
1

UNIT III – Syllabus

Operator Overloading and Type Conversion & Inheritance: The Keyword Operator,

Overloading Unary Operator, Operator Return Type, Overloading Assignment

Operator (=), Rules for Overloading Operators, Inheritance, Reusability, Types of

Inheritance, Virtual Base Classes- Object as a Class Member, Abstract Classes,
Advantages of Inheritance, Disadvantages of Inheritance.

What is meant by operator overloading? Explain with an example.

A symbol that is used to perform an operation is called an operator. It is used to perform

operations on constants and variables. By using operator overloading, these operations are

performed on objects. It is a type of polymorphism. The keyword operator is used to define a

new operation for an operator.

Syntax:

Steps:

return-type operator operator-symbol (list of arguments)

{

// Set of statments

}

www.jntufastupdates.com

2

1. Define a class which is to be used with overloading operators.
2. Declare the operator prototype function is in public section.

3. Define the definition of the operator.

Example

include <iostream.h>
include <conio.h>

class number

{
public:

int x,y;

number()

{

x=0;
y=0;

}

number(int a, int b)
{

x=a;

y=b;

}

number operator + (number d)

{

number t;

t.x=x+d.x;

t.y=y+d.y;

return t;

}

void show()
{

cout<<"\nX="<<x<<"\t Y="<<y;

}
};

int main()

{

number n1(10,20), n2(20,30), n3;

n3=n1+n2;

n3.show();
return 0;

}

Output X=10 Y=20 X=20 Y=30 X=30 Y=40

Explain about overloading unary operators with an example.

 An operator which takes only one argument is called as unary operator.

Ex: ++, --, -, +, !, ~, etc.

 A class member function will take zero arguments for overloading unary operator.

 A friend member function will take only one argument for overloading unary

operator.

Constraints on increment /decrement operators

When ++ and − − operators are overloaded, there exists no difference between the postfix and

prefix overloaded operator functions. To make the distinction between prefix and postfix

www.jntufastupdates.com

3

notations of operator, a new syntax is used to indicate postfix operator overloading funct ion.

The syntaxes are as follows:

Operator ++(int); //postfix notation
Operator ++(); //prefix notation

Ex: Program for overloading unary operator using normal member function.

include <iostream.h>
include <conio.h>

class num

{

private:

int a, b;
public:

num(int x, int y)

{

a=x;

b=y;

}
void show()

{

cout<<"\nA="<<a<<"\tB="<<b;

}

void operator ++() //prefix notation

{

++a;

++b;

}

void operator --(int) //postfix notation

{

a--;

b--;

}

};

int main()

{
num x(4,10);

x. show();

++x;
cout<<"\n After increment";

x.show();

x--;
cout<<"\n After decrement";

x.show();

}
Output

After increment

A = 5 B = 11

After decrement

A = 4 B = 10

www.jntufastupdates.com

4

Ex: Program for overloading unary operator using friend function.

include <iostream.h>

include <conio.h>

class complex
{

private:

int real, imag;
public:

complex()

{

real=imag=0;

}

complex(int r, int i)

{

real=r;
imag=i;

}

void show()

{

cout<<"\n real="<<real<<"\timaginary="<<imag;

}

friend complex operator -(complex &c)

{
=-c.r;

c.i=-c.i;
return c;

}

};
void main()

{

complex c(1,-2);

 how();
cout<<"\nAfter sign change";

-c;

c.show();

}

Output

real= 1 imaginary=-2
After sign change

real= -1 imaginary=2

Explain about overloading binary operators with an example.

 An operator which takes two arguments is called as binary operator.

Ex: +, *, /, etc.

 A class member function will take one argument for overloading binary operator.

 A friend function will takes two arguments for overloading binary operator.

