
Computer Arithmetic: The Addition, subtraction, multiplication and division are the four basic 

arithmetic operations. These operations addition, subtraction, multiplication, and division can be 

performed on the following types of data: 

1. Fixed-point binary data (Signed Magnitude and Signed 2’s complement representation )

2. Floating-point binary data

3. Binary-coded decimal (BCD) data

Addition and Subtraction: There are three ways of representing negative fixed-point binary numbers: 

1. Signed-magnitude

2. Signed one’s complement

3. Signed two’s complement.

Most computers use the signed-2's complement representation when performing arithmetic operations

with integers. For floating-point operations, most computers use the signed-magnitude representation for the 

Mantissa.   

Addition and Subtraction with signed-magnitude Data: Consider the magnitude of the two numbers by A 

and B. When the signed numbers are added or subtracted, there are eight different conditions to consider, 

depending on the sign of the numbers and the operation performed. These conditions are listed in the following 

table. 

Addition (Subtraction) Algorithm: When the signs of A and B are identical (different), add the two magnitudes 

and attach the sign of A to the result. When the signs of A and B are different (identical), compare the 

magnitudes and subtract the smaller number from the larger. Choose the sign of the result to be the same as A 

if A > B or the complement of the sign of A if A < B. If the two magnitudes are equal/ subtract B from A and 

make the sign of the result positive. 

Hardware Implementation: Addition and Subtraction with Signed-Magnitude Data Hardware Design shows 

a block diagram of the hardware for implementing the addition and subtraction operations. It consists of 

registers A and B and sign flip-flops As and Bs. Subtraction is done by adding A to the 2's complement of B. 

The output carry is transferred to flip-flop E, where it can be checked to determine the relative magnitudes of 

the two numbers. The add overflow flip-flop AVF holds the overflow bit when A and B are added. 

The addition of A plus B is done through the parallel adder. The complementer provides an output of 

B or the complement of B depending on the state of the mode control M. When M = 0, the output of B is 
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transferred to the adder, the input carry is 0, and the output of the adder is equal to the sum A + B. When M = 

1, the 1's complement of B is applied to the adder, the input carry is 1, and output S = A + B +1. This is equal 

to A plus the 2's complement of B, which is equivalent to the subtraction, A - B. The S (sum) output of the 

adder is applied to the input of the A register. 

Hardware Algorithm:  
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Addition and Subtraction with Signed-2’s Complement Algorithm: The addition of two numbers in signed 

2’s complement form consists of adding the numbers with signed 2’s complement data. The subtraction is 

performed by adding 2’s complement of the subtrahend to the minuend. 

 When two numbers of n digits are added and sum occupies n+1 digits, we say that an overflow is 

occurred. An overflow can be detected by observing the carry into the sign bit position and carry out of the 

sign bit position. When the two carriers are applied to exclusive-OR gates, the overflow is detected when the 

output of the gate is equal to 1. The register configuration for the hardware implementation is as shown below. 

 In this case, unlike signed magnitude data sign bits are not separated from the rest of the registers. The 

left most bit in AC and BR represent the sign bits of the numbers. The two sign bits are added or subtracted 

together with the other bits in the complementer and parallel adder. The overflow flip-flop V is set to 1 if there 

is an overflow. The output carry in this case is discarded. 

 The algorithm (flowchart) for adding and subtracting two binary numbers in signed 2’s complement 

representation is as shown below. 
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 The sum is obtained by adding the contents of AC and BR (including their sign bits). The overflow 

bit is set to 1 if there is an overflow, else it is set to 0. The subtraction is obtained by adding the content of 

AC to the 2‘s complement of BR. 

 

Multiplication: Multiplication of two fixed-point binary numbers in signed magnitude representation is done 

with successive shift and adds operations. This process is best illustrated with a numerical example: 

 This process looks at successive bits of the multiplier, least significant bit first. If the multiplier bit is 

1, the multiplicand is copied down; otherwise, zeros are copied down. The numbers copied down in successive 

lines are shifted one position to the left from the previous numbers. Finally, the numbers are added and their 

sum produces the product. 

