
1

UNIT - II
Classes and Objects &Constructors and Destructor: Classes in C++,

Declaring Objects, Access Specifiers and their Scope, Defining Member

Function, Overloading Member Function, Nested class, Constructors and

Destructors, Introduction, Constructors and Destructor, Characteristics of

Constructor and Destructor, Application with Constructor, Constructor

with Arguments parameterized Constructor, Destructors, Anonymous

Objects.

What is a class? How can you define a class in C++? Explain with

an example.

Object Oriented Programming encapsulates data (attributes) and

functions (behavior) into packages called classes.

The class combines data and methods for manipulating that data

into one package. An object is said to be an instance of a class. A class is

a way to bind the data and its associated functions together. It allows

the data to be hidden from external use. When defining a class, we are

creating a new abstract data type that can be treated like any other

built-in data type.

Generally, a class specification has two parts:

1. Class declaration

2. Class function definitions

The class declaration describes the type and scope of its members. The

class function definitions describe how the class functions are

implemented. The general form of a class declaration is:

class class_name

{

private:

variable declarations;

function declarations;

public:

variable declarations;

function declarations;
};

 The class declaration is similar to structure declaration in C. The

keyword class is used to declare a class. The body of a class is

enclosed within braces and terminated by a semicolon.

 The class body contains the declaration of variables and functions.

These functions and variables are collectively called members.

They are usually grouped under two sections i,e. private and public

www.jntufastupdates.com

2

to denote which members are private and which are public. These

keywords are known as visibility labels.

 The members that have been declared as private can be accessed

only from within the class. On the other hand, public members can

be accessed from outside the class also.

 The data hiding is the key feature of OOP. By default, the members

are private. The variables declared inside the class are known as

data members and the functions are known as member functions.

 Only the member functions can have access to the private

members and functions. However, the public members can be

accessed from outside the class.

 The binding of data and functions together into a single class type

variable is referred to as encapsulation.

A Simple Class Example: A typical class declaration

would look like: class item

{

int no; // variables declaration float cost;

// private by default

public:

void getdata(int a, float b); // functions declaration void

putdata(void); // using prototype

};

How can you declare objects to a class? Explain with an example.

Once a class has been declared, we can create variables of that

type by using the class name. For example,

item x; // memory for x is created Creates a variable x of type item.

In C++, the class variables are known as objects. Therefore, x is called

an object of type item. We may also declare more than one object in

one statement. Example:

item x, y, *z;

The declaration of an object is similar to that of a variable of any basic

type. The necessary memory space is allocated to an object at this stage.

Note that class specification provides only a template and does not

create any memory space for the objects.

www.jntufastupdates.com

3

How can you access the class members?

The object can access the public class members of a class by using dot

operator or arrow operator. The syntax is as follows;

Objectname operator membername;

Example:

x.show();

z->show(); {z is a pointer to class item}

What is an access specifier? Explain about various access

specifiers and their scope.

The access specifier specifies the accessibility of the data members

declared inside the class. They are:

1. public

2. private

3. protected

public keyword can be used to allow object to access the member

variables of class directly. The keyword public followed by colon (:)

means to indicate the data member and member function that visible

outside the class.
Consider the following example:

class Test

{

public:

int x, y; // variables declaration

void show()

{

cout<<x<<y;

}

};

int main()

{

Test t; //Object creation

t.x = 10;

t.y = 20;

t.show();

};

Now, it display 10 and 20

Private keyword is used to prevent direct access to member variables

www.jntufastupdates.com

4

or functions by the object. It is the default access. The keyword

private followed by colon (:) is used to make data member and member

function visible with in the class only.

Consider the following example:

class Test

{

private:

int x, y; // variables declaration

};

int main()

{

Test t; //Object creation

t.x = 10;

t.y = 20;

};

Now it raises two common compile time errors:

„Test::x‟ is not accessible

„Test::y‟ is not accessible

Protected access is the mechanism same as private. It is frequently

used in inheritance. Private members are not inherited at any case

whereas protected members are inherited. The keyword private followed

by colon (:) is used to make data member and member function visible

with in the class and its child classes.

