, takes time. Rather than iterating endlessly,

the people who participate should recognize that many topics require discussion

(see Principle 2) and that “moving on” is sometimes the best way to

achieve communication agility.

Principle 10. Negotiation is not a contest or a game. It works best

when both parties win. There are many instances in which you and other

stakeholders must negotiate functions and features, priorities, and delivery

dates. If the team has collaborated well, all parties have a common goal. Still,

negotiation will demand compromise from all parties.

www.Jntufastupdates.com 21

Planning Principles

Principle 1. Understand the scope of the project. It’s impossible to use

a road map if you don’t know where you’re going. Scope provides the software

team with a destination.

Principle 2. Involve stakeholders in the planning activity. Stakeholders

define priorities and establish project constraints. To accommodate these

realities, software engineers must often negotiate order of delivery, time

lines, and other project-related issues.

Principle 3. Recognize that planning is iterative. A project plan is never

engraved in stone. As work begins, it is very likely that things will change. As

a consequence, the plan must be adjusted to accommodate these changes. In

addition, iterative, incremental process models dictate replanning after the

delivery of each software increment based on feedback received from users.

Principle 4. Estimate based on what you know. The intent of estimation

is to provide an indication of effort, cost, and task duration, based on the

team’s current understanding of the work to be done. If information is vague

or unreliable, estimates will be equally unreliable.

Principle 5. Consider risk as you define the plan. If you have identified

risks that have high impact and high probability, contingency planning is

necessary. In addition, the project plan (including the schedule) should be

adjusted to accommodate the likelihood that one or more of these risks will

occur.

Principle 6. Be realistic. People don’t work 100 percent of every day.

Noise always enters into any human communication. Omissions and

ambiguity are facts of life. Change will occur. Even the best software

engineers make mistakes. These and other realities should be considered

as a project plan is established.

Principle 7. Adjust granularity as you define the plan. Granularity

refers to the level of detail that is introduced as a project plan is developed.

A “high-granularity” plan provides significant work task detail that is planned

over relatively short time increments (so that tracking and control occur

frequently). A “low-granularity” plan provides broader work tasks that are

www.Jntufastupdates.com 22

planned over longer time periods. In general, granularity moves from high to

low as the project time line moves away from the current date. Over the

next few weeks or months, the project can be planned in significant detail.

Activities that won’t occur for many months do not require high granularity

(too much can change).

Principle 8. Define how you intend to ensure quality. The plan should

identify how the software team intends to ensure quality. If technical

reviews3 are to be conducted, they should be scheduled. If pair programming

(Chapter 3) is to be used during construction, it should be explicitly defined

within the plan.

Principle 9. Describe how you intend to accommodate change. Even

the best planning can be obviated by uncontrolled change. You should identify

how changes are to be accommodated as software engineering work

proceeds. For example, can the customer request a change at any time? If a

change is requested, is the team obliged to implement it immediately? How is

the impact and cost of the change assessed?

Principle 10. Track the plan frequently and make adjustments as required.

Software projects fall behind schedule one day at a time. Therefore,

it makes sense to track progress on a daily basis, looking for problem areas

and situations in which scheduled work does not conform to actual work

conducted. When slippage is encountered, the plan is adjusted accordingly.

Modeling Principles

Principle 1. The primary goal of the software team is to build software,

not create models. Agility means getting software to the customer

in the fastest possible time. Models that make this happen are worth creating,

but models that slow the process down or provide little new insight

should be avoided.

Principle 2. Travel light—don’t create more models than you need.

Every model that is created must be kept up-to-date as changes occur. More

importantly, every new model takes time that might otherwise be spent on

construction (coding and testing). Therefore, create only those models that

www.Jntufastupdates.com 23

make it easier and faster to construct the software.

Principle 3. Strive to produce the simplest model that will describe the

problem or the software. Don’t overbuild the software [Amb02b]. By

keeping models simple, the resultant software will also be simple. The result

is software that is easier to integrate, easier to test, and easier to maintain (to

change). In addition, simple models are easier for members of the software

team to understand and critique, resulting in an ongoing form of feedback

that optimizes the end result.

Principle 4. Build models in a way that makes them amenable to change.