Example: Program for overloading binary operator using class member function.

include <conio.h>

include <iostream.h>

class num

{
private:

www.jntufastupdates.com

5

int a , b;
public:

void input()

{
cout<<"\nEnter two numbers:";

cin>>a>>b;

}

void show()

{
cout<<"\nA= "<<a<<"\tB= "<<b;

}

num operator +(num n)

{

num t;

t.a=a+n.a;

t.b=b+n.b;

return t;

}

num operator -(num n)

{

num t;
t.a=a-n.a;

t.b=b-n.b;
return t;

}

};

int main()

{

num x,y,z;

x. read();

y.read();

z=x+y;

r.show();

return 0;

}

Output

Enter two numbers: 1 2

Enter two numbers: 3 4

A=4 B=6

www.jntufastupdates.com

6

Ex: Program for overloading binary operator using friend function.

include <conio.h>

include <iostream.h>
class num

{

private:
int a, b;

public:

void input()
{

cout<<"\nEnter two numbers:";

cin>>a>>b;

}

void show()
{

cout<<"\nA="<<a<<"\tB="<<b;

}

friend num operator + (num o1, num o2)

{
num t;

t.a=o1.a+o2.a;

t.b=o1.b+o2.b;

return t;

}

};

int main()
{

num x,y,z;

x.input();
y.input();

z=x+y;

z.show();

return 0;

}

Output

Enter two numbers: 5 8
Enter two numbers: 1 4
A=6 B=12

Explain about overloading assignment operator with an example.

Data members of one object are initialized with some values, and same values are assigned to
another object with assignment operator. Assignment operators can be overloaded in two
ways. They are:

1. Implicit overloading
2. Explicit overloading

Implicit overloading:

include <iostream.h>

class num
{

private:
int x;

public:

www.jntufastupdates.com

7

num(int a)

{

x=a;

}
void show()

{

cout<<x<<" ";

}
};
int main()

{

num n1(2), n2(3);

cout<<"\nBefore assignment:";

cout<<"\n A=";

a1.show();

cout<<"\n B=";

a2.show();
a2=a1; //Implicit assigment
cout<<"\nAfter assignment:";

cout<<"\n A=";

a1.show();
cout<<"\n B=";
a2.show();

}

Output

Before assignment:
A = 2 B=3

After assignment:

A = 2 B=2

Explicit overloading:
include <iostream.h>
class num

{

private:

int x;
public:

num(int a)

{

x=a;

}

void show()

{

cout<<X<<" ";

}

void operator =(num b)

{
x=b.x;

}

};

int main()

{
num a1(2), a2(3);

www.jntufastupdates.com

8

num n1(2), n2(3);

cout<<"\nBefore assignment:";

cout<<"\n A=";

a1.show();

cout<<"\n B=";

a2.show();

a1.operator=(a2); //Explicit assigment

cout<<"\nAfter assignment:";

cout<<"\n A=";

a1.show();

cout<<"\n B=";

a2.show();

return 0;
}

Output

Before assignment:

A = 2 B=3
After assignment:

A = 3 B=3

Explain about rules for overloading operators.

1. Operator overloading can’t change the basic idea.

2. Operator overloading never changes its natural meaning. An overloaded operator “+”

can be used for subtraction of two objects, but this type of code decreased the utility

of the program.
3. Only existing operators can be overloaded.

4. The following operators can’t be overloaded with class member functions

Operator Description

. Member operator

.* Pointer to member operator

:: Scope resolution operator

sizeof() Size of operator

and ## Preprocessor symbols

5. The following operators can’t be overloaded using friend functions.

Operator Description

() Function call operator

= Assignment operator

[] Subscripting operator

−> Class member access operator

6. In case of unary operators normal member function requires no parameters and friend
function requires one argument.

7. In case of binary operators normal member function requires one argument and friend

function requires two arguments.

8. Operator overloading is applicable only within in the scope.

9. There is no limit for the number of overloading for any operation.

10. Overloaded operators have the same syntax as the original operator.

www.jntufastupdates.com

9

What is inheritance? What are the advantages and disadvantages of inheritance?

(OR)

Explain about reusability.

Inheritance is the most important and useful feature of OOP. Reusability can achieved

with the help of inheritance. The mechanism of deriving new class from an old class is called

as inheritance. The old class is known as parent class or base class. The new one is called as

child class or derived class. In addition to that properties new features can also be added.

Advantages:

 Code can be reused.

 The derived class can also extend the properties of base class to generate more
dominant objects.

 The same base class is used for more derived classes.

 When a class is derived from more than one class, the derived classes have similar

properties to those of base classes.