What is a member function? How can you declare member
functions?

Member functions are defined in two places. They are;

1. Inside the class

2. Outside the class

Inside the class

Member functions can be defined immediately after the declaration inside

the class. These functions by default act as inline functions.

Example:

class student

{

private:

int rno;

char *sname;

public:

www.jntufastupdates.com

5

void print()

{

cout<<”rno=”<<rno;

cout<<”name=”<<sname;
}

void read(int a, char *s)

{

rno = a;

strcpy(snm, s);

}

};

void main()

{

student s;

s.read(10, “Rama”);

s.print();

}

Outside the class

 Member functions that are declared inside a class have to be

defined separately outside the class. Their definitions are very

much like the normal functions.

 The main difference is the member function incorporates a

membership identity label in the header. This label tells the

compiler which class the function belongs to.

General form

return- type classname :: function- name (list of arguments)

{

// function body

}

Example:

class student

{

private:

int rno;

char *sname;

public:

};

:
void read(int , char*);

 void print();

Output:

rno= 10

name = Rama

www.jntufastupdates.com

6

void student :: read (int a, char *s)

{

no = a;

strcpy(sname, s);

}

void student :: print()

{

cout<<”rno=”<<rno;

cout<<”name=”<<sname;

}

void main()

{

student s;

s.read(10, “Rama”);

s.print();
}

What are the characteristics of member functions?

 The member functions are accessed only by using the object of the

same class.

 The same function can be used in any number of classes.

 The private data or private functions can be accessed only

by public member functions.

How can you declare outside member function as inline? Explain

with an example. (OR) Explain about inline keyword.

 Inline function mechanism is useful for small functions.

 The inline functions are similar to macros. By default, all the

member functions defined inside the class are inline functions.
 The member functions defined outside the class can be made inline

by prefixing

“inline” to the function declaration.

General form:

inline Return-type classname :: function-name (list of

arguments)

{

//function body

}

Example:

class student

{

private:

int rno;

char *sname;

Output:

rno= 10

name = Rama

www.jntufastupdates.com

7

public:
void print();

void read(int a, char *s)

{

no = a;

strcpy(snm, s);

}

};

inline void student :: print()

{

cout<<”no=”<<no;

cout<<”name=”<<snm;

}

void main()

{

student s;

s.read(10, “Rama”);

s.print();
}

What is meant by data hiding? (OR) How data hiding is

accomplished in C++? (OR) Explain about classes. (OR)

Explain about data encapsulation.

Data hiding is also called as data encapsulation. An encapsulated object

is called as abstract data type. Data hiding is useful for protecting data.

It is achieved by making the data variables of class as private. Private

variables cannot directly accessible to the outside of the class. The

keywords private and protected are used to protect the data.

Access
Specifier

Members of the
Class

Class
Objects

Public Yes Ye
s

Private Yes No
Protected Yes No

Example:

class ex

{

private:

int p;

protected:

int q;

public:

int r;

void getp()

Output:

rno= 10

name = Rama

www.jntufastupdates.com

8

{

p=10;

cout<<”private=”<<p;

}

void getq()

{

q=10;

cout<<”protected=”<<q;

}

void getr()

{

r=10;

cout<<”public =”<<r;

}

};

void main()

{

ex e;

e.getp();

e.getq();

e.getr();

e.r=100;

e.getr();

}

How can you overload a member function? Explain with an

example.

Member functions can be overloaded like any other normal

functions. Overloading means one function is defined with multiple

definitions with same functions name in the same scope.
The following program explains the overloaded member functions

class absv

{

public:

};

int num(int i);

double num(double d)

Output:

private =10

protected=10

public =10

public =100

www.jntufastupdates.com

9

int absv:: num(int i)

{

return (abs(i));

}

double absv:: num(double d)

{

return (fabs(d));

}

void main()

{

absv a;

cout<<”\nThe absolute value of - 10 is “<<n. num(-10);

cout<<”\nThe absolute value of - 12.35 is “<<n.num(- 12.35);

}

Output:

The absolute value of -10 is 10

The absolute value of -12.35 is 12.35

What is a nested class? Explain with an example.

