
UNIT 5 DISTRIBUTED SYSTEMS

5.1 Peer-to-peer Computing and Overlay Graphs

Characteristics

 Peer-to-peer (P2P) network systems use an application-level organization of the
network overlay for flexibly sharing resources (e.g., files and multimedia
documents) stored across network-wide computers.

 All nodes are equal; communication directly between peers (no client-server) Allow
location of arbitrary objects; no DNS servers required

 Large combined storage, CPU power, other resources, without scalability costs
 Dynamic insertion and deletion of nodes, as well as of resources, at low cost

Features Performance
self-organizing large combined storage, CPU power, and

resources
distributed control fast search for machines and data objects
role symmetry for nodes Scalable
anonymity efficient management of churn
naming mechanism selection of geographically close servers
security, authentication,
trust

redundancy in storage and paths

Table:Desirable characteristics and performance features of P2P systems.

 Napster

 One of the earliest popular P2P systems, Napster [25], used a server-mediated central
index architecture organized around clusters of servers that store direct indices of the
files in the system.

 Central server maintains a table with the following information of each registered client:
(i) the client’s address (IP) and port, and offered bandwidth, and (ii) information about
the files that the client can allow to share.
1. A client connects to a meta-server that assigns a lightly-loaded server.
2. The client connects to the assigned server and forwards its query and identity.
3. The server responds to the client with information about the users connected to it

and the files they are sharing.
4. On receiving the response from the server, the client chooses one of the users from

whom to download a desired file. The address to enable the P2P connection
between the client and the selected user is provided by the server to the client.

Users are generally anonymous to each other. The directory serves to provide the mapping
from a particular host that contains the required content, to the IP address needed to download
from it.

UNIT V P2P & DISTRIBUTED SHARED MEMORY
Peer-to-peer computing and overlay graphs: Introduction – Data indexing and overlays –
Chord – Content addressable networks – Tapestry. Distributed shared memory: Abstraction
and advantages – Memory consistency models –Shared memory Mutual Exclusion

UNIT 5 DISTRIBUTED SYSTEMS

5.2 Data indexing

 Application layer overlays

 A core mechanism in P2P networks is searching for data, and this mechanism depends on
how (i) the data, and (ii) the network, are organized. Search algorithms for P2P networks
tend to be data-centric, as opposed to the host-centric algorithms for traditional networks.

 P2P search uses the P2P overlay, which is a logical graph among the peers that is used for
the object search and object storage and management algorithms. Note that above the P2P
over-lay is the application layer overlay, where communication between peers is point-to-
pont (representing a logical all-to-all connectivity) once a connection is established.

 The P2P overlay can be structured (e.g., hypercubes, meshes, butterfly networks, de Bruijn
graphs) or unstructured

Structured and Unstructured Overlays

 Search for data and placement of data depends on P2P overlay (which can be thought

of as being below the application level overlay)
 Search is data-centric, not host-centric Structured P2P

overlays:
o) E.g., hypercube, mesh, de Bruijngraphs
o) rigid organizational principles for object storage and object search

 Unstructured P2P overlays:
o) Loose guidelines for object search and storage
o) Search mechanisms are ad-hoc, variants of flooding and random walk

 Object storage and search strategies are intricately linked to the overlay structure as
well as to the data organization mechanisms.

The data in a P2P network is identified by using indexing. Data indexing allows the physical data
independence from the applications. Indexing mechanisms can be classified as being centralized,
local, or distributed

 Centralized indexing, e.g., versions of Napster, DNS
 Distributed indexing. Indexes to data scattered across peers. Access data through

mechanisms such as Distributed Hash Tables (DHT). These differ in hash mapping,
search algorithms, diameter for lookup, fault tolerance, churn resilience.

 Local indexing. Each peer indexes only the local objects. Remote objects need to
be searched for. Typical DHT uses flat key space. Used commonly in unstructured
overlays (E.g., Gnutella) along with flooding search or random walk search.

An alternate way to classify indexing mechanisms is as being a semantic index mechanism or
a semantic-free index mechanism.

 Semantic indexing - human readable, e.g., filename, keyword, database key. Supports
keyword searches, range searches, approximate searches.

 Semantic-free indexing. Not human readable. Corresponds to index obtained by use of
hash function.