 The sign of the product is determined from the signs of the multiplicand and multiplier. If they are 

same, the sign of the product is positive. If they are different, the sign of the product is negative. 

 

Multiplication is performed as shown below: 

1. Multiplication involves the generation of partial products, one for each digit in the multiplier. These 

partial products are then summed to produce the final product. 

2. The partial products are easily defined. When the multiplier bit is 0, the partial product is 0. When the 

multiplier is 1, then the partial product is the multiplicand. 

3. The total product is produced by summing the partial products. For this operation, each successive 

partial product is shifted one position to the left relative to the preceding partial product. 

4. The multiplication of two n-bit binary integers results in a product of up to 2n bits in length. 

 

Hardware implementation for Multiplication with Signed Magnitude Data: Initially the multiplier is 

stored in Q register and its sign is Qs. The sequence counter is initially set to a number which is equal to number 

of bits in the multiplier. The counter is decremented by 1 after forming each partial product. When the contents 

of the counter reaches zero, the product is formed and the process stops. 

 Initially, the multiplicand is in register B and the multiplier is in Q. The sum of A and B forms a partial 

product which is transferred to the EA register. Both partial product and multiplier are shifted to right. This 

shift will be denoted by shr EAQ. The least significant bit of A is shifted into the most significant position of 

Q, the bit from E is shifted into the most significant position of A, and 0 is shifted into E. After the shift, one 

bit of the partial product is shifted into Q, pursuing the multiplier bits one position to the right. In this manner, 

the rightmost flip-flop in register Q, designated by Qn, will hold the bit of the multiplier, which must be 

inspected next. 
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Hardware Algorithm: The following flowchart represents hardware multiply algorithm.  
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 Initially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and Qs, 

respectively. The signs are compared, and both A and Q are set to correspond to the sign of the product since 

a double-length product will be stored in registers A and Q. Registers A and E are cleared and the sequence 

counter SC is set to a number equal to the number of bits of the multiplier.  

 After the initialization, the low-order bit of the multiplier in Qn is tested. If it is a 1, the multiplicand in 

B is added to the present partial product in A. If it is a 0, nothing is done. Register EAQ is then shifted once to 

the right to form the new partial product. The sequence counter is decremented by 1 and its new value checked. 

If it is not equal to zero, the process is repeated and a new partial product is formed. The process stops when 

SC = 0. Note that the partial product formed in A is shifted into Q one bit at a time and eventually replaces the 

multiplier. The final product is available in both A and Q , with A holding the most significant bits and Q 

holding the least significant bits. 

 

Example: 23 * 19 = 437 

 

Multiplication with Signed-2’s Complement data (Booth’s algorithm): Booth algorithm multiplies binary 

integers in signed 2’s complement representation. If the numbers are represented in signed 2’s complement 

then we can multiply them by using Booth algorithm. 

 Booth algorithm needs examination of the multiplier bits and shifting of the partial product. Prior to 

the shifting, the multiplicand added to the partial product, subtracted from the partial product, or left unchanged 

by the following rules: 

1. The multiplicand is subtracted from the partial product when we get the first least significant 1 in a 

string of 1's in the multiplier.(when QnQn+1=10) 

2. The multiplicand is added to the partial product when we get the first Q (provided that there was a 

previous 1) in a string of 0's in the multiplier.(when QnQn+1=01) 

3. The partial product does not change when the multiplier bit is the same as the previous multiplier 

bit.(when QnQn+1=11 or 00) 

Hardware for Booth Algorithm: Booth Algorithm use registers AC, BR, and QR respectively. Qn designates 

the least significant bit of the multiplier in register QR. An extra flip-flop Qn+1 is appended to QR to facilitate 

a double bit inspection of the multiplier.  
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Flow Chart for Booth Algorithm:  
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 Initially, multiplicand is in BR and multiplier is in QR. AC and the appended bit Qn+1 are initially 

cleared to 0 and the sequence counter SC is set to a number n equal to the number of bits int the multiplier. 