When a class defined in another class, it is known as nesting of classes.

In nested classes, the scope of inner class is restricted by outer class

The following program illustrates the nested classes:

class A
{
public :

class B

{

void show()

{

cout<<”\nC++ is wonderful language”;

}

};

};

int main(void)

{

A::B x;

x.show();

}

Output:

C++ is wonderful language

www.jntufastupdates.com

10

What is a constructor? What is a destructor? What are their
properties?

A constructor is a special member function used for automatic

initialization of an object. Whenever an object is created, the constructor

is called automatically. Constructors can be overloaded. Destructor

destroys the object. Constructors and destructors having the same name

as class, but destructor is preceded by a tilde (~) operator. The

destructor is automatically executed whenever the object goes out of

scope.

Characteristics of Constructors

 Constructors have the same name as that of the class they belongs

to.
 Constructors must be declared in public section.

 They automatically execute whenever an object is created.

 Constructors will not have any return type even void.

 Constructors will not return any values.

 The main function of constructor is to initialize objects and

allocation of memory to the objects.
 Constructors can be called explicitly.
 Constructors can be overloaded.

 A constructor without any arguments is called as default

constructor.

What are the applications of constructors? (Default constructor)

Constructors are used to initialize member variables of a class.

Constructors allocate required memory to the objects. Constructors are

called automatically whenever an object is created. A constructor which

is not having any arguments are said to be default constructor.

Example:

class num

{

int a, b;

public:
num()

{

a =5; b=2;

}

void show()

{

cout<<a<<b;

}

};

www.jntufastupdates.com

11

Void main()

{

num n;

n.show();

}

Explain about parameterized constructors with an example.

 It may be necessary to initialize the various data elements of

different objects with different values when they are created. This

is achieved by passing arguments to the constructor function

when the objects are created.
 The constructors that can take arguments are called parameterized

constructors.

 They can be called explicitly or implicitly.

Example:

class num

{

int a, b ,c;

public:

num(int x, int y)

{

a=x; b=y;

}

void show()

{

cout<<a<<b;

}

};

void main()

{

num n(10,20);

//implicit call

n.show();

num x= num(1, 2);

//explicit call x.show();

}

What is meant by constructor overloading? Explain with an

example. (Multiple Constructors)

 Similar to normal functions, constructors also overloaded. C++

permits to use more than one constructors in a single class.

 If a class contains more than one constructor. This is known as

Output:

10 20

1 2

Output:

5 2

www.jntufastupdates.com

12

constructor overloading.

Add() ; // No arguments

Add (int, int) ; // Two arguments

Example:

class num

{

int a, b;

public:

num() // Default constructor

{

a =10; b=20;

}

num(int x, int y) // Parameterized constructor

{

a=x;

b=y;

}

void add()

{

cout<<a+b;

}

};

void main()

{

num n;

n.add();

num x(1,2);

x.add();

}

The num class has two constructors. They are;

 Default constructor

 Parameterized constructor

Whenever the object “n” is created the default constructor is executed

automatically and a,

and b values are initialized to 10, 20 respectively.

Output:

30

3

www.jntufastupdates.com

13

Whenever the object “x” is created the parameterized constructor is

executed automatically and a, and b values are assigned with 1 and 2

respectively.

Explain about constructors with default argument with an

example.

 Similar to functions, It is possible to define constructors with default

arguments.

 Consider power(int n, int p= 2);

– The default value of the argument p is two.

– power p1 (5) assigns the value 5 to n and 2 to p.

– power p2(2,3) assigns the value 2 to n and 3 to p.

Example:

class power

{

int b,p;

public:

power(int n=2, int m=3)

{

b=n;

p=m;

cout<<pow(n, m);

}

};

void main()

{

power x;

Power y(5);

power z(3,

4);

}

Explain about copy constructor with an example.