UNIT 5 DISTRIBUTED SYSTEMS

Simple Distributed Hash Table scheme

Native node identifier Object/ file
(address) space value space

Mappings from node address space and object space in a simple DHT.
 Highly deterministic placement of files/data allows fast lookup.

But file insertions/deletions under churn incurs some cost.
 Attribute search, range search, keyword search etc. not possible.

5.2.1 Distributed indexing

Structured overlays

 The P2P network topology has a definite structure, and the placement of files or data in this
network is highly deterministic as per some algorithmic mapping. (The placement of files can
sometimes be “loose,” as in some earlier P2P systems like Freenet, where “hints” are used.)

 The objective of such a deterministic mapping is to allow a very fast and deterministic lookup
to satisfy queries for the data. These systems are termed as lookup systems and typically use
a hash table interface for the mapping.

Unstructured overlays

 The P2P network topology does not have any particular controlled structure, nor is there any
control over where files/data is placed. Each peer typically indexes only its local data objects,
hence, local indexing is used.

 Node joins and departures are easy – the local overlay is simply adjusted. File placement is
not governed by the topology. Search for a file may entail high message overhead and high
delays. However, complex queries are supported because the search criteria can be arbitrary.

 Although the P2P network topology does not have any controlled structure, some topologies
naturally emerge.

 Power law random graph (PLRG) This is a random graph where the node degrees
follow the power law. Here, if the nodes are ranked in terms of their degree, then the
ith node has c/i neighbors, where c is a constant.

 Normal random graph This is a normal random graph where the nodes typically have
a uniform degree.

Structured vs. unstructured overlays

UNIT 5 DISTRIBUTED SYSTEMS

5.3 Chord

Unstructured Overlays: Properties

 Semantic indexing possible =⇒ keyword, range, attribute-based queries Easily
accommodate high churn

 Efficient when data is replicated in network Good if user
satisfied with ”best-effort” search

 Network is not so large as to cause high delays in search

Gnutella features
 A joiner connects to some standard nodes from Gnutella directory
 Ping used to discover other hosts; allows new host to announce itself
 Pong in response to Ping ; Pong contains IP, port #, max data size for download
 Query msgs used for flooding search; contains required parameters
 QueryHit are responses. If data is found, this message contains the IP, port #, file size,

download rate, etc. Path used is reverse path of Query

The Chord protocol, uses a flat key space to associate the mapping between network
nodes and data objects/files/values. The node address as well as the data
object/file/value is mapped to a logical identifier in the common key space using a
consistent hash function.

 When a node joins or leaves the network of n nodes, only 1/n keys have to moved.
 The Chord key space is flat, thus giving applications flexibility in map-ping their

files/data to keys. Chord supports a single operation, lookup x , which maps a given
key x to a network node. Specifically, Chord stores a file/object/value at the node to
which the file/object/value’s key maps.

 Two steps involved.

UNIT 5 DISTRIBUTED SYSTEMS

) Map the object value to its key
) Map the key to the node in the nativeaddressspaceusing lookup
 Common address space is a m-bit identifier (2m addresses), and this space is arranged

on a logical ring mod(2m).
 A key k gets assigned to the first node such that the node identifier equals or is greater

than the key identifier k in the logical space address.

 Chord: SimpleLookup

 A simple key lookup algorithm that requires each node to store only 1 entry in its routing
table works as follows.

 Each node tracks its successor on the ring, in the variable successor; a query for key x
is forwarded to the successors of nodes until it reaches the first node such that that
node’s identifier y is greater than the key x, modulo 2m.

 The result, which includes the IP address of the node with key y, is returned to the

querying node along the reverse of the path that was followed by the query.

 This mechanism requires O(1) local space but O(n) hops.

Chord: Scalable Lookup

UNIT 5 DISTRIBUTED SYSTEMS

Chord

Scalable Lookup - Example

UNIT 5 DISTRIBUTED SYSTEMS

 Chord: Managing Churn
The code to manage dynamic node joins, departures, and failures is given in Algorithm

Node joins

 To create a new ring, a node i executes Create_New_Ring which creates a ring with the
singleton node.

 To join a ring that contains some node j, node i invokes Join_Ring j . Node j locates i’s
successor on the logical ring and informs i of its successor.

 Before i can participate in the P2P exchanges, several actions need to happen: i’s successor
needs to update its predecessor entry to i, i’s predecessor needs to revise its successor field
to i, i needs to identify its predecessor, the finger table at i needs to be built, and the finger
tables of all nodes need to be updated to account for i’s presence.