Assume that your models will change, but in making this assumption don’t get sloppy. For

example, since requirements will change, there is a tendency

to give requirements models short shrift. Why? Because you know that they’ll

change anyway. The problem with this attitude is that without a reasonably

complete requirements model, you’ll create a design (design model) that will

invariably miss important functions and features.

Principle 5. Be able to state an explicit purpose for each model that

is created. Every time you create a model, ask yourself why you’re doing

so. If you can’t provide solid justification for the existence of the model,

don’t spend time on it.

Principle 6. Adapt the models you develop to the system at hand. It

may be necessary to adapt model notation or rules to the application; for example,

a video game application might require a different modeling technique

than real-time, embedded software that controls an automobile engine.

Principle 7. Try to build useful models, but forget about building perfect

models. When building requirements and design models, a software

engineer reaches a point of diminishing returns. That is, the effort required to

make the model absolutely complete and internally consistent is not worth

the benefits of these properties. Am I suggesting that modeling should be

sloppy or low quality? The answer is “no.” But modeling should be conducted

with an eye to the next software engineering steps. Iterating endlessly to

make a model “perfect” does not serve the need for agility.

Principle 8. Don’t become dogmatic about the syntax of the model. If

it communicates content successfully, representation is secondary.

www.Jntufastupdates.com 24

Although everyone on a software team should try to use consistent notation

during modeling, the most important characteristic of the model is to communicate

information that enables the next software engineering task. If a

model does this successfully, incorrect syntax can be forgiven.

Principle 9. If your instincts tell you a model isn’t right even though it

seems okay on paper, you probably have reason to be concerned. If

you are an experienced software engineer, trust your instincts. Software

work teaches many lessons—some of them on a subconscious level. If something

tells you that a design model is doomed to fail (even though you can’t

prove it explicitly), you have reason to spend additional time examining the

model or developing a different one.

Principle 10. Get feedback as soon as you can. Every model should be

reviewed by members of the software team. The intent of these reviews is to

provide feedback that can be used to correct modeling mistakes, change misinterpretations,

and add features or functions that were inadvertently omitted.

Requirements modeling principles.

Principle 1. The information domain of a problem must be represented

and understood. The information domain encompasses the data that flow

into the system (from end users, other systems, or external devices), the data

that flow out of the system (via the user interface, network interfaces, reports,

graphics, and other means), and the data stores that collect and organize persistent

data objects (i.e., data that are maintained permanently).

Principle 2. The functions that the software performs must be defined.

Software functions provide direct benefit to end users and also provide internal

support for those features that are user visible. Some functions transform

data that flow into the system. In other cases, functions effect some level of

control over internal software processing or external system elements. Functions

can be described at many different levels of abstraction, ranging from a

general statement of purpose to a detailed description of the processing

elements that must be invoked.

Principle 3. The behavior of the software (as a consequence of external

events) must be represented. The behavior of computer software is driven

www.Jntufastupdates.com 25

by its interaction with the external environment. Input provided by end users,

control data provided by an external system, or monitoring data collected

over a network all cause the software to behave in a specific way.

Principle 4. The models that depict information, function, and behavior

must be partitioned in a manner that uncovers detail in a layered (or

hierarchical) fashion. Requirements modeling is the first step in software

engineering problem solving. It allows you to better understand the problem

and establishes a basis for the solution (design). Complex problems are difficult

to solve in their entirety. For this reason, you should use a divide-and-conquer

strategy. A large, complex problem is divided into subproblems until each subproblem

is relatively easy to understand. This concept is called partitioning or

separation of concerns, and it is a key strategy in requirements modeling.

Principle 5. The analysis task should move from essential information

toward implementation detail. Requirements modeling begins by describing

the problem from the end-user’s perspective. The “essence” of the

problem is described without any consideration of how a solution will be

implemented. For example, a video game requires that the player “instruct”

its protagonist on what direction to proceed as she moves into a dangerous

maze. That is the essence of the problem. Implementation detail (normally

described as part of the design model) indicates how the essence will be

implemented. For the video game, voice input might be used. Alternatively,

Design Modeling Principles

Principle 1. Design should be traceable to the requirements model.

The requirements model describes the information domain of the problem,

user-visible functions, system behavior, and a set of requirements classes

that package business objects with the methods that service them. The design

model translates this information into an architecture, a set of subsystems

that implement major functions, and a set of components that are the

realization of requirements classes. The elements of the design model should

be traceable to the requirements model.