 Copy constructor is used to declare and initialize an object from
another object.

 A copy constructor takes a reference to an object of the same

class as itself as an argument.
Ex:

class Test

{

int i;

public:

Output:

8 125 81

www.jntufastupdates.com

14

Test() // Default constructor

{

i=0;

}

Test (int a) // Parameterized constructor

{

i = a;

}

Test (code &x) //Copy Constructor

{

i = x.i;

}

void show()

{

cout<<i<<endl;

}

};

void main()

{

Test a(100);

a.show();

Test b(a); //Copy Constructor

invoked b.show();
}

Explain about Destructors with an example.

 Destructor is a special member function like a constructor.

Destructors destroy the class objects that are created by

constructors.
 The destructor have the same name as their class, preceded by a

~.

 The destructor neither requires any arguments nor returns any

values.

 It is automatic ally executed when the object goes out of score.

 Destructor releases memory space occupied by the objects.

Characteristics of Destructors

 Their name is the same as the class name but is preceded by a

tilde(~).

 They do not have return types, not even void and they cannot
return values.

 Only one destructor can be defined in the class.

 Destructor neither has default values nor can be overloaded.

 We cannot refer to their addresses.

 An object with a constructor or destructor cannot be used as a

member of a union.

Output:

100 100

www.jntufastupdates.com

15

 They make “implicit calls‟ to the operators new and delete when

memory allocation/ memory de-allocation is required.

Example:

class Test

{

public:

Test()

{

}

)

cout<<“\n Constructor Called”;

~Test()

{

cout<<“\n Destructor Called”;

}

};

void main()

{

Test t;

}

What is meant by anonymous objects? Explain.

It is possible to declare objects without any name. These objects are said

to be anonymous objects. Constructors and destructors are called

automatically whenever an object is created and destroyed respectively.

The anonymous objects are used to carry out these operations without

object.

Ex:

Output:

Constructor Called
Destructor Called

www.jntufastupdates.com

16

class noname

{

int x;

public:
noname()

{

cout<<“\n In Default Constructor”;

x=10;

cout<<x;

}

noname(int i)

{

cout<<“\n In Parameterized Constructor”;

x=i;

cout<<x;

}

~noname()

{

cout <<“\n In Destructor”;

}

};

void main()

{

noname();

noname(12);

}

Output:

In Default Constructor 10

In Parameterized

Constructor 12 In

Destructor

In Destructor

www.jntufastupdates.com

	UNIT - II
	What is a class? How can you define a class in C++? Explain with an example.
	private:
	public:
	public: (1)
	How can you declare objects to a class? Explain with an example.
	How can you access the class members?
	Objectname operator membername;

	What is an access specifier? Explain about various access specifiers and their scope.
	class Test
	public: (2)
	class Test (1)
	private: (1)
	What is a member function? How can you declare member functions?
	Inside the class
	Example:
	Outside the class
	General form
	Example:

	What are the characteristics of member functions?
	How can you declare outside member function as inline? Explain with an example. (OR) Explain about inline keyword.
	General form:
	Example:

	What is meant by data hiding? (OR) How data hiding is accomplished in C++? (OR) Explain about classes. (OR) Explain about data encapsulation.
	Example: (1)
	How can you overload a member function? Explain with an example.
	The following program explains the overloaded member functions
	Output:
	What is a nested class? Explain with an example.
	Output: (1)
	 Constructors must be declared in public section.
	What are the applications of constructors? (Default constructor)
	Example:
	Explain about parameterized constructors with an example.
	Example: (1)
	What is meant by constructor overloading? Explain with an example. (Multiple Constructors)
	Example: (2)
	Explain about constructors with default argument with an example.
	Example: (3)
	Explain about copy constructor with an example.
	Ex:
	Explain about Destructors with an example.
	Characteristics of Destructors
	Example: (4)
	What is meant by anonymous objects? Explain.
	Ex: (1)
	Output:

