I chi Biveni)

o = 0 VR 510006

UNIT-1V

Polnters

A pointer s o variable which Is used to store nddress of nnother variable.i.c pointer value is an

nddress,
Syntax iy:
type *var-name; -

lere, Lype is the pointer's base lype; it must be a valid C4-+ lype and var-name is the name of the

pointer variable, —
Every variable iy o memory location and every memory location has jts address defined which

can be nccessed using asmpersand (&) operator which dcnolcs_un address in memory.

Nt *ip;  // pointer to an integer. i
double *dp;  // pointer to a double

loat *fp; 4 pointer to a float -

char *ch  // pointer to character _

The nctual data type of the value of all pointers, whether integer, float, character, or otherwise, is
the same, a long hexadecimal number that represents memory address. The only difference
between pointers of different data types is the data type of the variable of constant that the
pointer points to,

Example-1:

flinclude <iostrenm> -
using namespace std;
int main() -

{

“int number=30;

int« p;

p=&number;/stores the address of number variable
cout<<"Address of number variable is:"<<&number<<endl:

coul<<"Address of p variable is:"<<p<<endl;
cout<<"Value of p variable is:"<<*p<<endl;
return 0;

)

Example-2 :Swap two numbers using pointers
flinclude <iostream>

using namespace std;

int main()

{

int 0=20,b=10,+pl=&a,*p2=&b;

cout<<"Before swap: *pl="<<apl<<" #p2="<<up2<<endl;

«pl=epltep2; i
»p2=*p|-¢p2;

*pl=+pl-+p2;

cout<<"After swap: p|="<<ep]<<" *p2="<<#p2<<endl; .

return 0;

}

T.V.Nagaraju Technlcal ’
www.Jntufastupdates.com Scanned with CamScanner




& @ QO O

L

=

s &y

F . 3 ave me
...\ccutmu time y
18, diregy e
_ Mcmnw is

ith pointers is faster be i i
cause data are manipulated with the adq
= * r
cess lmncmor}- location, " tha

accessed efficient]

25 well | y with the pointers. The pointer assigns and releagesg the

Memory
lence it can be said the Memory of pointers is dynamically allocateq

Pointe

IS are useq yyi ng tw
i vith data sy, '

d multi_g; - ructures. They are useful for representing two-

An array, of
Subseript rap g“é‘y tYPe can be accessed with the help of pointers, without considerinp ;
Ointers : e
Pointers
* InCH

are used for file handling
are used 1o allocate '
» A pointer decly
©r, a pointer 1o 4

memory dynamically,

red
derivlodalbase class could access the object of a derived clag
¢d class cannot access the object of a base class. N

Pointer ¢, class

-

Example-1:
class Simple

public:
int a=5:
I
Int main()
{
Simple obj;

Simple* ptr; // Pointer of class type
ptr = &obj;

cout<<obj.a;
cl:out<<ptr->u; !/ Accessing member with pointer
Example-2

#include <iostream>
using namespace std;
class Box {
private:
double length;
double breadth;
double height;

T.V.Nagaraju Technical

www.Jntufastupdates.com _
Scanned with CamScanner

oot

Bo¥

dimensiony

)



public:
/! Constructor definition

Box(double | = 2.0, double | = 2.0, double |y = 2.0) {

cour<<"Constructor called " <<endl:
length = .
breadly = b,
height = .

)

double Volume() {
retum length * breadth * height:

1.
IS

int main() {
Box Box1(3.3, 1.2, 1.5), ¢ Declare box|
Box Box2(8.5, 6.0, 2.0); /I Declare box) -
Box *ptrBox; !/ Declare pointer to a clags,

/! Save the address of

Ist object
prBox = &Boxl1;

/I'Now try to access a member using member access operator
Coul<<"Volume of Box1: " «ptanx->anume() <<endl;

/l Save the address of second object
ptrBox = &Box2;

€55 Operator

/I Now try 1o access a member using member ace
' <€perox->Volumc0 <<endl:

cout<< "Volume of Box2: '

return (;

}

Pointer Objects
When an object is g pointer to the class, functions of that class is accessed by using
an object of that ¢Jass with an arrow (->) operator,
Let us consider an example;
#include <jostream>
using namespace st ;
class Sample {/'This a class Sampleprivate:
int value], value2;
public; -
void setValues(int numl, int num2) {
value] = numl;
value2 = num2;