Principle 2. Always consider the architecture of the system to be built.

www.Jntufastupdates.com 26

Software architecture (Chapter 9) is the skeleton of the system to be built. It

affects interfaces, data structures, program control flow and behavior, the

manner in which testing can be conducted, the maintainability of the resultant

system, and much more. For all of these reasons, design should start with

architectural considerations. Only after the architecture has been established

should component-level issues be considered.

Principle 3. Design of data is as important as design of processing

functions. Data design is an essential element of architectural design. The

manner in which data objects are realized within the design cannot be left to

chance. A well-structured data design helps to simplify program flow, makes

the design and implementation of software components easier, and makes

overall processing more efficient.

Principle 4. Interfaces (both internal and external) must be designed

with care. The manner in which data flows between the components of a

system has much to do with processing efficiency, error propagation, and

design simplicity. A well-designed interface makes integration easier and

assists the tester in validating component functions.

Principle 5. User interface design should be tuned to the needs of the

end user. However, in every case, it should stress ease of use. The

user interface is the visible manifestation of the software. No matter how

sophisticated its internal functions, no matter how comprehensive its data

structures, no matter how well designed its architecture, a poor interface

design often leads to the perception that the software is “bad.”

Principle 6. Component-level design should be functionally independent.

Functional independence is a measure of the “single-mindedness” of a

software component. The functionality that is delivered by a component

should be cohesive—that is, it should focus on one and only one function or

subfunction.5

Principle 7. Components should be loosely coupled to one another

and to the external environment. Coupling is achieved in many ways—

via a component interface, by messaging, through global data. As the level of

coupling increases, the likelihood of error propagation also increases and the

overall maintainability of the software decreases. Therefore, component coupling

www.Jntufastupdates.com 27

should be kept as low as is reasonable.

Principle 8. Design representations (models) should be easily understandable.

The purpose of design is to communicate information to practitioners

who will generate code, to those who will test the software, and to

others who may maintain the software in the future. If the design is difficult

to understand, it will not serve as an effective communication medium.

Principle 9. The design should be developed iteratively. With each

iteration, the designer should strive for greater simplicity. Like almost

all creative activities, design occurs iteratively. The first iterations work to

refine the design and correct errors,

Construction Principles

Coding Principles. The principles that guide the coding task are closely aligned

with programming style, programming languages, and programming methods.

However, there are a number of fundamental principles that can be stated:

Preparation principles: Before you write one line of code, be sure you

• Understand of the problem you’re trying to solve.

• Understand basic design principles and concepts.

• Pick a programming language that meets the needs of the software to be

built and the environment in which it will operate.

• Select a programming environment that provides tools that will make your

work easier.

• Create a set of unit tests that will be applied once the component you code is

completed.

Programming principles: As you begin writing code, be sure you

• Constrain your algorithms by following structured programming [Boh00]

practice.

• Consider the use of pair programming.

• Select data structures that will meet the needs of the design.

• Understand the software architecture and create interfaces that are

consistent with it.

• Keep conditional logic as simple as possible.

www.Jntufastupdates.com 28

• Create nested loops in a way that makes them easily testable.

• Select meaningful variable names and follow other local coding standards.

Write code that is self-documenting.

• Create a visual layout (e.g., indentation and blank lines) that aids

understanding.

Validation Principles: After you’ve completed your first coding pass,

be sure you

• Conduct a code walkthrough when appropriate.

• Perform unit tests and correct errors you’ve uncovered.

• Refactor the code.

Testing Principles.

• Testing is a process of executing a program with the intent of finding an error.

• A good test case is one that has a high probability of finding an as-yetundiscovered error.

• A successful test is one that uncovers an as-yet-undiscovered error.

Principle 1. All tests should be traceable to customer requirements.

The objective of software testing is to uncover errors. It follows that the most

severe defects (from the customer’s point of view) are those that cause the

program to fail to meet its requirements.

Principle 2. Tests should be planned long before testing begins. Test

planning can begin as soon as the requirements model is complete.

Detailed definition of test cases can begin as soon as the design model

has been solidified. Therefore, all tests can be planned and designed before

any code has been generated.

Principle 3. The Pareto principle applies to software testing. In this

context the Pareto principle implies that 80 percent of all errors uncovered

during testing will likely be traceable to 20 percent of all program components.

