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 Token based approach 
 Non-token based approach 
 Quorum based approach 

3.1 INTRODUCTION 

 

 
UNIT III - DISTRIBUTED MUTEX & DEADLOCK 

 
 

Mutual exclusion: Concurrent access of processes to a shared resource or data is executed in 
mutually exclusive manner. 

 Only one process is allowed to execute the critical section (CS) at any given time.
 In a distributed system, shared variables (semaphores) or a local kernel cannot be used to 

implement mutual exclusion.
 Message passing is the sole means for implementing distributed mutual exclusion.
 Distributed mutual exclusion algorithms must deal with unpredictable message delays 

and incomplete knowledge of the system state.
Three basic approaches for distributed mutual exclusion: 

 

Token-based approach: 
 A unique token is shared among the sites. 
 A site is allowed to enter its CS if it possesses the token. 
 Mutual exclusion is ensured because the token is unique. 

Non-token based approach: 
Two or more successive rounds of messages are exchanged among the sites to determine 
which site will enter the CS next. 

Quorum based approach: 
Each site requests permission to execute the CS from a subset of sites (called a 
quorum). 
Any two quorums contain a common site. 
This common site is responsible to make sure that only one request executes the CS 
at any time. 

DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS 

Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport‘s algorithm – 
Ricart-Agrawala algorithm – Maekawa‘s algorithm – Suzuki–Kasami‘s broadcast algorithm. 
Deadlock detection in distributed systems: Introduction – System model – Preliminaries –Models 
of deadlocks – Knapp‘s classification –Algorithms for the single resource model, the AND model 
and the OR model. 
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3.2 PRELIMINARIES 

 

 
 

 System Model 
 The system consists of N sites, S1, S2, ..., SN. 
 We assume that a single process is running on each site. The process at site 
 Si is denoted by pi . 
 A site can be in one of the following three states: requesting the CS, executing the 

CS, or neither requesting nor executing the CS (i.e., idle). 
 In the ‘requesting the CS’ state, the site is blocked and can not make further 

requests for the CS. In the ‘idle’ state, the site is executing outside the CS. In 
token-based algorithms, a site can also be in a state where a site holding 

 the token is executing outside the CS (called the idle token state). 
 At any instant, a site may have several pending requests for CS. A site queues up 

these requests and serves them one at a time. 
 

 Requirements of Mutual Exclusion Algorithms 
 Safety Property: At any instant, only one process can execute the critical section. 
 Liveness Property: This property states the absence of deadlock and starvation. 

Two or more sites should not endlessly wait for messages which will never arrive. 
 Fairness: Each process gets a fair chance to execute the CS. Fairness property 

generally means the CS execution requests are executed in the order of their arrival 
(time is determined by a logical clock) in the system. 

 
The first property is absolutely necessary and the other two properties are considered important in 
mutual exclusion algorithms. 

 Performance Metrics 
The performance is generally measured by the following four metrics: 

 Message complexity: The number of messages required per CS execution by a site. 
 Synchronization delay: After a site leaves the CS, it is the time required and before the 

next site enters the CS (see Figure 1). 
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system throughput=1/(SD+E ) 

 

 
 Response time: The time interval a request waits for its CS execution to be over after 

its request messages have been sent out (see Figure 2). 
 

 System throughput: The rate at which the system executes requests for the CS. 

where SD is the synchronization delay and E is the average critical section execution time. 
 
 

Low and High Load Performance: 
 We often study the performance of mutual exclusion algorithms under two special loading 

conditions, viz., “low load” and “high load”. 
 The load is determined by the arrival rate of CS execution requests. 
 Under low load conditions, there is seldom more than one request for the critical section 

present in the system simultaneously. 
 Under heavy load conditions, there is always a pending request for critical section at a site. 

 
Best and worst case performance 

 Generally, mutual exclusion algorithms have best and worst cases for the performance 
metrics. In the best case, prevailing conditions are such that a performance metric attains 
the best possible value. For example, in most mutual exclusion algorithms the best value 
of the response time is a round-trip message delay plus the CS execution time, 2T + E. 

 Often for mutual exclusion algorithms, the best and worst cases coincide with low and high 
loads, respectively. For examples, the best and worst values of the response time are 
achieved when load is, respectively, low and high; in some mutual exclusion algorithms 
the best and the worse message traffic is generated at low and heavy load conditions, 
respectively. 
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3.3 LAMPORT’S ALGORITHM 

 

 
 

 

 Requests for CS are executed in the increasing order of timestamps and time is determined 
by logical clocks. 