}
void display() {

cout<<"The given values are : " << value] <<"" << value2 <<end];
h

T.V.Nagaraju Technical

www.Jntufastupdates.com Scanned with CamScanner



()
O

O

i
L

. —_— e N £
—ih '
\ ' /

int main() {
Sample *p = new Sample; // A pointer object p is created and stored the add;
/dynamically allocated memory of a class Sample "M of U
the public member functiony ,,.. \
! I‘I.ln,"“

p->setValues(88, 99); // Pointer object p can access

>loperator
p->display();

)
and the pointer Objecy

{n the nhm:c example, a pointer object is referenced to the class Sample
Can access its public members by using arrow (->) operator.

Pointers to base class
Onc of the ke
y features of class i i i i
_ c ke s Ss inherita i i
crith 2 poe o e rcta nce is that a pointer to a derived class is lype-compatible

#include <iostream>
using namespace std;
class Polygon {

protected:
thl’ll}\‘idlh. height;
public: : -
void set_valucs (int 2 int b) int main () {
idth=a- hei ’ Rectangle rect:
}:: Width=a; height=b; ) Triangl% trgl::
Polygon * p1 = &rect;
class Rectang]e: . Polygon * p2 = &t
public: gle: public Polygon { pl->set_values (4,5):
- 2->set val ’
Int area() p=->set_values (4,5);
{ return width*height; § outeaeotarea() £< o'
£ | return Ogl.area() <<"\n;
class Triangle: public Polygon }
public: yeon { %utput.
int area() 10
{ retum width*height/2; )
15

Function main declares two poj
: pointers to Polygon (named p] and
adc*:’rcssc:s of rect and trgl, respectively, which are objects olt)' lyp[t]: RI::Q .o sssigned the
assignments are valid, since both Rectangle and Triangle are classes derzil:gc]jerand ;[;l'ianglc_ Such
) rom Polygon,

Dereferencing p1 and p2 (with i i
pl->and p2->) is valid and allow
R o’ . S us t
their pointed objects, For example, the following two statements wm?lc?clj:si th? n[mmbers of
Quivalent in the

previous example:

pl->set_values (4,5);
rect.set_values (4,5);

T.V.Nagaraju Technical
www.Jntufastupdates.com _
Scanned with CamScanner



But because the type of both pi and p2 is pointer to Polygon (and not pointer to Rectangle nor
pointer to Triangle), only the members inherited from Polygon can be accessed, and not those of
the derived classes Rectangle and Triangle. That is why the program above accesses the area
members of both objects using rect and trgl directly, instead of the pointers; the pointers to the
base class cannot aceess the area members,

Member area could have been accessed with the pointers to Polygon if area were a member of
Polygon instead of a member of its derived classes, but the problem is that Rectangle and

Triangle implement different versions of area, therefore there is not a single common version
that conld be implemented in the base class.

Pointer to Derived Class

In C++, we can declare a pointer points to the base class as well as derive class.
Consider below example to understand pointer to derived class.

#include<iostream.h>
class base
{
public:
intnl:
void show()
{
cout<<™\nn| = “<<nl;
} : -
H

class derive : public base

public:
int n2;
void show()
{
cout<<™\nnl = *<<n];
cout<<"\nn2 = “<<n2;
}
B

int main()

base b;

base *bptr;
bptr=£&b; /laddress of base class -
cout<<"Pointer of base class points to it

bptr->n1=44;  //access base class via base pointer
bptr->show();

derive d;
cou[(':"\ﬂ";
bptr=&d; /laddress of derive clags

T.V.Nagaraju Technical

o wwwd s.com ,
ntufastupdate Scanned with CamScanner



8

O
O

Q

. ' inter
bptr->n1 =66 /laccess derive class via base po
OPtr->show(): Jexecutes base show only

derive *d1y/derived pointer

dl'_th' . 'd ' "t

) ; ‘base*" to ‘derive

Td1=8by/ error: invalid conversion from ‘base t_o
cour<<"\npointer to derived class™

dl->nl=|00:

dl->n2=30p;

dl ->show();

retumn 0; _
)