The two bits of the multiplier in Qn and Qn+1 are inspected. If the two bits are equal to 10, it performs a 

subtraction of the multiplicand from the partial product in AC. If the two bits are equal to 01, it performs  

addition of the multiplicand to the partial product in AC. When the two bits are equal, the partial product does 

not change. The next step is to shift right the partial product and the multiplier (including bit Qn+1). This is an 

arithmetic shift right (ashr) operation which shifts AC and QR to the right and leaves the sign bit in AC 

unchanged. The sequence counter is decremented and the computational loop is repeated n times. 

 

Example: (-9) * (-13) = +117 

 

Division: The divisor is stored in the B register and the double length dividend is stored in registers A and 

Q. In division algorithms there is a possibility of occurrence of divide overflow. The divide overflow occurs if 

the high order half bits of the dividend is greater than or equal to the divisor. If there is no overflow, the 

dividend is shifted left and the divisor is subtracted by adding its 2’s complement value. The relative magnitude 

is available in E. If E=1, a quotient bit 1 is inserted in Qn, and the partial remainder is shifted left, and repeat 

the process. If E=0, the quotient Qn remains 0. The value of B is then added to restore the partial remainder in 

A. the partial remainder is shifted to the left and the process is repeated again. Finally the quotient is in Q and 

remainder is in A. 

 Hardware implementation for division operation is similar to multiplication operation.   

Hardware Algorithm (Restore Method): The dividend is in A and Q and the divisor in B. The sign of the 

result is transferred into Qs to be part of the quotient. A constant is set into the sequence counter SC to specify 

the number of bits in the quotient. 

 A divide-overflow condition is tested by subtracting the divisor in B from half of the bits of the dividend 

stored in A. If A>=B, the divide-overflow flip-flop DVF is set and the operation is terminated prematurely. If 

A < B, no divide overflow occurs so the value of the dividend is restored by adding B to A. 

 The division of the magnitudes starts by shifting the dividend in AQ to the left with the high-order bit 

shifted into E. If the bit shifted into E is 1, B must be subtracted from A and 1 inserted into Qn for the quotient 

bit.  
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 If the shift-left operation inserts a 0 into E, the divisor is subtracted by adding its 2’s complement value 

and the carry is transferred into E.If E = 1, it signifies that A>=B; therefore, Qn is set to 1. If E = 0, it signifies 

that A < B and the original number is restored by adding B to A.  

 This process is repeated again with register A holding the partial remainder. After n-1 times, the 

quotient magnitude is formed in register Q and the remainder is found in register A. The quotient sign is in Qs 

and the sign of the remainder in As is the same as the original sign of the dividend. 

 

Comparison and Non-Restoring Method: In the non-restoring method, B is not added if the difference is 

negative, instead the negative difference is shifted. 

 In Comparison method, A and B are compared prior to the subtraction operation. Then if A≥B, B is 

subtracted from A. If A < B nothing is done. 
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Example: 448 ⁄ 17 = Quotient 26, Remainder 6 
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Basic Computer Organization and Design 

Instruction Codes : The internal organization of a digital system is defined by the sequence of 

microoperations it performs on data stored in its registers. The general-purpose digital computer is capable of 

executing various microoperations and, in addition, can be instructed as to what specific sequence of operations 

it must perform. The user of a computer can control the process by means of a program. A program is a set of 

instructions that specify the operations, operands, and the sequence by which processing has to occur. 

A computer instruction is a binary code that specifies a sequence of microoperations for the computer. 

Instruction codes together with data are stored in memory. The computer reads each instruction from memory 

and places it in a control register. The control then interprets the binary code of the instruction and proceeds to 

execute it by issuing a sequence of microoperations. Every computer has its own unique instruction set. 
An instruction code is a group of bits that instruct the computer to perform a specific operation. It is 

usually divided into parts, each having its own particular interpretation. The most basic part of an instruction 

code is its operation part. The operation code of an instruction is a group of bits that define such operations as 

add, subtract, multiply, shift, and complement. The number of bits required for the operation code of an 

instruction depends on the total number of operations available in the computer.  