 Every site Si keeps a queue, request queuei, which contains mutual exclusion requests 
ordered by their timestamps. 

 This algorithm requires communication channels to deliver messages the FIFO order. 
 

The Algorithm 
 

 Requesting the critical section: 
 When a site Si wants to enter the CS, it broadcasts a REQUEST(tsi , i ) message to 

all other sites and places the request on request queuei. ((tsi, i) denotes the timestamp 
of the request.) 

 When a site Sj receives the REQUEST(tsi, i) message from site Si,places site Si ’s 
request on request queuej and it returns a timestamped REPLY message to Si. 

 Executing the critical section: Site Si enters the CS when the following two conditions 
hold: 

L1: Si has received a message with timestamp larger than (tsi, i) from all other sites. 
L2: Si ’s request is at the top of request queuei. 

Releasing the critical section: 
 Site Si , upon exiting the CS, removes its request from the top of its request queue 

and broadcasts a timestamped RELEASE message to all other sites. 
 When a site Sj receives a RELEASE message from site Si , it removes Si ’s 

request from its request queue. 
When a site removes a request from its request queue, its own request may come at the top of 
the queue, enabling it to enter the CS. 
Correctness 

 
Theorem: Lamport’s algorithm achieves mutual exclusion. 
Proof: 

 Proof is by contradiction. Suppose two sites Si and Sj are executing the CS concurrently. 
For this to happen conditions L1 and L2 must hold at both the sites concurrently. 

 This implies that at some instant in time, say t, both Si and Sj have their own requests 
at the top of their request queues and condition L1 holds at them. Without loss of 
generality, assume that Si ’s request has smaller timestamp than the request of Sj. 

 m condition L1 and FIFO property of the communication channels, it is clear that at 
instant t the request of Si must be present in request queuej when Sj was executing its CS. 
This implies that Sj’s own request is at the top of its own request queue when a smaller 
timestamp request, Si ’s request, is present in the request queuej – a contradiction! 
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3.4 RICART-AGRAWALA ALGORITHM 

 

 
 
 

Theorem: Lamport’s algorithmisfair. 
Proof: 

 The proof is by contradiction. Suppose a site Si ’s request has a smaller timestamp 
than the request of another site Sj and Sj is able to execute the CS before Si . 

 For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies 
that at some instant in time say t, Sj has its own request at the top of its queue and 
it has also received a message with timestamp larger than the timestamp of its 
request from all other sites. 

 But request queue at a site is ordered by timestamp, and according to our assumption 
Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in 
the request queuej. This is a contradiction! 

 
Performance 

 

 For each CS execution, Lamport’s algorithm requires (N − 1) REQUEST messages, (N 
− 1) REPLY messages, and (N − 1) RELEASE messages. Thus, Lamport’s algorithm 
requires 3(N − 1) messages per CS invocation. 

 Synchronization delay in the algorithm is T. 
 
 

An optimization 
 

 In Lamport’s algorithm,REPLY messages can be omitted in certain situations. For 
example, if site Sj receives a REQUEST message from site Si after it has sent its own 
REQUEST message with timestamp higher than the timestamp of site Si ’s request, then 
site Sj need not send a REPLY message to site Si . 

 This is because when site Si receives site Sj ’s request with timestamp higher than its 
own, it can conclude that site Sj does not have any smaller timestamp request which is 
still pending. 

 With this optimization, Lamport’s algorithm requires between 3(N − 1) and 2(N − 1) 
messages per CS execution. 
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 The Ricart-Agrawala algorithm assumes the communication channels are FIFO. The 
algorithm uses two types of messages: REQUEST and REPLY. 

 A process sends a REQUEST message to all other processes to request their permission 
to enter the critical section. A process sends a REPLY message to a process to give its 
permission to that process. 

 Processes use Lamport-style logical clocks to assign a timestamp to critical section requests 
and timestamps are used to decide the priority of requests. 

 Each process pi maintains the Request-Deferred array, RDi , the size of which is the same 
as the number of processes in the system. 

 Initially, ∀ i ∀ j : RDi[j]=0. Whenever pi defer the request sent by pj , it sets 
 RDi [j]=1 and after it has sent a REPLY message to pj , it sets RDi [j]=0. 

 
Description of the Algorithm 
 Requesting the critical section: 

(a) When a site Si wants to enter the CS, it broadcasts a timestamped REQUEST 
message to all other sites. 