Output

Pointer of base class points to it
nl = 44

nl = ¢4 - -

pointer to derived class
nl =]0p

n2 =200 -

es of this: .
v 1) When local variable’s name js Same as member’s name
2) To return reference to the calling object
?
When local variable’s name is same ag member’s name

#include<iostream>
using namespace std;

T.V.Nagaraju Technical

ates-eem——
— ——WWw-Inttufastupd:

Scanned with CamScanner




T T T T T T TR T T T it e —
N T =
L 2

/* ocal variable is same g

class Test

{ l -

_ private:
int x;
public:
void setX (int x)

s 0 member's name */

/l 'The 'this' pointer is used to retrieve the object’s x
— I7hidden by the local variable 'x'

this->x = x;
]
void print() { cout<< "X ="<<x <<endl; }
int main()
8 {
= Test obj;
et int x = 20:
obj.setX(x);
- obj.print();
) retum 0;
= )
O To return reference to the calling object
#include<iostream>
) using namespace std;
0 class Test
2 {
private:
@ int x;
= inty;
il public:
) Test(int x = 0, int y=0)
=" {
ot this->x = x;
0 this->y = y; .
]
) Test &setX(int a)
N
9 return *this;
) )
2 Test &setY(int b)
‘B {
return *this;
! .
2 _ .
T.V.Nagaraju Technical

——www.Jntufastupdates.com Scanned with CamScanner



™ " 5 b"t
6:\(‘\}
' Jv
void print() \\
| 1] =" <<Cnd|;
cone<x =" <<x << "y =" <<y
\ ) {2
) K O
0 A
O int main() - O
{ - @
0O Test obj1(s, S);
O # Chained function calls. Al calls modify the same object .
) 1/ as the same object is retumed by reference
objl.setX( I(}).selY(ZD); : ;:
objl.ptinl(): - - z
e return 0; v
s i _ ﬁ
Pul}vmorphlsm
O Polymorphism is derived from Wwo Greek words poly and morph. The word poly means many
N and morph means form, So Polymorphism means many forms
L i
') The process ofreprcs:-mmg one form in multiple forms jg known as Polymorphism
© In C++ Polymorphism is divided into 1w types
o *  Compile time Polymorphism or Static binding or Early binding This is achicved by
nction overloading or Operator overloadin
s . Runtlme_polymorphlsm or Dynamic binding or Late binding This js achieved by
o function overriding
0 A binding refers 10 the process 1har is to be used for converting functiong and variap]es into
machine language addresses.
2
= Bmdmg rncaps matching the function call \:\rilh the correct function definition by the compiler, Jg
& takes place either at compile time or g runtime,
2
- In early binding, the compiler matches the function call with the correet functjop definition at
) compile time. It is a5 known as statjc binding or compile time binding,
3 B}r default, the compiler goes to the function definition which hag been called dunng compile
™3 time,
3 In late binding, the compiler matches e function ca) with the correey function definition 4
3 runtime. It is ajso known as ymamic binding or runtime binding
%) In Iate binding, (he compiler identifies the type of object at funtime and thep Matches (ha
iy function call with e correct function definjtjop
2
a T.V.Nagaraju Technical
—_— - ———
= o . anner
r—-———— u,\,\_,\',._,_v;niugublupdmms—%]nned with CamSc




O
O

)

9
By defaule, binding takes Place early, Dynamic binding can be achieved by declaring
virtual functiong,
Virtual functions

In C44, when a derived ¢lpss inhe

: rits from a base class, an object
referred to vig g Pointer of the bhase

of the derived class may be
class type instead of the derive

class type,

lass methods overridden b

such a pointer can be bound cither carly (by

pointer or reference,

Y the derived class, the method actually called by
or late (by the Tuntime)
10,

the compiler), according to the declared type of the
» according to the actugl type of the object referred

; b unction call,

“To avoid such problems, user need 10 use the runtime polymorphism depending on the virtual
functions by using the keyword virtual,

The virtual function s
the derived classes,

IT the Tunction is virtual
implementation of the fun
regardless of the declared ¢

in the base class, the method is resolved late and the derived class
clion is called acconding to the actual type of the object refermed to,
ype of the poinier.