Disadvantages:

 Complicated.

 Invoking member functions creates overhead to the compiler.

 In class hierarchy, various data elements remains unused, and the memory allocated to

them is not utilized.

What are access specifiers? How class are inherited?

C++ provides three different access specifiers. They are:

1. Public

2. private and

3. protected.

 The public data members can be accessed directly outside of the class with the object.

 The private members are accessed by the public member functions of the class.

 The protected members are same as private but only the difference is protected members

are inherited while private members are not inherited.

A new class can be derived from the old one is as follows:

class name_of_the_derived_class : access_specifier name_of_the_base_class

{

……
Members of the derived class

......

};

Example:

class A : public B

{

.............

.............

};

class A : private B

{

.............

.............

www.jntufastupdates.com

10

};

class A : protected B

{

.............

.............

};

Note: If no access specifier is specified then by default it will takes as private.

Public derivation:

In public derivation, all the public members of base class become public members of the

derived class and protected members of the base class becomes protected members to the

derived class. Private members of the base class will not be inherited.

Example:

include <iostream.h>
class Base

{

public: int x;

};

class Derived : public Base

{

public: int y;

};
int main()

{

Derived d;

d.x=10;

d.y=20;

cout<<"\n Member x="<<b.x;

cout<<"\n Member y="<<b.y;

return 0;

}

Output:

Member x=10

Member y=20

www.jntufastupdates.com

11

Private derivation

In private derivation, all the public and protected members of the base class become

private members of the derived class and private members of the base class will not be

inherited.
Example:

include <iostream.h>
class Base

{

public: int x;

};

class Derived : private Base

{

int y;
public:

Derived()

{

x=10;
y=20;

}

void show()

{
cout<<"\n Member x="<<x;

cout<<"\n member y="<<y;

}

};

int main()

{

Derived d;

d.show():

return 0;
}

Output:

Member x=10

Member y=20

Protected derivation

In protected derivation, all the public and protected members of the base class become

protected members of the derived class and private members of the base class will not be

inherited.

Example:

include <iostream.h>
class Base

{

public: int x;

};

class Derived : protected Base

{
int y;

public:

www.jntufastupdates.com

12

Derived()

{

x=10;
y=20;

}

void show()

{

cout<<"\n Member x="<<x;
cout<<"\n member y="<<y;

}

};

int main()

{
Derived d;

d.show();

}

Output:

Member x=10

Member y=20

Explain about protected data with private members with an example.

The protected type is similar to private, but it allows the derived class to access the members
of the protected.

Example

include <iostream.h>

class Base

{

protected: int x;

};

class Derived : private Base

{

int y;
public:

Derived()

{

x=10;

y=20;

}
void show()

{

cout<<"\n Member x="<<x;

cout<<"\n Member y="<<y;

}
};

int main()

{

Derived d;
d.show();

}

www.jntufastupdates.com

13

Output:

Member x=10

Member y=20

Define inheritance. Explain about various types of inheritance with examples.

Deriving a new class from an existing one is called as inheritance.

Types:

1. Single Inheritance
2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance

6. Multipath Inheritance

Single Inheritance:

In this type of inheritance one derived class inherits from only one base class. It is the
simplest form of Inheritance..

Here A is the base class and B is the derived class.

Example:

#include<iostream.h>

#include<conio.h>

class Emp

{
public:

int eno;

char ename[20],desig[20];
void input()

{
cout<<"Enter employee no:";
cin>>eno;

cout<<"Enter employee name:";

cin>>ename;

cout<<"Enter designation:";
cin>>desig;

}

};

class Salary: public Emp
{

float bp, hra, da, pf, np;

public:

void input1()

{

cout<<"Enter Basic pay:";

cin>>bp;

cout<<"Enter House Rent

Allowance: ";

cin>>hra;
cout<<"Enter Dearness

Allowance :";

cin>>da;
cout<<"Enter Provident Fund:";

cin>>pf;

}
void calculate()

{

np=bp+hra+da-pf;

}
void display()