(b) When site Sj receives a REQUEST message from site Si , it sends a REPLY 
message to site Si if site Sj is neither requesting nor executing the CS, or if the 
site Sj is requesting and Si ’s request’s timestamp is smaller than site Sj ’s own 
request’s timestamp. Otherwise, the reply is deferred and Sj sets RDj[i]=1 

Executing the critical section: 
(c) Site Si enters the CS after it has received a REPLY message from every site it 

sent a REQUEST message to. 
 

Releasing the critical section: 
 
 
 

Notes: 

(a) When site Si exits the CS, it sends all the deferred REPLY messages: ∀ j if RDi 
[j] =1, then send a REPLY message to Sj and set RDi[j]=0. 

 
 When a site receives a message, it updates its clock using the timestamp in the 

message. 
 When a site takes up a request for the CS for processing, it updates its local clock 

and assigns a timestamp to the request. 
 

Theorem: Ricart-Agrawala algorithm achieves mutual exclusion. 
Proof: 

 Proof is by contradiction. Suppose two sites Si and Sj ‘ are executing the CS 
concurrently and Si ’s request has higher priority than the request of Sj . 

 Clearly, Si received Sj ’s request after it has made its own request. 
 Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj 
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3.5 MAEKAWA’S ALGORITHM 

 

 
(in response to Sj ’s request) before Si exits the CS. 

 However, this is impossible because Sj ’s request has lower priority.Therefore, 
Ricart-Agrawala algorithm achieves mutual exclusion. 

Performance 
 For each CS execution, Ricart-Agrawala algorithm requires (N − 1) 

REQUEST messages and (N − 1) REPLY messages. 
 Thus,   it requires 2(N − 1) messages per CS execution. 

Synchronization delay in the algorithm is T . 
 
 

 

 Conditions M1 and M2 are necessary for correctness; whereas conditions M3 and 
M4 provide other desirable features to the algorithm. 

 Condition M3 states that the size of the requests sets of all sites must be equal 
implying that all sites should have to do equal amount of work to invoke mutual 
exclusion. 

 Condition M4 enforces that exactly the same number of sites should request 
permission from any site implying that all sites have “equal responsibility” in 
granting permission to other sites. 

 
A site Si executes the following steps to execute the CS. 
 Requesting the critical section 

(a) A site Si requests access to the CS by sending REQUEST(i) messages to all 
sites in its request set Ri. 

(b) When a site Sj receives the REQUEST(i ) message, it sends a REPLY(j ) message 
to Si provided it hasn’t sent a REPLY message to a site since its receipt of the last 
RELEASE message. Otherwise, it queues up the REQUEST(i ) for later 
consideration. 

Executing the critical section 
 

(c) Site Si executes the CS only after it has received a REPLYmessage from every 
site in Ri. 
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Releasing the critical section 
(a) After the execution of the CS is over, site Si sends a RELEASE(i) message to 

every site in Ri. 
(b) When a site Sj receives a RELEASE(i ) message from site Si , it sends a REPLY 

message to the next site waiting in the queue and deletes that entry from the 
queue. If the queue is empty, then the site updates its state to reflect that it has not 
sent out any REPLY message since the receipt of the last RELEASE message. 

 
Correctness 

 
 

Performance 
 

 Problem of Deadlocks 
 

 Maekawa’s algorithm can deadlock because a site is exclusively locked by other sites 
and requests are not prioritized by their timestamps. 

 Assume three sites Si , Sj , and Sk simultaneously invoke mutual exclusion. Suppose Ri 
∩ Rj = {Sij}, Rj ∩ Rk= {Sjk}, and Rk ∩ Ri = {Ski }. 

 Consider the following scenario: 
o Sij has been locked by Si (forcing Sj to wait at Sij ). 
o Sjk has been locked by Sj(forcing Sk to wait at Sjk ). 
o Ski has been locked by Sk (forcing Si to wait at Ski). 

 This state represents a deadlock involving sites Si , Sj , and Sk . 
Handling Deadlocks 
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Maekawa’s algorithm handles deadlocks by requiring a site to yield a lock if the 
timestamp of its request is larger than the timestamp of some other request waiting for 
the same lock. 

 A site suspects a deadlock (and initiates message exchanges to resolve it) whenever 
a higher priority request arrives and waits at a site because the site has sent a REPLY 
message to a lower priority request. 