 This is achieved by procedures Stabilize , Fix_Fingers , and Check_Predecessor that are
periodically invoked by each node.

Algorithm Managing churn in Chord. Code shown is for node

UNIT 5 DISTRIBUTED SYSTEMS

UNIT 5 DISTRIBUTED SYSTEMS

Figure illustrates the main steps of the joining process. A recent joiner node i that has
executed Join_Ring · gets integrated into the ring by the following sequence:

 How are node departures handled? or node failures?
 For a Chord network with n nodes, each node is responsible for at most (1 + s)

K/n keys, with “high probability”, where K is the total number of
keys. Using consistent hashing, s can be shown to be bounded by O(log n).

 The search for a successor in Locate Successor in a Chord network with n
nodes requires time complexity O(log n) with high probability.

 The size of the finger table is log (n) ≤ m. The
average lookup time is 1/2 log (n).

UNIT 5 DISTRIBUTED SYSTEMS

 An indexing mechanism that maps objects to locations in CAN
 object-location in P2P networks, large-scale storage management, wide-area

name resolution services that decouple name resolution and the naming scheme
 Efficient, scalable addition of and location of objects using

location-independent names or keys.
 3 basic operations: insertion, search, deletion of (key, value) pairs
 d-dimensional logical Cartesian space organized as a d-torus logical topology, i.e.. d

-dimensional mesh withwraparound.
 Space partitioned dynamically among nodes, i.e., node i has space r (i). For

object v , its key r (v) is mapped to a point ˙p in the space. (v, key (v)) tuple
stored at node which is the present owner containing the point ˙p.

 Analogously to retrieve object v.

3 components of CAN
) Set up CAN virtual coordinate space, partition among nodes
) Routing in virtual coordinate space to locate the node that is assigned the

region corresponding to ṗ
) Maintain the CAN in spite of node departures and failures

 CAN Initialization

 Each CAN has a unique DNS name that maps to the IP address of a few bootstrap
nodes. Bootstrap node: tracks a partial list of the nodes that it believes are currently
in the CAN.

 A joiner node queries a bootstrap node via a DNS lookup. Bootstrap node replies
with the IP addresses of some randomly chosen nodes that it believes are in the
CAN.

 The joiner chooses a random point ˙p in the coordinate space. The joiner sends a
request to one of the nodes in the CAN, of which it learnt in Step 2, asking to be
assigned a region containing ˙p. The recipient of the request routes the request to
the owner old owner (˙p) of the region containing ˙p, using CAN routing algorithm.

 The old owner (˙p) node splits its region in half and assigns one half to the joiner.
The region splitting is done using an a priori ordering of all the dimensions. This
also helps to methodically merge regions, if necessary. The (k, v) tuples for which
the key k now maps to the zone to be transferred to the joiner, are also transferred
to the joiner.

 The joiner learns the IP addresses of its neighbours from old owner (˙p). The
neighbors are old owner (˙p) and a subset of the neighbours of old owner (˙p). old
owner (˙p) also updates its set of neighbours. The new joiner as well as old owner
(˙p) inform their neighbours of the changes to the space allocation, In fact, each
node has to send an immediate update of its assigned region, followed by periodic
HEARTBEAT refresh messages, to all its neighbours.

5.4 Content Addressable Network (CAN)

UNIT 5 DISTRIBUTED SYSTEMS

When a node joins a CAN, only the neighbouring nodes in the coordinate space are required
to participate. The overhead is thus of the order of the number of neighbours, which is O(d)
and independent of n.

 CAN routing

 CAN routing uses the straight-line path from the source to the destination in the logical
Euclidean space.

 This routing is realized as follows. Each node maintains a routing table that tracks its
neighbor nodes in the log-ical coordinate space. In d-dimensional space, nodes x and y
are neigh-bors if the coordinate ranges of their regions overlap in d − 1 dimensions, and
abut in one dimension.

 The routing table at each node tracks the IP address and the virtual coor-dinate region of
each neighbor. To locate value v, its key k v is mapped to a point p- whose coordinates
are used in the message header.

 Knowing the neighbors’ region coordinates, each node follows simple greedy routing by
forwarding the message to that neighbor having coordinates that are closest to the
destination’s coordinates

 CAN Maintainence

 Voluntary departure: Hand over region and (key, value) tuples to a neighbor.