The problem, of course, is to isolate these suspect components and to

thoroughly test them.

Principle 4. Testing should begin “in the small” and progress toward

testing “in the large.” The first tests planned and executed generally focus

www.Jntufastupdates.com 29

on individual components. As testing progresses, focus shifts in an attempt

to find errors in integrated clusters of components and ultimately in the

entire system.

Principle 5. Exhaustive testing is not possible. The number of path permutations

for even a moderately sized program is exceptionally large. For

this reason, it is impossible to execute every combination of paths during

testing. It is possible, however, to adequately cover program logic and to ensure

that all conditions in the component-level design have been exercised.

Deployment Principles

Principle 1. Customer expectations for the software must be managed.

Too often, the customer expects more than the team has promised to deliver,

and disappointment occurs immediately. This results in feedback that is not

productive and ruins team morale. In her book on managing expectations,

Naomi Karten [Kar94] states: “The starting point for managing expectations

is to become more conscientious about what you communicate and how.”

She suggests that a software engineer must be careful about sending the customer

conflicting messages (e.g., promising more than you can reasonably

deliver in the time frame provided or delivering more than you promise for

one software increment and then less than promised for the next).

Principle 2. A complete delivery package should be assembled and

tested. A CD-ROM or other media (including Web-based downloads)

containing all executable software, support data files, support documents,

and other relevant information should be assembled and thoroughly

beta-tested with actual users. All installation scripts and other operational

features should be thoroughly exercised in as many different computing

configurations (i.e., hardware, operating systems, peripheral devices, networking

arrangements) as possible.

Principle 3. A support regime must be established before the software

is delivered. An end user expects responsiveness and accurate information

when a question or problem arises. If support is ad hoc, or worse, nonexistent,

the customer will become dissatisfied immediately. Support should be

planned, support materials should be prepared, and appropriate recordkeeping

www.Jntufastupdates.com 30

mechanisms should be established so that the software team can

conduct a categorical assessment of the kinds of support requested.

Principle 4. Appropriate instructional materials must be provided to

end users. The software team delivers more than the software itself.

Appropriate training aids (if required) should be developed; troubleshooting

guidelines should be provided, and when necessary, a “what’s different about

this software increment” description should be published.

Principle 5. Buggy software should be fixed first, delivered later. Under

time pressure, some software organizations deliver low-quality increments

with a warning to the customer that bugs “will be fixed in the next release.”

This is a mistake. There’s a saying in the software business: “Customers will

forget you delivered a high-quality product a few days late, but they will

never forget the problems that a low-quality product caused them. The software

reminds them every day.”

REQUIREMENTS ENGINEERING

Requirements analysis, also called requirements engineering, is the process of

determining user expectations for a new or modified product. Requirements engineering is a

major software engineering action that begins during the communication activity and continues

into the modeling activity. It must be adapted to the needs of the process, the project, the product,

and the people doing the work. Requirements engineering builds a bridge to design and

construction.

Requirements engineering provides the appropriate mechanism for understanding what the

customer wants, analyzing need, assessing feasibility, negotiating a reasonable solution, specifying

the solution unambiguously, validating the specification, and managing the requirements as they

are transformed into an operational system. It encompasses seven distinct tasks: inception,

elicitation, elaboration, negotiation, specification, validation, and management.

Inception : It establish a basic understanding of the problem, the people who want a solution,

the nature of the solution that is desired, and the effectiveness of preliminary communication and

collaboration between the other stakeholders and the software team.

Elicitation: In this stage, proper information is extracted to prepare to document the

requirements. It certainly seems simple enough—ask the customer, the users, and others what the

objectives for the system or product are, what is to be accomplished, how the system or product

www.Jntufastupdates.com 31

fits into the needs of the business, and finally, how the system or product is to be used on a day-

to-day basis.

• Problems of scope. The boundary of the system is ill-defined or the customers/users

specify unnecessary technical detail that may confuse, rather than clarify, overall system

objectives.

• Problems of understanding. The customers/users are not completely sure of what is

needed, have a poor understanding of the capabilities and limitations of their computing

environment, don’t have a full understanding of the problem domain, have trouble

communicating needs to the system engineer, omit information that is believed to be

“obvious,” specify requirements that conflict with the needs of other customers/users, or

specify requirements that are ambiguous or un testable.