Deadlock handling requires three types of messages: 
FAILED: A FAILED message from site Si to site Sj indicates that Si can not grant Sj ’s 

request because it has currently granted permission to a site with a higher priority 
request. 

INQUIRE: An INQUIRE message from Si to Sj indicates that Si would like to find out 
from Sj if it has succeeded in locking all the sites in its request set. 

YIELD: A YIELD message from site Si to Sj indicates that Si is returning the permission 
to Sj (to yield to a higher priority request at Sj ). 

 
Maekawa’s algorithm handles deadlocks as follows: 

 When a REQUEST(ts, i ) from site Si blocks at site Sj because Sj has currently 
granted permission to site Sk , then Sj sends a FAILED(j ) message to Si if Si ’s 
request has lower priority. Otherwise, Sj sends an INQUIRE(j ) message to site Sk 

 In response to an INQUIRE(j ) message from site Sj , site Sk sends a YIELD(k ) 
message to Sj provided Sk has received a FAILED message from a site in its request 
set or if it sent a YIELD to any of these sites, but has not received a new GRANT 
from it. 

 In response to a YIELD(k ) message from site Sk, site Sj assumes as if it has been 
released by Sk , places the request of Sk at appropriate location in the request queue, 
and sends a GRANT(j ) to the top request’s site in the queue. Maekawa’s algorithm 
requires extra messages to handle deadlocks 

Maximum number of messages required per CS execution in this case is 5√ N. 
 

Token-based algorithms 

In token-based algorithms, a unique token is shared among the sites. A site is allowed to enter its 
CS if it possesses the token. A site holding the token can enter its CS repeatedly until it sends the 
token to some other site. Depending upon the way a site carries out the search for the token, there 
are numerous token-based algorithms. Next, we discuss two token-based mutual exclusion 
algorithms. 

First, token-based algorithms use sequence numbers instead of timestamps. Every request for the 
token contains a sequence number and the sequence numbers of sites advance independently. A 
site increments its sequence number counter every time it makes a request for the token. (A primary 
function of the sequence numbers is to distinguish between old and current requests.) Second, the 
correctness proof of token-based algorithms, that they enforce mutual exclusion, is trivial because 
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3.6 SUZUKI-KASAMI’S BROADCAST ALGORITHM 

 

 
an algorithm guarantees mutual exclusion so long as a site holds the token during the execution of 
the CS. 

 
 

 

 If a site wants to enter the CS and it does not have the token, it broadcasts a 
REQUEST message for the token to all other sites. 

 A site which possesses the token sends it to the requesting site upon the receipt of 
its REQUEST message. 

 If a site receives a REQUEST message when it is executing the CS, it sends the 
token only after it has completed the execution of the CS. 

 
This algorithm must efficiently address the following two design issues: 
(1) How to distinguish an outdated REQUEST message from a current 
REQUEST message: 

 Due to variable message delays, a site may receive a token request message after the 
corresponding request has been satisfied. 

 If a site can not determined if the request corresponding to a token request has 
been satisfied, it may dispatch the token to a site that does not need it. 

 This will not violate the correctness, however, this may seriously degrade the 
performance. 

(2) How to determine which site has an outstanding request for the CS: 
 After a site has finished the execution of the CS, it must determine what sites have 

an outstanding request for the CS so that the token can be dispatched to one of 
them. 
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\ 
The Algorithm 

 
Requesting the critical section 

 
(a) If requesting site Si does not have the token, then it increments its sequence 

number, RNi[i], and sends a REQUEST(i, sn) message to all other sites. (‘sn’ is 
the updated value of RNi[i].) 

(b) When a site Sj receives this message, it sets RNj[i] to max(RNj[i], 
sn). If Sj has the idle token, then it sends the token to Si if 
RNj[i]=LN[i]+1. 

Executing the critical section 
(c) Site Si executes the CS after it has received the token. 

 
Releasing the critical section 
Having finished the execution of the CS, site Si 

takes the following actions: 
(a) It sets LN[i] element of the token array equal to RNi[i]. 
(b) For every site Sj whose id is not in the token queue, it appends its id to the token 

queue if RNi[j]=LN[j]+1. 
(c) If the token queue is nonempty after the above update, Si deletes the top site id 

from the token queue and sends the token to the site indicated by the id. 
 