Neighbor choice: formation of a convex region after merger of regions
 Otherwise, neighbor with smallest volume. However, regions are not merged and

neighbor handles both regions until background reassignment protocol is run.
 Node failure detected when periodic HEARTBEAT message not received by

neighbors. They then run a TAKEOVER protocol to decide which neighbor will
own dead node’s region. This protocol favors region with smallest volume.

 Despite TAKEOVER protocol, the (key, value) tuples remain lost until
background region reassignment protocol is run.

 Background reassignment protocol: for 1-1 load balancing, restore 1-1 node to
region assignment, and prevent fragmentation.

UNIT 5 DISTRIBUTED SYSTEMS

5.5 Tapestry

 CAN Optimizations
Improve per-hop latency, path length, fault tolerance, availability, and load balancing.
These techniques typically demonstrate a trade-off.

 Multiple dimensions. As the path length is O(d · n1/d), increasing the number of
dimensions decreases the path length and increases routing fault tolerance at the
expense of larger state space per node.

 Multiple realities or coordinate spaces. The same node will store different (k, v)
tuples belonging to the region assigned to it in each reality, and will also have a
different neighbour set. The data contents (k, v) get replicated, leading to higher
availability. Furthermore, the multiple copies of each (k, v) tuple offer a choice.

 Routing fault tolerance also improves.
 Use delay metric instead of Cartesian metric for routing
 Overloading coordinate regions by having multiple nodes assigned to each

region. Path length and latency can reduce, fault tolerance improves, per-hop
latency decreases.

 Use multiple hash functions. Equivalent to using multiple realities.
Topologically sensitive overlay. This can greatly reduce per-hop latency.

CAN Complexity: O(d·) for a joiner. O(d/4 log (n)) for routing.
Node departure O(d2).

 The Tapestry P2P overlay network provides efficient scalable location-independent routing
to locate objects distributed across the Tapestry nodes

 Nodes and objects are assigned IDs from common space via a distributed hashing.
 Hashed node ids are termed VIDs or vid . Hashed object identifiers are termed GUIDs or

OG .
 ID space typically has m = 160 bits, and is expressed in hexadecimal.
 If a node v exists such that vid = OG exists, then that v become the root. If such a v does

not exist, then another unique node sharing the largest common prefix with OG is chosen
to be the surrogate root.

 The object OG is stored at the root, or the root has a direct pointer to the object.

UNIT 5 DISTRIBUTED SYSTEMS

 To access object O, reach the root (real or surrogate) using prefix routing Prefix routing
to select the next hop is done by increasing the prefix match of the next hop’s VID with
the destination OGR . Thus, a message destined for
OGR = 62C 35 could be routed along nodes with VIDs 6****, then 62***,
then 62C**, then 62C3*, and then to 62C35

 Tapestry - Routing Table

 Let M = 2m. The routing table at node vid contains b · logb M entries, organized in
 logbM levels i = 1 . . . logbM. Each entry is of the form (wid , IP address).
 Each entry denotes some “neighbour” node VIDs with a (i − 1)-digit prefix match

with vid – thus, the entry’s wid matches vid in the (i − 1)-digit prefix. Further, in
level i, for each digit j in the chosen base (e.g., 0, 1,... E, F when b = 16), there is an
entry for which the ith digit position is j.

 For each forward pointer, there is a backward pointer.

Some example links at node with identifier ”7C25”. Three links each of levels 1 through 4
are labeled.

 Tapestry: Routing

 The j th entry in level i may not exist because no node meets the criterion. This is

a hole in the routing table.
 Surrogate routing can be used to route around holes. If the jth entry in level i should

be chosen but is missing, route to the next non-empty entry in level i , using
wraparound if needed. All the levels from 1 to logb 2m need to be considered in
routing, thus requiring logb 2m hops.

UNIT 5 DISTRIBUTED SYSTEMS

An example of routing from FAB11 to 62C35. The numbers on the arrows show the level of the
routing table

 Tapestry: RoutingAlgorithm

 Surrogate routing leads to a unique root.
 For each vid , the routing algorithm identifies a unique spanning tree rooted at vid .

 Tapestry: Object Publication and Object Search

 The unique spanning tree used to route to vid is used to publish and locate an object
whose unique root identifier OGR is vid .

 A server S that stores object O having GUID OG and root OGR periodically publishes the
object by routing a publish message from S towards OGR .

 At each hop and including the root node OGR , the publish message creates a pointer to the
object

 This is the directory info and is maintained in soft-state.
 To search for an object O with GUID OG , a client sends a query destined for the root

OGR .

UNIT 5 DISTRIBUTED SYSTEMS

o) Along the logb 2m hops, if a node finds a pointer to the object residing on
server S, the node redirects the query directly to S.

o) Otherwise, it forwards the query towards the root OGR which is
guaranteedto have the pointer for the location mapping.

 A query gets redirected directly to the object as soon as the query path overlaps the publish
path towards the same root

An example showing publishing of object with identifier 72EA1 at two replicas 1F329 and
C2B40. A query for the object from 094ED will find the object pointer at 7FAB1. A query
from 7826C will find the object pointer at 72F11. A query from BCF35 will find the object
pointer at 729CC.

 Tapestry: Node Insertions

 For any node Y on the path between a publisher of object O and the root
 GOR , node Y should have a pointer to O.
 Nodes which have a hole in their routing table should be notified if the insertion

of node X can fill that hole.
 If X becomes the new root of existing objects, references to those objects should

now lead to X .
 The routing table for node X must be constructed.
 The nodes near X should include X in their routing tables to perform more efficient

routing.

The main steps in node insertion are as follows:

1. Node X uses some gateway node into the Tapestry network to route a message to itself. This
leads to its “surrogate,” i.e., the root node with identifier closest to that of itself (which is

UNIT 5 DISTRIBUTED SYSTEMS

5.6 Distributed Shared Memory

Xid). The surrogate Z identifies the length of the longest common prefix that Zid shares with
Xid.

2. Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by essentially creating
a logical spanning tree as follows. Acting as a root,

Z contacts all the j nodes, for all j 0 1 b − 1 (tree level 1). These are the nodes with prefix
followed by digit j. Each such (level 1) node Z1 contacts all the prefix Z1 + 1 j nodes, for all
j 0 1 b − 1 (tree level 2). This continues up to level logb2m − and completes the
MULTICAST. The nodes at this level are the leaves

 Tapestry: Node Deletions and Failures

Node deletion
 Node A informs the nodes to which it has (routing) backpointers. It also provides

them with replacement entries for each level from its routing table. This is to
prevent holes in their routing tables. (The notified neighbours can periodically run
the nearest neighbour algorithm to fine-tune their tables.)

 The servers to which A has object pointers are also notified. The notified servers
send object republish messages.

 During the above steps, node A routes messages to objects rooted at itself to their
new roots. On completion of the above steps, node A informs thenodes reachable
via its backpointers and forward pointers that it is leaving, and then leaves.

Node failures: Repair the object location pointers, routing tables and mesh, using the redundancy
in the Tapestry routing network. Refer to the book for the algorithms

Complexity

 A search for an object expected to take (logb2m) hops. However, the routing tables

are optimized to identify nearest neighbour hops (as per the space metric). Thus,
the latency for each hop is expected to be small, compared to that for CAN and
Chord protocols.

 The size of the rou·ti·ng table at each node is c b logb2m, where c is the constant
that limits the size of the neighbour set that is maintained for fault-tolerance.

The larger the Tapestry network, the more efficient is the performance. Hence, better if different
applications share the same overlay.

 Distributed Shared Memory Abstractions

Distributed shared memory (DSM) is an abstraction provided to the programmer of a distributed
system. It gives the impression of a single monolithic memory, as in traditional von Neumann
architecture. Programmers access the data across the network using only read and write primitives,
as they would in a uniprocessor system. Programmers do not have to deal with send and receive
communication primitives and the ensuing complexity of dealing explicitly with synchronization
and consistency in the message-passing model.

UNIT 5 DISTRIBUTED SYSTEMS

 communicate with Read/Write ops in shared virtual space No Send and Receive
primitives to be used by application

o) Under covers, Send and Receive used by DSM manager
 Locking is too restrictive; need concurrent access
 With replica management, problem of consistency arises!

 Advantages/Disadvantages of DSM
Advantages:

Shields programmer from Send/Receive primitives
Single address space; simplifies passing-by-reference and passing complex data structures
Exploit locality-of-reference when a block is moved
DSM uses simpler software interfaces, and cheaper off-the-shelf hardware. Hence cheaper
than dedicated multiprocessor systems
No memory access bottleneck, as no single bus Large virtual
memory space

 DSM programs portable as they use common DSM programming interface Disadvantages:
 Programmers need to understand consistency models, to write correct programs
 DSM implementations use async message-passing, and hence cannot be more efficient

than msg-passing implementations
 By yielding control to DSM manager software, programmers cannot use their own msg-

passing solutions.

 Issues in Implementing DSM Software

 Semantics for concurrent access must be clearly specified
Semantics – replication? partial? full? read-only? write-only?
Locations for replication (for optimization)

 If not full replication, determine location of nearest data for access Reduce
delays, # msgs to implement the semantics of concurrent access

 Data is replicated or cached Remote
access by HW or SW

 Caching/replication controlled by HW or SW
 DSM controlled by memory management SW, OS, language run-time system

UNIT 5 DISTRIBUTED SYSTEMS

 Comparison of Early DSM Systems

Type of DSM Examples Managem
ent

Caching Remote
access

single-bus
multiprocessor

Firefly,
Sequent

by MMU hardware
control

by
hardware

switched
multiprocessor

Alewife,
Dash

by MMU hardware
control

by
hardware

NUMA system Butterfly,
CM*

by OS software
control

by
hardware

Page-based
DSM

Ivy,
Mirage

by OS software
control

by
software

Shared variable
DSM

Midway,
Munin

by
language
runtime
system

software
control

by
software

Shared object
DSM

Linda,
Orca

by
language
runtime
system

software
control

by
software

Memory consistency models

The memory consistency model defines the set of allowable memory access orderings.

Memory Coherence
Memory coherence is the ability of the system to execute memory operations correctly.

 si memory operations by Pi

 (s1 + s2 + . . . sn)!/(s1!s2! . . . sn!) possible interleavings
 Memory coherence model defines which interleavings are permitted Traditionally, Read

returns the value written by the most recent Write ”Most recent” Write is ambiguous
with replicas and concurrent accesses

DSM consistency model is a contract between DSM system and application programmer

 Sequential invocations and responses in a DSM system, without any pipelining

 Strict Consistency/Linearizability/Atomic Consistency

UNIT 5 DISTRIBUTED SYSTEMS

Strict consistency

The strictest model, corresponding to the notion of correctness on the tradi-tional Von Neumann
architecture or the uniprocessor machine, requires that any Read to a location (variable) should
return the value written by the most recent Write to that location (variable).

Two salient features of such a system are the following: (i) a common global time axis is
implicitly available in a uniprocessor system; (ii) each write is immediately visible to all
processes.

1. A Read should return the most recent value written, per a global time axis. For operations
that overlap per the global time axis, the following must hold.

2 All operations appear to be atomic and sequentially executed.
3 All processors see the same order of events, equivalent to the global time ordering of non-
overlapping events.

Sequential invocations and responses to each Read or Write operation.

Strict Consistency / Linearizability: Examples
Linearlzability: Implementation

 Simulating global time axis is expensive.
 Assume full replication, and total order broadcast support.

UNIT 5 DISTRIBUTED SYSTEMS

Linearizability: Implementation

When a Read in simulated at other processes, there is a no-op. Why do Reads
participate in total order broadcasts?
Reads need to be serialized w.r.t. other Reads and all Write operations. See counter-
example where Reads do not participate in total order broadcast.

 Sequential Consistency

Linearizability or strict/atomic consistency is difficult to implement because the absence of a
global time reference in a distributed system necessitates that the time reference has to be
simulated. This is very expensive. Programmers can deal with weaker models. The first weaker
model, that of sequential con-sistency (SC) was proposed by Lamport and uses logical time
reference instead of the global time reference.

 The result of any execution is the same as if all operations of the processors were
executed in some sequential order.

 The operations of each individual processor appear in this sequence in the local
program order.

UNIT 5 DISTRIBUTED SYSTEMS

Any interleaving of the operations from the different processors is possible. But all processors
must see the same interleaving. Even if two operations from different processors (on the same or
different variables) do not overlap in a global time scale, they may appear in reverse order in the
common sequential order seen by all. See examples used for linearizability

Only Writes participate in total order BCs. Reads do not because:

 all consecutive operations by the same processor are ordered in that same order (no
pipelining), and

 Read operations by different processors are independent of each other; to be
ordered only with respect to the Write operations.