{

cout<<"\nEmp no: "<<eno

cout<<"\nEmp name: "<<ename;

cout<<"\nDesignation: "<<design;

cout<<"\nBasic pay:"<<bp;

cout<<"\nHRA:"<<hra;

cout<<"\nDA:"<<da;

cout<<"\nPF:"<<pf;

cout<<"\nNet pay:"<<np;

}

www.jntufastupdates.com

14

};

int main()
{

clrscr();

Salary s;

s.input();

s.input1();

s.calculate();

s.show();

getch();

return 0;

}

Multiple Inheritance:

Output:

Enter employee number: 1001

Enter employee name: Vijayanand
Enter designation: Manager

Enter basic pay:25000

Enter House Rent Allowance:2500

Enter Dearness Allowance :5000

Enter Provident Fund:1200

Emp no: 1001
Emp name: Vijayanand

Designation: Manager

Basic pay:25000

HRA:2500

DA:5000

PF:1200

Net pay: 31300

In this type of inheritance a class may derive from two or more base classes.

(or)

When a class is derived from more than one base class, is called as multiple inheritance.

Fig. Multiple Inheritance

Where class A and B are Base classes and C is derived class.

Example:

#include<iostream.h>

#include<conio.h>

class Student

{
protected:

int rno,m1,m2;

public:

void input()

{
cout<<"Enter the Roll no :";
cin>>rno;

cout<<"Enter the two subject marks :";
cin>>m1>>m2;

}

};

class Sports

{

protected:
int sm; // sm = Sports mark

public:

www.jntufastupdates.com

15

void getsm()

{

cout<<"\nEnter the sports mark :";
cin>>sm;

}

};

class Report : public student, public sports

{
int tot, avg;

public:

void show()

{

tot=(m1+m2+sm);
avg=tot/3;

cout<<"\nRoll No : "<<rno<<"\nTotal : "<<tot;

cout<<"\n\tAverage : "<<avg;

}

};

int main()

{

clrscr();

Report r;

r.input();
r.getsm();

r.show();
return 0;

}

Output:

Enter the roll no: 10

Enter the two marks : 70 90

Enter the sports mark: 60

Roll no : 10
Total : 110

Average: 73

Hierarchical Inheritance

In this type of inheritance, multiple classes are derived from a single base class.

Fig. Hierachical Inheritance

Where class A is the base class and B, C and D are derived classes.

Example:

#include<iostream.h>

#include<conio.h>

www.jntufastupdates.com

16

class Vehicle

{

public:
Vehicle()

{

cout<<"\nIt is motor vehicle";

}

};

class TwoWheelers : public Vehicle

{

public:

TwoWheelers()

{

cout<<"\nIt has two wheels";
}

void speed()

{

cout<<"\nSpeed: 80 kmph";
}

};

class ThreeWheelers : public Vehicle

{
public:

ThreeWheelers()

{

cout<<"\nIt has three wheels";

}
void speed()

{

cout<<"\nSpeed: 60 kmph";

}

};
class FourWheelers : public Vehicle

{

public:

FourWheelers()

{
cout<<"\nIt has four wheels";

}

void speed()

{

cout<<"\nSpeed: 120 kmph";

}

};

int main()

{

clrscr();

TwoWheelers two;

two.speed();

cout<<"\n-- -";
ThreeWheelers three;
three.speed();

www.jntufastupdates.com

17

cout<<"\n-- -";

FourWheelers four;

four.speed();
getch();
return 0;

}

Output

It is motor vehicle

It has two wheels

Speed: 80 kmph";

-

It is motor vehicle

It has three wheels

Speed: 60 kmph";

-

It is motor vehicle

It has four wheels

Speed: 120 kmph";

Multilevel Inheritance
In this type of inheritance, the derived class inherits from a class, which in turn inherits from
some other class.

Where class A is the base class, C is

derived class and B acted as base class as

well as derived class.

Example:

#include<iostream.h>

#include<conio.h>

class Car

{

public:
Car()

{

cout<<"\nVehicle type: Car";

}

};

class Maruti : public Car

{

public:

Maruti()

{
cout<<"\nComnay: Maruti"; }

}

void speed()

{

www.jntufastupdates.com

18

cout<<"\nSpeed: 90 kmph";

}

};

class Maruti800 : public Maruti

{

public Maruti800()

{

cout<<"\nModel: Maruti 800");

}
void speed()

{

cout<<"\nSpeed: 120 kmph";

}

};
int main()

{

clrscr();

Maruti800 m;

m.speed();
getch();

}

Output:

Vehicle type: Car

Company: Maruti

Model: Maruti 800

Speed: 120K mph

Hybrid (Virtual) Inheritance

Hybrid Inheritance is combination of one or more types of inheritance.