Correctness 
Mutual exclusion is guaranteed because there is only one token in the system and a site holds 
the token during the CS execution. 
Theorem: A requesting site enters the CS in finite time. Proof: 

 Token request messages of a site Si reach other sites in finite time. 
 Since one of these sites will have token in finite time, site Si ’s request will be 

placed in the token queue in finite time. 
 Since there can be at most N − 1 requests in front of this request in the token 

queue, site Si will get the token and execute the CS in finite time. 
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3.7 DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS 

3.8 SYSTEM MODEL 

 

 
Performance 

 No message is needed and the synchronization delay is zero if a site holds the idle token at 
the time of its request. 

 If a site does not hold the token when it makes a request, the algorithm requires N messages 
to obtain the token. Synchronization delay in this algorithm is 0 or T . 

 
 

 Deadlocks is a fundamental problem in distributed systems. 
 A process may request resources in any order, which may not be known a 

priori and a process can request resource while holding others. 
 If the sequence of the allocations of resources to the processes is not 

controlled, deadlocks can occur. 
 A deadlock is a state where a set of processes request resources that are held by 

other processes in the set. 
 
 

 

o A distributed program is composed of a set of n asynchronous processes p1, 
p2, . . . , pi , . . . , pn that communicates by message passing over the 
communication network. 

o Without loss of generality we assume that each process is running on a 
different processor. 

o The processors do not share a common global memory and communicate 
solely by passing messages over the communication network. 

 
o There is no physical global clock in the system to which processes have 

instantaneous access. 
o The communication medium may deliver messages out of order, messages 

may be lost garbled or duplicated due to timeout and retransmission, 
processors may fail and communication links may go down. 

We make the following assumptions: 
 The systems have only reusable resources. 
 Processes are allowed to make only exclusive access to resources. 
 There is only one copy of each resource. 

 Wait for Graph (WFG) 
 A process can be in two states: running or blocked. 
 In the running state (also called active state), a process has all the needed 

resources and is either executing or is ready for execution. 
 In the blocked state, a process is waiting to acquire some resource. 
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3.9 PRILIMINARIES 

 

 
 The state of the system can be modeled by directed graph, called a wait for 

graph (WFG). 
 In a WFG , nodes are processes and there is a directed edge from node P1 

to mode P2 if P1 is blocked and is waiting for P2 to release some resource. 
 A system is deadlocked if and only if there exists a directed cycle or knot 

in the WFG. 
 Figure 1 shows a WFG, where process P11 of site 1 has an edge to process 

P21 of site 1 and P32 of site 2 is waiting for a resource which is currently 
held by process P21. 

 At the same time process P32 is waiting on process P33 to release a 
resource. 

 If P21 is waiting on process P11, then processes P11, P32 and P21 form a cycle 
and all the four processes are involved in a deadlock depending upon the 
request model. 

 
An Example of WFG 

 

 
 

 
 Deadlock Handling Strategies 

 There are three strategies for handling deadlocks, viz., deadlock 
prevention, deadlock avoidance, and deadlock detection. 

 Handling of deadlock becomes highly complicated in distributed systems 
because no site has accurate knowledge of the current state of the system 
and because every inter-site communication involves a finite and 
unpredictable delay. 

 Deadlock prevention is commonly achieved either by having a process 
acquire all the needed resources simultaneously before it begins executing 
or by preempting a process which holds the needed resource. 
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3.10 MODELS OF DEADLOCKS 

 

 
 This approach is highly inefficient and impractical in distributed systems. 
 In deadlock avoidance approach to distributed systems, a resource is 

granted to a process if the resulting global system state is safe (note that 
a global state includes all the processes and resources of the distributed 
system). 

 However, due to several problems, deadlock avoidance is impractical in 
distributed systems. 

 Deadlock detection requires examination of the status of process- 
resource interactions for presence of cyclic wait. 

 Deadlock detection in distributed systems seems to be the best approach 
to handle deadlocks in distributed systems. 

 
Issues in Deadlock Detection 

 Deadlock handling using the approach of deadlock detection entails addressing 
two basic issues: First, detection of existing deadlocks and second resolution of 
detected deadlocks. 

 
 Detection of deadlocks involves addressing two issues: Maintenance of the WFG and 

searching of the WFG for the presence of cycles (or knots). 
 

Correctness Criteria: A deadlock detection algorithm must satisfy the following two 
conditions: 
(i) Progress (No undetected deadlocks): 

 The algorithm must detect all existing deadlocks in finite time. 
 In other words, after all wait-for dependencies for a deadlock have formed, the 

algorithm should not wait for any more events to occur to detect the deadlock. 
(ii) Safety (No false deadlocks): 

 The algorithm should not report deadlocks which do not exist (called phantom or 
false deadlocks). 