IT the function is not virtual, the
according to the declared p

The general form
class Base {

public: -
virtual retum-type l‘unclinnNnmc(} {

method is resolved carl
¢ of the pointer.,

at ol defining virtual functions is:

Y and the function called is selected

« I This function js virtual and same function is available in Derived
class
)
}: 1T
class Derived : visibility-mode Basc {
public:
return-type functionName() {
h ] .
) -
K

et us consider an example:

flinclude <iostream>

using namespace std;

class Base { // This is clnss Base

public: ‘
virtual void 1Ii.*q1|uy(]i{ i This

i * only at runtime

e :::nul'C*C "This is base class display()" <<endl;

} L]

is virtual and tells the compiler that this function binding

T.V.Nagaraju Technical

www.Jntufastupdates.com Scanned with CamScanner



"

class Derived - public Base { // This is class Derived derived from Base clasg p"bl'i-:l;

publie:
void display() [
cout<<"This is derived class display()" <<end:

)

int Main() {

llasF ob1: // Object i created to the Base ¢/ass "
Yerived ob2: jy Object is created to the Derived class

Yase P/ Pointer object is created to the Base class

P = &obl; / Address of Base class object i stored in the pointer object

D-jd isplay(); /7 Accessing display() method of Base class and jy js valid
P=&ob2; yy Address of Derived class object is
P->display(). '

* Itis Possible to defina v:

* Itis possible o have virtua} operator overloading,

; — 10
—e o ijnthamdatemmh CamScanner




&
O

C

L

9]

.
9

11

A user can call privage mem| i . inter with the
- i er functio . m the base class pointer
help of virtual Keyword. n Oflllll: derived class fro

The compiler checks for Aceess specifier only at compile time. So at runtime when late binding
oceurs, it does not cheek whether

itis calling the private function or the public function.

Let us consider an example:

#include <iostream>

using namespace std; —
class Base { // Thisis class Base

public:
o virtual void display() { // This is virtual and tells the compiler that this function
binding is done only at runtime .

cout<<"This is base class display()" <<endl;
} .

K
class Derived : public Base { /I'This is class Derived derjved from Base class publicly
private:

void display() { // This is a private method
cout<< "This is derived class display()® <<end|;
}
b
int main() {
Derived ob2; // Object is created to the Derived class

Base *p; // Pointer object is created to the Base class

p = &ob2; // Address of Derived class object is stored in the pointer object
p->displa

y(; // Late binding occurs and which can access the display() method of
Derived class
}
In the above example, the display() method in Base class is made as virtual.

The late bindin

the address of
public,

g is done at accessing display() method through a pointer object which contains
Derived class object. So, it does not check whether the display() is private or

Pure Virtual functions

A pure virtual function is a function that has no definition within the base class.
Pure virtual methods typically have a declaration (signature) and no definition (implementation).
A pure virtual function is declared in the base class and cannot be used for any operation.

The class which contains a pure virtual function cannot be used to declare objects, such classes
are known as abstract classes,

T.V.Nagara]u Technlcal

www.Jntufastupdates.com-

Scanned with CamScanner



D

O

If anyone attempts to declare an object to abstract classes then the compiler would show
error,

f\ Pure virtual function or

pure virtual method is a virtual function that is re
implemented by a deriv

quired to p,
ed class if the derived class is not abstract.

zb\gl the derived classes without pure virtual functions are called as concrete classesi.e., they can
used to create objects.

The forma of 4 pure virtual function js:

[
1
1

Virtual return-type function-nameo |-
In C++, a clasg is abstract if it hag at least one pure virtyal function,
L_ct Us consider ap eXample:
#include <iostream>
using namespace std;
class Base { // This is class Base
public:
. virtual void display()=0; // 1 is a pure virtual function
class Derived - public Base { // This is class Derjveqd derived from Base class publicly
public:

pure virtual functjop
class display()" <<end I; -
IR

int main() {

Derived ob; // Object is created to the Derived class

Base *p; // Pointer object is created to the Base class

P = &ob; // Address of Derived class object is stored in the pointer
p->display(); // It will access the display() method of Derived class

1
I

In the above example, the display() method in Base class is made as pure virtual function,

While accessing display() method through a pointer object it will call the Derived class display()
al runtime.

Abstract classes

In C++, a class is abstract if it has at least one pure virtual function,

The class which contains a pure virtual function cannot be used to declare objects, such classes
are known as abstract classes.

Abstract classes are used to
override the pure virtual fu
abstract class.

provide an interface for its subclasses, If the derived class does not
nction of the base class, then the derived class also becomes an

T.V.Nagaraju Technical

—  wwaJntufastupdates.com

Scanned with CamScanner



0800

-

-
L.

%/

-

30Q 0

”
\,

{3

. . s of abs
Abstracy classes cannot be instantiated but the pointers and reference bstract Class ¢
Created,

:\‘n abstracy class can have constructors.
#include <iostream>

using Namespace std;

class Base {
Protecte:
int value;
publie:
Base(int number) {
value = number;
) virtual void display() = 0;

class Derived - Public Base {
Public:

Derived(int Number) : Base(number) {
}
void display() {
COut<< "The given value : " << yalye <<endl;

-

int main() {
Base *p;
Derived ob(55);
P =&ob;
P->display();

}

Virtual Destructors

Need of virtual Destructor

Destructors can also be used in inheritance concept. Destructors are invoked in the order
opposite to the order in which constructors are called.

While using the polymorphism concept, deleting a derived clas§ object using a pointer to 3 base
class that has a non-virtual destructor results in undefined behaviour,

T.V.Nagaraju Technical

- 13
—www—dntafastupdates.com Scanned with CamScanner



G

3 mple, the followi
For exampyc, T TONowIng program regylys i
ginclude <iostrcam> lts in undefined bel
asing namespace std;
class Base { // This is class Base

aviour:

public:
Base() {

n P
cout<< "This is base class constructor\n";

~Base() {
; cout<< "This is base class destructor\n";
b _
class Derived : public Base { // This is class Derived derived from Base class publicly
public:
Derived() {

cout<<"This is derived class constructor\n';
}

~Derived() {
cout<< "This is derived class destructor\n";
}

I8
int main() {

Base *p = new Derived; // Basc class pointer pointing anonymous object of Derived class
delete p; // Deleting the memory pointed by p

} =

In the above example, delete p will only call the Base class destructor, which is undesirable
because, the object of Derived class remains unrestricted because its destructor is never called
which results in memory leak.

A constructor cannot be virtual becausc the constructors are always called in an order of base
constructor and derived constructor respectively.

So, there is no necessity of making constructor as virtual.

Virtual Destructors

The destructors can be declared as virtual because in polymorphism the correct execution of
destructors is only done by using virtual for base class destructors,

Destructors of the base and derived classes are called when a deri i
; e ived
pointed by a base class pointer object is deleted. class object address

Let us consider an example:
#include <iostream>
using namespace std;

T.V.Nagaraju Technical
—pipiirditefa s tupdates.com

14

Scanned with CamScanner



&

Q
O
O

@)
O

-

class Base { //'This is class Base

public:
Basco l n
cout<< "This is base class constructor\n";
} :
virtual ~Base() { )
cout<< "This is base class destructor\n";
}

h

class Derived : public Base { // This is class Derived derived from Base class publicly

public:
Derived() {
cout<< "This is derived class constructor\n";

}

~Derived() {
i cout<< "This is derived class destructor\n";
}

5 -
int main() {

Base *p = new Derived;
delete p;

)

In the above example, *p is a pointer object of the class Base.

The new operator allocates dynamic memory to the class Derived and then
object address is assigned to the Base class pointer p.

the anonymous

When the memory is allocated to the object of class Derived, it calls

the constructors of Base and
Derived classes respectively.

While delefing the memory it calls destructors, the

Yy are called in the order of Derived class
destructors and Base class destructors only by placin

g virtual at the Base class destructor.

Inline functions

C++ provides an inline functions to reduce th

e function call overhead. Inline function is a
function that is expanded in line when it is called

With inline keyword, the compiler replaces the function call statement

with the function code
itself and then compiles the entire code.

program,

T.V.Nagaraju Technical

Scanned with CamScanner



L=

O U v v W

C 0 @

16

ction is big in terms of exeeutable instryeti ‘ i inli est
. structions then ¢ 7 e the inline reque

d et the function as a normal function 1en compiler can ignore th

tax for defining the function as inline is:

fin return-type funclinn-nnmc(paramctcm) {
function code

}

include <iostream>
using namespace std;
inline int cube(int s) {
retums *s*s;

}

int main() {

int num;

cout<< "Enter a number : ";

cin>> num;

cout<< "The cube of a given number : " << cube(num) << "\n";

)

Static Data Members
The data members and member functions of a class may be qualified as static, so there may be
static data members and static member functions. -

A static data member of a class is just like a global variable for its class, i.c. the static data
member is globally available for all the objects of that class type.