Where class A to class B forms single

inheritance, and class B,C to class D form

Multiple inheritance.

Example:

#include<iostream.h>

#include<conio.h>

class Player

{
protedted:

float height,weight;

};
{

protected:

char name[20];

char gender;

int age;
};

class Physique : public Player

class Location

{

protected:

char city[15];
long int pin;

};

class Game : public Physique, public
Location

www.jntufastupdates.com

19

{
char game[15];

public:

void input()

cout<<"\nPincode: "<<pin;
cout<<"\nGame: "<<game;

}

};
{

cout<<"\nEnter Player
Information";

cout<<"Name: ";

cin>>name;

cout<<"Genger: ";

cin>>gender;

cout<<"Age: ";

cin>>age;

cout<<"Height and Weight: ";

cin>>heigh>>weight;

cout<<"City: ";

cin>>city;

cout<<"Pincode: ";

cin>>pin;

cout<<"Game played: ";

cin>>game;

}

void input()
{

cout<<"\nPlayer Information";

cout<<"\nName: "<<name;

cout<<"\nGenger: "<<gender;

cout<<"\nAge: "<<age;

cout<<"\nHeight<<height;

cout<<"\nWeight: "<<weight;

cout<<"\nCity: "<<city;

int main()

{

clrscr();

Game g;

g.input();

g.show();

return 0;

}

Output

Enter Player Information

Name: Azar

Genger: M

Age: 38

Height and Weight: 5.8 70
City: Hyderabad

Pincode: 522183
Game played: Cricket

Player Information

Name: Azar

Genger: M
Age: 38
Height and Weight: 5.8 70

City: Hyderabad

Pincode: 522183

Game played: Cricket

Multi-path Inheritance

In this, one class is derived from two base classes and in turn these two classes are derived

from a single base class in known as Multi-path Inheritance.

Example

class A

{

//class A definition

};
class B: public A

{

//class B definition

};

class C: public A

{

//class C definition

};

class D :public B, public C

{
//class D definition

www.jntufastupdates.com

20

};

Explain about virtual base classes with an example.

(OR)

How can you overcome the ambiguity occurring due to multipath inheritance? Explain

with an example.

To overcome the ambiguity due to multipath inheritance the keyword virtual is used. When

classes

are derived as virtual, the compiler takes essential caution to avoid the duplication of
members.

Uses:

When two or more classes are derived from a common base class, we can prevent multiple

copies of

the base class in the derived classes are done by using virtual keyword. This can be achieved

by

preceding the keyword “virtual” to the base class.

Example

#include<iostream.h>

#include<conio.h>

class A

{

};

protected:

int a1;

class B: public virtual A

{

protected:

int a2;

};

class C: public virtual A

{

protected:

int a3;

};

class D :public B, public C

{
int a4;

public:

void input()

{

cout<<”Enter a1,a2,a3 and a4 values:”;
cin>> a1>>a2>>a3>>a4;

}

void show()

{

cout<<”a1=”<<a1<<”\na2=”<<a2;
cout<<”\na3=”<<a3<<”\na4=”<<a4;

}

www.jntufastupdates.com

20

};

int main()

{
D d;

d.input();

d.show();

return 0;

}

Output

Enter a1, a2, a3 and a4 values: 10 20 30 40

a1=10

a2=20

a3=30

a4=40

How constructors and destructors are executed in inherited class? Explain with an

example.

The constructors are used to initialize the member variables and the destructors are

used to destroy the object. The compiler automatically invokes the constructor and

destructors.

Rules:

 The derived class does not require a constructor if the base class contains default

constructor.

 If the base class is having a parameterized constructor, then it is necessary to declare a

constructor in derived class also. The derived class constructor passes arguments to
the base class constructor.