 
Resolution of a Detected Deadlock 

 Deadlock resolution involves breaking existing wait-for dependencies between 
the processes to resolve the deadlock. 

 It involves rolling back one or more deadlocked processes and assigning their 
resources to blocked processes so that they can resume execution. 

 
 
 
 
 
 

Distributed systems allow several kinds of resource requests. 
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 The Single Resource Model 

 In the single resource model, a process can have at most one outstandingrequest for 
only one unit of a resource. 

 Since the maximum out-degree of a node in a WFG for the single resource model can 
be 1, the presence of a cycle in the WFG shall indicate that there is a deadlock. 

 
 AND Model 

 

 In the AND model, a process can request for more than one resource 
simultaneously and the request is satisfied only after all the requested resources are 
granted to the process. 

 The out degree of a node in the WFG for AND model can be more than 1. 
 The presence of a cycle in the WFG indicates a deadlock in the AND model. 
 Since in the single-resource model, a process can have at most one outstanding 

request, the AND model is more general than the single-resource model. 
 

Consider the example WFG described in the Figure 1. 
 P11 has two outstanding resource requests. In case of the AND model, P11shall 

become active from idle state only after both the resources are granted. 
 There is a cycle P11->P21->P24->P54->P11 which corresponds to a deadlock situation. 
 That is, a process may not be a part of a cycle, it can still be deadlocked. Consider 

process P44 in Figure 1. 
 It is not a part of any cycle but is still deadlocked as it is dependent on P24which 

is deadlocked. 
 

 OR Model 
 

 In the OR model, a process can make a request for numerous resources 
simultaneously and the request is satisfied if any one of the requested resources is 
granted. 

 Presence of a cycle in the WFG of an OR model does not imply a deadlock in the 
OR model. 

 Consider example in Figure 1: If all nodes are OR nodes, then process P11 is not 
deadlocked because once process P33 releases its resources, P32 shall become active 
as one of its requests is satisfied. 

 After P32 finishes execution and releases its resources, process P11 can continue with 
its processing. 

 In the OR model, the presence of a knot indicates a deadlock. 
 
 

 AND – OR Model 
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3.11 KNAPP’S CLASSIFICATION 

 

 
 
 

 A generalization of the previous two models (OR model and AND model) is the 
AND-OR model. 

 In the AND-OR model, a request may specify any combination of and and 
or in the resource request. 

 For example, in the AND-OR model, a request for multiple resources can be of the 
form x and (y or z). 

 To detect the presence of deadlocks in such a model, there is no familiar construct of 
graph theory using WFG. 

 Since a deadlock is a stable property, a deadlock in the AND-OR model can be 
detected by repeated application of the test for OR-model deadlock. 

 
 

3. 10.5  

 
3.10.6 Unrestricted model 

 

 In the unrestricted model, no assumptions are made regarding the underlying 
structure of resource requests. 

 Only one assumption that the deadlock is stable is made and hence it is the most 
general model. 

 This model helps separate concerns: Concerns about properties of the problem 
(stability and deadlock) are separated from underlying distributed systems 
computations (e.g., message passing versus synchronous communication). 
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Distributed deadlock detection algorithms can be divided into four classes: 

 Path-Pushing 
 Edge-Chasing 
 Diffusion Computation 
 Global State Detection. 

 
 Path-Pushing Algorithms 

 In path-pushing algorithms, distributed deadlocks are detected by maintaining 
an explicit global WFG. 

 The basic idea is to build a global WFG for each site of the distributed system. 
 In this class of algorithms, at each site whenever deadlock computation is 

performed, it sends its local WFG to all the neighboring sites. 
 After the local data structure of each site is updated, this updated WFG is then 

passed along to other sites, and the procedure is repeated until some site has a 
sufficiently complete picture of the global state to announce deadlock or to 
establish that no deadlocks are present. 

 This feature of sending around the paths of global WFG has led to the term 
path-pushing algorithms. 

 
 Edge-Chasing Algorithms 

 In an edge-chasing algorithm, the presence of a cycle in a distributed graph structure 
is be verified by propagating special messages called probes, along the edges of the 
graph. 