Direct simplification of the LIN algorithm. Reads executed atomically. Not so
for Writes. Suitable for Read-intensive programs.

Sequential Consistency using Local Read Algorithm

Sequential Consistency using Local Write Algorithm

UNIT 5 DISTRIBUTED SYSTEMS

 Causal Consistency

In SC, all Write ops should be seen in common order.
For causal consistency, only causally
related Writes should be seen in common P1

order.

UNIT 5 DISTRIBUTED SYSTEMS

Pipelined RAM or Processor Consistency

PRAM memory
 Only Write ops issued by the same processor are seen by others in the

order they were issued, but Writes from different processors may be
seen by other processors in different orders.

 PRAM can be implemented by FIFO broadcast? PRAM memory can

exhibit counter-intuitive behavior, see below.

Slow Memory
The next weaker consistency model is that of slow memory]. This model represents a location-
relative weakening of the PRAM model. In this model, only all Write operations issued by the

UNIT 5 DISTRIBUTED SYSTEMS

same processor and to the same memory location must be observed in the same order by all the
processors.

Hierarchy of Consistency Models

Synchronization-based Consistency Models: Weak Consistency
Consistency conditions apply only to special
synchronization” instructions, e.g.,

barrier synchronization
Non-sync statements may be executed in any order by various processors.
E.g.,weak consistency, release consistency, entry consistency

Weak consistency:
All Writes are propagated to other processes, and all Writes done elsewhere
are brought locally, at a sync instruction.

 Accesses to sync variables are sequentially consistent
 Access to sync variable is not permitted unless all Writes elsewhere have completed
 No data access is allowed until all previous synchronization variable accesses have

UNIT 5 DISTRIBUTED SYSTEMS

5.8 Shared Memory Mutual Exclusion: Bakery Algorithm

been performed

Drawback: cannot tell whether beginning access to shared variables (enter CS), or finished
access to shared variables (exit CS).

Synchronization based Consistency Models:
Release Consistency and Entry Consistency
Two types of synchronization Variables: Acquire and Release

Release Consistency

Acquire indicates CS is to be entered. Hence all Writes from other processors should be
locally reflected at this instruction
Release indicates access to CS is being completed. Hence, all Updates made locally
should be propagated to the replicas at other processors.
Acquire and Release can be defined on a subset of the variables.
If no CS semantics are used, then Acquire and Release act as barrier synchronization
variables.
Lazy release consistency: propagate updates on-demand, not the PRAM way.

Entry Consistency

Each ordinary shared variable is associated with a synchronization variable (e.g., lock,
barrier)
For Acquire /Release on a synchronization variable, access to only those ordinary variables
guarded by the synchronization variables is performed.

 Lamport’s bakery algorithm

 Lamport proposed the classical bakery algorithm for n-process mutual exclusion in shared
memory systems [18]. The algorithm is so called because it mimics the actions that
customers follow in a bakery store. A process wanting to enter the critical section picks a
token number that is one greater than the elements in the array choosing 1 n .

 Processes enter the critical section in the increasing order of the token numbers. In case of
concurrent accesses to choosing by multiple processes, the processes may have the same
token number. In this case, a unique lexicographic order is defined on the tuple token pid
, and this dictates the order in which processes enter the critical section. The algorithm for
process i is given in Algorithm.

 The algorithm can be shown to satisfy the three requirements of the critical section
problem: (i) mutual exclusion, (ii) bounded waiting, and (iii) progress.

UNIT 5 DISTRIBUTED SYSTEMS

Mutual exclusion
) Role of line (1e)? Wait for others’ timestamp choice to stabilize ...
) Role of line (1f)? Wait for higher priority (lex. lower timestamp) process to

enter CS

Bounded waiting: Pi can be overtaken by other processes at most once (each)
Progress: lexicographic order is a total order; process with lowest timestamp in lines
(1d)-(1g) enters CS

Space complexity: lower bound of n registers Time complexity: (n) time for
Bakery algorithm

 Lamport’s WRWR mechanism and fast mutual exclusion

Lamport’s fast mutex algorithm takes O(1) time in the absence of contention. However it
compromises on bounded waiti−ng. Use−s W(x)−- R(y) - W (y)- R(x) sequence necessary and
sufficient to check for contention, and safely enter CS

Lamport’s Fast Mutual Exclusion Algorithm

UNIT 5 DISTRIBUTED SYSTEMS

Shared Memory: Fast Mutual Exclusion Algorithm

Need for a boolean vector of size n: For Pi, there needs to be a trace of its identity
and that it had written to the mutex variables. Other processes need to know who (and
when) leaves the CS. Hence need for a boolean array b[1..n].