Example:

#include<iostream.h>

class A
{

public:

A()

{

}

~A()

{

}
};

cout<<"\n Class A constructor called";

cout<<"\nClass A destructor called";

class B : public A
{

public:
B()

{

cout<<"\n Class B constructor called";

www.jntufastupdates.com

21

}

~B()

{

}

};

cout<<"\nClass B destructor called";

class C : public B

{
public:

C()

{

}

~C()

{

}

};

cout<<"\n Class C constructor called";

cout<<"\nClass C destructor called";

int main()

{
C c;

return 0;

}

Output

Class A constructor called

Class B constructor called

Class C constructor called

Class C destructor called

Class B destructor called

Class A destructor called

How can you pass an object as a class member? Explain.

(OR)

Explain about delegation with an example.

(OR)

Explain about container classes with an example.

Declaring the object as a class data member in another class is known as delegat ion. When a

class has an object of another class as its member, such a class is known as a container class.

This kind of relationship is known as has-a-relationship or containership.

Example

include <iostream.h>

class A

{
public:

int x;
A()

{
x=20;

cout<<"\n In A constructor";

www.jntufastupdates.com

22

}

};

class B

{

public:

int y;

A a;

B()
{

}

y=30;

cout<<"\n In B constructor";

void show()

{

cout<<"\n X="<<a.x<<"\t Y="<<y;

}

};
int main()

{

B b;
b.show();

return 0;

}

Output

In A constructor

In B constructor

X=20 Y=30

Define abstract class. What is the use of abstract classes? Explain.

An abstract class is a class not used for creating objects. It is designed only to act as a base

class. These classes are similar to a skeleton on which new classes are designed. These

classes contain pure virtual functions.
Example

#include <iostream.h>

class Shape

{

protected:
int width;

int height;

public:
virtual int getArea() = 0;

void setWidth(int w)

{

width = w;

}
void setHeight(int h)

{

height = h;

}
};

www.jntufastupdates.com

23

class Rectangle: public Shape

{

public:
int getArea()

{

return (width * height);

}

};

class Triangle: public Shape

{

public:

int getArea()

{

return (width * height)/2;
}

};

void main()

{
Rectangle r;

Triangle t;

r.setWidth(5);

r.setHeight(7);

cout << "\nRectangle area: " << r.getArea() << endl;
t.setWidth(5);

t.setHeight(7);
cout << "\nTriangle area: " << t.getArea() << endl;

return 0;

}

Output:

Rectangle area : 35
Triangle area : 17

www.jntufastupdates.com

	UNIT III – Syllabus
	What is meant by operator overloading? Explain with an example.
	Syntax:
	Example
	Explain about overloading unary operators with an example.
	Constraints on increment /decrement operators
	Ex: Program for overloading unary operator using normal member function.
	Output
	Ex: Program for overloading unary operator using friend function.
	Output (1)
	Explain about overloading binary operators with an example.
	Output (2)
	Ex: Program for overloading binary operator using friend function.
	Output (3)
	Explain about overloading assignment operator with an example.
	Output (4)
	Output (5)
	Explain about rules for overloading operators.
	What is inheritance? What are the advantages and disadvantages of inheritance?
	Advantages:
	Disadvantages:
	What are access specifiers? How class are inherited?
	Example:
	Public derivation:
	Example: (1)
	Private derivation
	Example: (2)
	Protected derivation
	Example: (3)
	Output:
	Explain about protected data with private members with an example.
	Example (1)
	Output: (1)
	Define inheritance. Explain about various types of inheritance with examples.
	Types:
	Single Inheritance:
	Multiple Inheritance:
	Output: (2)
	Hierarchical Inheritance
	Output (6)
	Multilevel Inheritance
	Output: (3)
	Hybrid (Virtual) Inheritance
	Output (7)
	Multi-path Inheritance
	Example (2)
	Explain about virtual base classes with an example.
	Uses:
	Output (8)
	How constructors and destructors are executed in inherited class? Explain with an example.
	Rules:
	Output (9)
	How can you pass an object as a class member? Explain.
	Example (3)
	Output (10)
	Define abstract class. What is the use of abstract classes? Explain.
	Example (4)
	Output: (4)