 These probe messages are different than the request and reply messages. 
 The formation of cycle can be deleted by a site if it receives the matching probe sent 

by it previously. 
 Whenever a process that is executing receives a probe message, it discards this 

message and continues. 
 Only blocked processes propagate probe messages along their outgoing edges. 
 Main advantage of edge-chasing algorithms is that probes are fixed size messages 

which is normally very short. 
 

 Diffusing Computations Based Algorithms 
 In diffusion computation based distributed deadlock detection algorithms, 

deadlock detection computation is diffused through the WFG of the system. 
 These algorithms make use of echo algorithms to detect deadlocks. 
 This computation is superimposed on the underlying distributed computation. If this 

computation terminates, the initiator declares a deadlock. 
 To detect a deadlock, a process sends out query messages along all the outgoing 

edges in the WFG. 
 These queries are successively propagated (i.e., diffused) through the edges of the WFG. 
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3.12 MITCHELL AND MERRITT’S ALGORITHM FOR THE SINGLE- 
RESOURCE MODEL 

 

 
 When a blocked process receives first query message for a particular deadlock 

detection initiation, it does not send a reply message until it has received a reply 
message for every query it sent. 

 For all subsequent queries for this deadlock detection initiation, it immediately 
sends back a reply message. 

 The initiator of a deadlock detection detects a deadlock when it receives reply for 
every query it had sentout. 

 
 Global state detection based deadlock detection algorithms 

 

 Global state detection based deadlock detection algorithms exploit the following 
facts: 

 A consistent snapshot of a distributed system can be obtained without freezing the 
underlying computation and 

 If a stable property holds in the system before the snapshot collection is initiated, this 
property will still hold in the snapshot. 

 Therefore, distributed deadlocks can be detected by taking a snapshot of the system 
and examining it for the condition of a deadlock. 

 
 

 Belongs to the class of edge-chasing algorithms where probes are sent in opposite 
direction of the edges of WFG. 

 When a probe initiated by a process comes back to it, the process declares deadlock. 
 Only one process in a cycle detects the deadlock. This simplifies the deadlock 

resolution – this process can abort itself to resolve the deadlock. 
 

 Each node of the WFG has two local variables, called labels: 
 a private label, which is unique to the node at all times, though it is not 

constant, and 
 a public label, which can be read by other processes and which may not be 

unique. 
 Each process is represented as u/v where u and u are the public and private labels, 

respectively. 
 Initially, private and public labels are equal for each process. 
 A global WFG is maintained and it defines the entire state of the system. 

 
 

 The algorithm is defined by the four state transitions shown in Figure 2, where z = 
inc(u, v), and inc(u, v) yields a unique label greater than both u and v labels that are 
not shown do not change. 
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 Block creates an edge in the WFG. 
 Two messages are needed, one resource request and one message back to the blocked 

process to inform it of the public label of the process it is waiting for. 
 Activate denotes that a process has acquired the resource from the process it was 

waiting for. 
 Transmit propagates larger labels in the opposite direction of the edges by sending a 

probe message. 
 

The four possible state transitions 
 
 
 

 

 Whenever a process receives a probe which is less then its public label, then it 
simply ignores that probe. 

 Detect means that the probe with the private label of some process has returned 
to it, indicating a deadlock. 

 The above algorithm can be easily extended to include priorities where 
whenever a deadlock occurs, the lowest priority process gets aborted. 

 
Message Complexity: 
If we assume that a deadlock persists long enough to be detected, the worst-case 
complexity of the algorithm is s(s - 1)/2 Transmit steps, where s is the number of 
processes in the cycle. 
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3.13 CHANDY-MISRA-HAAS’S FOR AND MODEL 

 

 
 
 

 

 Chandy-Misra-Haas’s distributed deadlock detection algorithm for AND model 
is based on edge-chasing. 

 The algorithm uses a special message called probe, which is a triplet (i, j, k), denoting 
that it belongs to a deadlock detection initiated for process Pi and it is being sent by the 
home site of process Pj to the home site of process Pk . 

 A probe message travels along the edges of theglobal WFG graph, and a deadlock 
is detected when a probe message returns to the process that initiated it. 

 A process Pj is said to be dependent on another process Pk if there exists a 
sequence of processes Pj , Pi1, Pi2, ..., Pim, Pk such that each process except 
Pk in the sequence is blocked and each process, except the Pj , holds a 
resource for which the previous process in the sequence is waiting. 

 Process Pj is said to be locally dependent upon process Pk if Pj is 
dependent upon Pk and both the processes are on the same site. 

 Data Structures 
 Each   process   Pi   maintains   a   boolean   array,   dependenti,   where 

dependenti(j) is true only if Pi knows that Pj is dependent on it. 
 Initially, dependenti(j) is false for all i and j. 

 
Algorithm  

if Pi is locally dependent on itself 
then declare a deadlock 
else for all Pj and Pk such that 

(a) Pi is locally dependent upon Pj , and 
(b) Pj is waiting on Pk, and 
(c) Pj and Pk are on different sites, 
send a probe (i, j, k) to the home site of Pk 

 
On the receipt of a probe (i, j, k), the site takes 

the following actions: 
 

if 
 

(d) Pk is blocked, and 
(e)dependentk i is false, and 
(f) Pk has not replied to all requests Pj , then 

begin 

dependentk i = true; if k = i 
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3.14 CHANDY-MISRA-HAAS DISTRIBUTED DEADLOCK DETECTION 
ALGORITHM FOR OR MODEL 

 

 
then declare that Pi is deadlocked else 

for all Pm and Pn such that 
 

(a ) Pk is locally dependent upon Pm, and 
(b ) Pm is waiting on Pn, and 
(c ) Pm and Pn are on different sites, send a 

probe (i, m, n) to the home site of Pn 
 

end. 
 

 A probe message is continuously circulated along the edges of the global WFG graph 
and a deadlock is detected when a probe message returns to its initiating process. 

Performance Analysis 
 One probe message (per deadlock detection initiation) is sent on every edge of the 

WFG which that two sites. 
 Thus, the algorithm exchanges at most m(n − 1)/2 messages to detect a deadlock that 

involves m processes 
 and that spans over n sites. 
 The size of messages is fixed and is very small (only 3 integer words). 
 Delay in detecting a deadlock is O(n). 

 
 

Chandy-Misra-Haas distributed deadlock detection algorithm for OR model is based on 
the approach of diffusion-computation. 

 A blocked process determines if it is deadlocked by initiating a diffusion 
computation. 

 Two types of messages are used in a diffusion computation: 
 query(i, j, k) and reply(i, j, k), denoting that they belong to a diffusion computation 

initiated by a process Pi and are being sent from process Pj to process Pk . 
 A blocked process initiates deadlock detection by sending query messages to all 

processes in its dependent set. 
 If an active process receives a query or reply message, it discards it. 
 When a blocked process Pk receives a query(i, j, k) message, it takes the following 

actions: 
 If this is the first query message received by Pk for the deadlock detection 

initiated by Pi (called the engaging query), then it propagates the query to all 
the processes in its dependent set and sets a local variable numk (i) to the 
number of query messages sent. 

 If this is not the engaging query, then Pk returns a reply message to it 
immediately provided Pk has been continuously blocked since it received the 
corresponding engaging query. Otherwise, it discards the query. 
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 Process Pk maintains a boolean variable waitk (i) that denotes the fact that it has been 

continuously blocked since it received the last engaging query from process Pi . 
 When a blocked process Pk receives a reply(i, j, k) message, it decrements numk (i) 

only if waitk (i) holds. 
 A process sends a reply message in response to an engaging query only after it has 

received a reply to every query message it had sent out for this engaging query. 
 The initiator process detects a deadlock when it receives reply messages to all the 

query messages it had sent out. 

 In practice, several diffusion computations may be initiated for a process (A diffusion 
computation is initiated every time the process gets blocked), but, at any time only 
one diffusion computation is current for any process. 

 However, messages for outdated diffusion computations may still be in transit. 
 The current diffusion computation can be distinguished from outdated ones by using 

sequence numbers. 
Performance Analysis 
For every deadlock detection, the algorithm exchanges e query messages and e reply 
messages, where e=n(n-1) is the number of edges. 

  
 

1. Explain the Lamport‘s algorithm. 

2. Discuss Ricart-Agrawala algorithm. 

3. Explain Maekawa‘s algorithm. 

4. Explain Suzuki–Kasami‘s broadcast algorithm.

5. How to detect Deadlock in distributed systems. Explain the system model 

6. Discuss the Models of deadlocks 
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7. Explain the Knapp‘s classification. 

8. Discuss the Algorithm for the single resource model.(MITCHELL AND MERRITT’S 

ALGORITHM 

9. Discuss the Algorithm the AND model . (CHANDY-MISRA-HAAS’S) 

10. Discuss the Algorithm OR model. (CHANDY-MISRA-HAAS) 