The static data members are usually maintained to store values common to the entire class.

For instance, a class may have a static data member keeping track of its number of existing
objects.

A static data member has the following properties:

o It is initialized to zero when the ﬁrsl' object of its class is created and no other
initialization is permitted to the same stalic data member.

« Only one copy of the static data member is creat:cd for the entire class and is shared by all
the objects of that class, no matter how many objccts are created, 74

e [tis visible only within the class but its lifetime is the entire program. —

The declaration of a static data member within the class definition is similar to any otl ;
declaration except that it starts with the keyword static as shown below: 'er variable
Syntax:

static data_typemember_name;

T.V.Nagaraju Technical

www.Jntufastupdates.com

Scanned with CamScanner



('.“ .

)

O

OO0 Q0O

Q

D 0

-
21
L

[

Example;
class Sample {
static int count;

n A )
The above declared static data member count can be defined outside the class as:

Syntax: dma__typec!nss_nnmc *: member_name =value; -

Example:
int Sample::count;

E\Iotc that the type and scope of each static data member must be defined outside the class which
IS necessary because the static d m

ala members are stored separately rather than a part of an object.

Since they are associated with the class rather -than an object, they are also known as class
variables. -

Static variables are initiali
variable as:

also initialize a value to the static
int Sample::count = 10;

#include <iostream>
using namespace std;
class StaticData {
char name[25); -
int id;
static int count;
public :
void getData() {
cout<< "Enter student id and name -
cin>> id >> name:
count++;
}
void getCount() {

cout<<"Objects count js : " << count <<endl;

void putData() {
cout<<"Student id ; " << jq << " name :
)
)

int StaticData::count;
int main() {
StaticData s1;
sl.getData();
sl.getCount(); .

" << name <<endl;

T.V.Nagaraju Technical

www.Jntufastupdates.com Scanned with CamScanner



4

18

graticData 82, 833

sz_gcﬂ)nln(\:

o3 getData():

s1 putData():

putData(y

s3.putData();

&3.getCount();

p—

Static Member Functions

A static member function can access only the static data members of the same class and it does
not access any non-static data members.

A static member function can be declared in the class definition by using the keyword static as:
static return-type function-name(arguments) {

)

A static member function can be called by using class name instead of object as:
class-name::function-name();

#include <iostream>
using namespace std;

class Item
int itemNum;
float price;
static int count;
public :
void getData() { .
cout<< "Enter item number and price : ";
cin>>itemNum>> price;
count+t;
}
static void getCount() {
cout<< "Objects count is : " << count <<endl;
}
void putData() {
cout<< "Item number : " <<itemNum<< " price : " << price <<endl;
) -
|8

int ltem:;count;

int main() {
ltem il;
il.getData();
llcm::gutCounl();
ltem i2, i3;
12.getData();
i3.getData();
il.putData(),
i2.putData();

T.V.Nagaraju Technical
www.Jntufastupdates.com 18
Scanned with CamScanner



Al

s

Q000CQO00Q

QO CO0COC o

,_\
e

G 0

i3.putData();
Ttem::petCount();

!
Static Objects

The static keyword can be applied to local varinbles, member functions, data members and as
well as objects in C++.

An object becomes static when the static keyword is used in its declaration.

The static objects are initialized only once and destroyed only when the entirc program

terminates. N
The static objects are active only within their scope but they are alive throughout the program.

In static objects, cach data member is initialized to zero by default which does not happen to
normal objects. _ -
#include <iostream>
using namespace std;
class Sample {
int nam1, num2;
public :
void add() {
numl +=5;
- num2 +=9;

}
void show() {
cout<< numl <<" " << num?2 <<endl; o

)

1

int main() {
static Sample s;
cout<< "Before addition : *;
s.show();
s.add();
cout<< "After addition : ";
s.show();

!

T.V.Nagaraju Technical

www.Jntufastupdates.com
Scanned with CamScanner

19 =