• Problems of volatility. The requirements change over time.

Elaboration: The information obtained from the customer during inception and elicitation is

expanded and refined during elaboration. This task focuses on developing a refined requirements

model that identifies various aspects of software function, behavior, and information. Elaboration

is driven by the creation and refinement of user scenarios that describe how the end user (and

other actors) will interact with the system.

Negotiation: To negotiate the requirements of a system to be developed, it is necessary to identify

conflicts and to resolve those conflicts. You have to reconcile these conflicts through a process

of negotiation. Customers, users, and other stakeholders are asked to rank requirements and then

discuss conflicts in priority. Using an iterative approach that prioritizes requirements, assesses

their cost and risk, and addresses internal conflicts, requirements are eliminated, combined, and/or

modified so that each party achieves some measure of satisfaction.

Specification: The term specification means different things to different people. A

specification can be a written document, a set of graphical models, a formal mathematical model,

a collection of usage scenarios, a prototype, or any combination of these.

Validation: The work products produced as a consequence of requirements engineering are

assessed for quality during a validation step. Requirements validation examines the specification

to ensure that all software requirements have been stated unambiguously; that inconsistencies,

53

www.Jntufastupdates.com 32

omissions, and errors have been detected and corrected; and that the work products conform to

the standards established for the process, the project, and the product.

The primary requirements validation mechanism is the technical review. The review team

that validates requirements includes software engineers, customers, users, and other stakeholders

who examine the specification looking for errors in content or interpretation, areas where

clarification may be required, missing information, inconsistencies, conflicting requirements, or

unrealistic requirements.

Requirements management. Requirements for computer-based systems change, and the desire

to change requirements persists throughout the life of the system. Requirements management is a

set of activities that help the project team identify, control, and track requirements and changes

to requirements at any time as the project proceeds. Many of these activities are identical to the

software configuration management (SCM) techniques.

 ESTABLISHING THE GROUNDWORK

Identifying Stakeholders

A stakeholder is anyone who has a direct interest in or benefits from the system that is to

be developed. At inception, you should create a list of people who will contribute input as

requirements are elicited..

Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will be explored

from many different points of view. The information from multiple viewpoints is collected,

emerging requirements may be inconsistent or may conflict with one another.

Working toward Collaboration

The job of a requirements engineer is to identify areas of commonality and areas of conflict

or inconsistency. It is, of course, the latter category that presents a challenge. Collaboration does

not necessarily mean that requirements are defined by committee. In many cases, stakeholders

collaborate by providing their view of requirements, but a strong “project champion” (e.g., a

business manager or a senior technologist) may make the final decision about which requirements

make the cut.

www.Jntufastupdates.com 33

Asking the First Questions

Questions asked at the inception of the project should be “context free” . The first set of context-

free questions focuses on the customer and other stakeholders, the overall project goals and

benefits. For example, you might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the software to be

built. In addition, the questions identify the measurable benefit of a successful implementation

and possible alternatives to custom software development.

The next set of questions enables you to gain a better understanding of the problem and

allows the customer to voice his or her perceptions about a solution:

• How would you characterize “good” output that would be generated by a successful

solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the business environment in which the solution will be

used?

• Will special performance issues or constraints affect the way the solution is approached?

The final set of questions focuses on the effectiveness of the communication activity itself.

Gause and Weinberg call these “meta-questions” and propose the following list:

• Are you the right person to answer these questions? Are your answers

• “official”?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

These questions will help to “break the ice” and initiate the communication that is essential to

successful elicitation. But a question-and-answer meeting format is not an approach that has been

overwhelmingly successful.

www.Jntufastupdates.com 34

 ELICITING REQUIREMENTS

Requirements elicitation (also called requirements gathering) combines elements of problem

solving, elaboration, negotiation, and specification

Collaborative Requirements Gathering

Many different approaches to collaborative requirements gathering have been proposed. Each

makes use of a slightly different scenario, but all apply some variation on the following basic

guidelines:

• Meetings are conducted and attended by both software engineers and other stakeholders.

• Rules for preparation and participation are established.

• An agenda is suggested that is formal enough to cover all important points but informal

enough to encourage the free flow of ideas.

• A “facilitator” (can be a customer, a developer, or an outsider) controls the meeting.