Examine all possible race conditions in algorithm code to analyze the algorithm.

Hardware Support for Mutual Exclusion
Hardware support can allow for special instructions that perform two or more
operations atomically.
Test&Set and Swap are each executed atomically!!

Definitions of synchronization operations Test&Set and Swap.

UNIT 5 DISTRIBUTED SYSTEMS

Mutual Exclusion using Swap

Mutual Exclusion using Test&Set, with Bounded Waiting

UNIT 5 DISTRIBUTED SYSTEMS

Code shown is for process Pi, 1 ≤ i ≤ n.

UNIT 5 DISTRIBUTED SYSTEMS

UNIT-4 QUESTIONS

What is rollback? and explain the several types of messages for rollback. (13)

Examine briefly about global states with examples. (13)

Describe the issues involved in a failure recovery with the help of a distributed computation. (13)

Elaborate the various checkpoint-based rollback-recovery techniques.(13)

Describe the pessimistic logging , optimistic logging and casual logging.(13)

What are min-process check pointing algorithms? Explain it detail.(7)
Examine Deterministic and non-deterministic events. (6)

Summarize the koo–toueg coordinated check pointing algorithm.(7)
Explain the rollback recovery algorithm. (6)

. Demonstrate in detail about the juang–venkatesan algorithm for asynchronous check pointing and
recovery.(13)

UNIT 5 DISTRIBUTED SYSTEMS

. Discuss in detail about some assumptions underlying the study of agreement algorithms. (13)

. What is byzantine agreement problem? Explain the two popular flavours of the byzantine agreement
problem.

. Develop an overview of the results and lower bounds on solving the consensus problem under different
assumptions.

. Explain agreement in (message-passing) synchronous systems with failures.(13)

. Give byzantine agreement tree algorithm and illustrate with an example. (13)

. Analyze on phase-king algorithm for consensus.(13)

. Design a system model of distributed system consisting of four processes and explain the interactions with
the outside world.(15)

. Explain with examples of consistent and inconsistent states of a distributed system.(15)

. Consider the following simple check pointing algorithm. A process takes a local checkpoint right after
sending a message. Create that the last checkpoint at all processes will always be

. consistent. What are the trade-offs with this method?(15)

. Give and analyse a rigorous proof of the impossibility of a min- process, non blocking check pointing
algorithm.(15)

UNIT 5

Explain the structured overlays and unstructured overlays in distributed indexing. (13)

i) What is meant by napster legacy? Explain.(7)
Give a brief account on Indexing mechanisms. (6
Examine the chord protocol with simple key lookup algorithm.(13)
Illustrate in detail about A scalable object location algorithm in chord.(13)

Discuss on managing churn in chord.(13)
Describe briefly about the following:
i) Content-Addressable Network (CAN) initialization (6)
ii) CAN routing (7).
Point out tapestry P2P overlay network and its routing with an example. (13)

Discuss the CAN maintenance and CAN optimizations. (13)

State about the consistency models: entry consistency, weak consistency, and release
consistency.(13)
Summarize in detail how node insertion and node deletion are applied in tapestry. (13)

i) Illustrate the advantages and disadvantages of DSM.(6)
ii) Point out the main issues in designing a DSM system (7)

UNIT 5 DISTRIBUTED SYSTEMS

Examine how to implement linearizability (LIN) using total order broadcasts.(13)

Analyse how to implement Sequential consistency in a distributed system.(13)

Describe lamport’s bakery algorithm lamport’s WRWR mechanism and fast mutual exclusion. (13)

User ‘A’ in delhi wishes to send a file for printing to user ‘B’ in florida, whose system is connected to a
printer; while user ‘C’ from tokyo wants to save a video file in the hard disk of user ‘D’ in london.
Analyze and discuss the required peer-to-peer network architecture.(15)

Evaluate a formal proof to justify the correctness of algorithm that implements sequential consistency
using local read operations.(15)

Develop a detailed implementation of causal consistency, and provide a correctness argument for
your implementation.(15)