• A “definition mechanism” (can be work sheets, flip charts, or wall stickers or

• an electronic bulletin board, chat room, or virtual forum) is used.

The goal is to identify the problem, propose elements of the solution, negotiate different

approaches, and specify a preliminary set of solution requirements in an atmosphere that is

conducive to the accomplishment of the goal.

During inception basic questions and answers establish the scope of the problem and the

overall perception of a solution. Out of these initial meetings, the developer and customers write

a one- or two-page “product request.”

A meeting place, time, and date are selected; a facilitator is chosen; and attendees from

the software team and other stakeholder organizations are invited to participate. The product

request is distributed to all attendees before the meeting date.

While reviewing the product request in the days before the meeting, each attendee is

asked to make a list of objects that are part of the environment that surrounds the system, other

objects that are to be produced by the system, and objects that are used by the system to perform

its functions. In addition, each attendee is asked to make another list of services that manipulate

or interact with the objects. Finally, lists of constraints (e.g., cost, size, business rules) and

performance criteria (e.g., speed, accuracy) are also developed. The attendees are informed that

the lists are not expected to be exhaustive but are expected to reflect each person’s perception of

the system.

www.Jntufastupdates.com 35

The lists of objects can be pinned to the walls of the room using large sheets of paper,

stuck to the walls using adhesive-backed sheets, or written on a wall board. After individual lists

are presented in one topic area, the group creates a combined list by eliminating redundant

entries, adding any new ideas that come up during the discussion, but not deleting anything.

Quality Function Deployment

Quality function deployment (QFD) is a quality management technique that translates the

needs of the customer into technical requirements for software. QFD “concentrates on

maximizing customer satisfaction from the software engineering process”. To accomplish this,

QFD emphasizes an understanding of what is valuable to the customer and then deploys these

values throughout the engineering process.

QFD identifies three types of requirements :

• Normal requirements. The objectives and goals that are stated for a product or system

during meetings with the customer. If these requirements are present, the customer is

satisfied. Examples of normal requirements might be requested types of graphical displays,

specific system functions, and defined levels of performance.

• Expected requirements. These requirements are implicit to the product or system and may

be so fundamental that the customer does not explicitly state them. Their absence will

be a cause for significant dissatisfaction.

• Exciting requirements. These features go beyond the customer’s expectations and prove

to be very satisfying when present.

Although QFD concepts can be applied across the entire software process, QFD uses customer

interviews and observation, surveys, and examination of historical data as raw data for the

requirements gathering activity. These data are then translated into a table of requirements— called

the customer voice table—that is reviewed with the customer and other stakeholders.

Usage Scenarios

As requirements are gathered, an overall vision of system functions and features begins to

materialize. However, it is difficult to move into more technical software engineering activities

until you understand how these functions and features will be used by different classes of end

users. To accomplish this, developers and users can create a set of scenarios that identify a thread

of usage for the system to be constructed. The scenarios, often called use cases, provide a

description of how the system will be used.

www.Jntufastupdates.com 36

Elicitation Work Products

The work products produced as a consequence of requirements elicitation will vary depending on

the size of the system or product to be built. For most systems, the work products include

• A statement of need and feasibility.

• A bounded statement of scope for the system or product.

• A list of customers, users, and other stakeholders who participated in requirements

elicitation.

• A description of the system’s technical environment.

• A list of requirements and the domain constraints that apply to each.

• A set of usage scenarios that provide insight into the use of the system or product under

different operating conditions.

• Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in requirements

elicitation.

 DEVELOPING USE CASES

Use cases are defined from an actor’s point of view. An actor is a role that people (users)

or devices play as they interact with the software.

The first step in writing a use case is to define the set of “actors” that will be involved in

the story. Actors are the different people (or devices) that use the system or product within the

context of the function and behavior that is to be described.

Actors represent the roles that people (or devices) play as the system operates. Defined

somewhat more formally, an actor is anything that communicates with the system or product and

that is external to the system itself. Every actor has one or more goals when using the system. It

is important to note that an actor and an end user are not necessarily the same thing. A typical

user may play a number of different roles when using a system, whereas an actor represents a

class of external entities (often, but not always, people) that play just one role in the context of

the use case. Different people may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are identified

during the first iteration. It is possible to identify primary actors during the first iteration and

secondary actors as more is learned about the system.

www.Jntufastupdates.com 37

Primary actors interact to achieve required system function and derive the intended benefit

from the system. Secondary actors support the system so that primary actors can do their work.

Once actors have been identified, use cases can be developed.

Jacobson suggests a number of questions that should be answered by a use case:

• Who is the primary actor, the secondary actor(s)?

• What are the actor’s goals?

• What preconditions should exist before the story begins?

• What main tasks or functions are performed by the actor?

• What exceptions might be considered as the story is described?

• What variations in the actor’s interaction are possible?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

The basic use case presents a high-level story that describes the interaction between the actor and

the system.

 BUILDING THE REQUIREMENTS MODEL

The intent of the analysis model is to provide a description of the required informational,

functional, and behavioral domains for a computer-based system. The model changes dynamically

as you learn more about the system to be built, and other stakeholders understand more about

what they really require..

Elements of the Requirements Model

The specific elements of the requirements model are dictated by the analysis modeling method

that is to be used. However, a set of generic elements is common to most requirements models.

• Scenario-based elements. The system is described from the user’s point of view using a

scenario-based approach.

• Class-based elements. Each usage scenario implies a set of objects that are manipulated

as an actor interacts with the system. These objects are categorized into classes a collection

of things that have similar attributes and common behaviors.

www.Jntufastupdates.com 38

• Behavioral elements. The behavior of a computer-based system can have a profound

effect on the design that is chosen and the implementation approach that is applied.

Therefore, the requirements model must provide modeling elements that depict behavior.

• Flow-oriented elements. Information is transformed as it flows through a computer- based

system. The system accepts input in a variety of forms, applies functions to transform it,

and produces output in a variety of forms.

Analysis Patterns

Analysis patterns suggest solutions (e.g., a class, a function, a behavior) within the

application domain that can be reused when modeling many applications.

Geyer-Schulz and Hahsler suggest two benefits that can be associated with the use of

analysis patterns:

First, analysis patterns speed up the development of abstract analysis models that capture the main

requirements of the concrete problem by providing reusable analysis models with examples as well

as a description of advantages and limitations.

Second, analysis patterns facilitate the transformation of the analysis model into a design model

by suggesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to the pattern name.

NEGOTIATING REQUIREMENTS

The intent of negotiation is to develop a project plan that meets stakeholder needs while

at the same time reflecting the real-world constraints (e.g., time, people, budget) that have been

placed on the software team. The best negotiations strive for a “win-win” result. That is,

stakeholders win by getting the system or product that satisfies the majority of their needs and

you win by working to realistic and achievable budgets and deadlines.

Boehm defines a set of negotiation activities at the beginning of each software process

iteration. Rather than a single customer communication activity, the following activities are

defined:

1. Identification of the system or subsystem’s key stakeholders.

2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set of win-win

conditions for all concerned.

www.Jntufastupdates.com 39

Successful completion of these initial steps achieves a win-win result, which becomes the key

criterion for proceeding to subsequent software engineering activities.

 VALIDATING REQUIREMENTS
As each element of the requirements model is created, it is examined for inconsistency,

omissions, and ambiguity. The requirements represented by the model are prioritized by the

stakeholders and grouped within requirements packages that will be implemented as software

increments.

A review of the requirements model addresses the following questions:

• Is each requirement consistent with the overall objectives for the system/product?

• Have all requirements been specified at the proper level of abstraction? That is, do some

requirements provide a level of technical detail that is inappropriate at this stage?

• Is the requirement really necessary or does it represent an add-on feature that may not be

essential to the objective of the system?

• Is each requirement bounded and unambiguous?

• Does each requirement have attribution? That is, is a source (generally, a specific

individual) noted for each requirement?

• Do any requirements conflict with other requirements?

• Is each requirement achievable in the technical environment that will house the system or

product?

• Is each requirement testable, once implemented?

• Does the requirements model properly reflect the information, function, and behavior of

the system to be built?

• Has the requirements model been “partitioned” in a way that exposes progressively more

detailed information about the system?

• Have requirements patterns been used to simplify the requirements model?

• Have all patterns been properly validated? Are all patterns consistent with customer

requirements?

These and other questions should be asked and answered to ensure that the requirements

model is an accurate reflection of stakeholder needs and that it provides a solid foundation

for design.

www.Jntufastupdates.com 40

www.Jntufastupdates.com 41