The operation code must consist of at least n bits for a given 2n (or less) distinct operations. Consider a 

computer with 64 distinct operations, one of them being an ADD operation. The operation code consists of six 

bits, with a bit configuration 110010  assigned to the ADD operation. When this operation code is decoded in 

the control unit, the computer issues control signals to read an operand from memory and add the operand to a 

processor register. The following represents the general format of an instruction code. 
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Each instruction specifies the operation noted in the operation code. There are two basic types of 

addressing modes. Where I=0 indicates direct addressing and I=1 indicates indirect addressing. 

Direct Addressing: It uses direct address of operands. i.e. address part of the instruction specifies a memory 

address where the data is stored. It is placed in address 22 in memory. The I bit is 0, so the instruction is 

recognized as a direct address instruction. The opcode specifies an ADD instruction, and the address part is 

the binary equivalent of 457.  The control finds the operand in memory at address 457 and adds it to the content 

of AC. 

Indirect Addressing: It uses indirect address of operands. i.e. address part of the instruction specifies another 

memory location where the data is stored. The instruction in address 35 has a mode bit I = 1. Therefore, it is 

recognized as an indirect address instruction. The address part is the binary equivalent of 300. The control goes 

to address 300 to find the address of the operand. The address of the operand in this case is 1350. The operand 

found in address 1350  is then added to the content of  AC. 

The indirect address instruction needs two references to memory to fetch an operand. The first reference 

is needed to read the address of the operand; the second is for the operand itself. 

 

Computer Register : Computer instructions are normally stored in consecutive memory locations and are 

executed sequentially one at a time. The control reads an instruction from a specific address in memory and 

executes it. It then continues by reading the next instruction in sequence and executes it, and so on. This type 

of instruction sequencing needs a counter to calculate the address of the next instruction after execution of the 

current instruction is completed. It is also necessary to provide a register in the control unit for storing the 

instruction code after it is read from memory. The computer needs processor registers for manipulating data 

and a register for holding a memory address. The following table lists different computer registers and their 

function. 

 

The memory unit has a capacity of 4096 words and each word contains 16 bits. Twelve bits of an 

instruction word are needed to specify the address of an operand. This leaves three bits for the operation, part 

of the instruction and a bit to specify a direct or indirect address.  

The data register (DR) holds the operand read from memory. The accumulator (AC) register is a general 

purpose processing register. The instruction read from memory is placed in the instruction register (IR). The 

temporary register (TR) is used for holding temporary data during the processing.  

The memory address register (AR) has 12 bits since this is the width of a memory address. The program 

counter (PC) also has 12 bits and it holds the address of the next instruction to be read from memory after the 

current instruction is executed. The PC goes through a counting sequence and causes the computer to read 

sequential instructions previously stored in memory. Instruction words are read and executed in sequence 
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unless a branch instruction is encountered. A branch instruction calls for a transfer to a nonconsecutive 

instruction in the program. The address part of a branch instruction is transferred to PC to become the address 

of the next instruction. To read an instruction, the content of PC is taken as the address for memory and a 

memory read cycle is initiated.  PC is then incremented by one, so it holds the address of the next instruction 

in sequence. 

Two registers are used for input and output. The input register (INPR) receives an 8-bit character from 

an input device. The output register (OUTR) holds an 8-bit character for an output device. 

 

Common Bus System : The basic computer has eight registers, a memory unit, and a control unit. Paths 

must be provided to transfer information from one register to another and between memory and registers. A 

more efficient scheme for transferring information in a system with many registers is to use a common bus. 

1. Memory Unit : Memory Unit 4096 * 16 represents that it has a capacity of 4096 words and 1 word= 16 

bits. Among these 12 bits specify address of an operand, 3 bits specify operation code, and 1 bit specify 

addressing mode (i.e. direct or indirect). The control inputs of memory unit are read and write. When 

Read input is enabled, the contents of memory unit are transferred to common bus. When Write input 

is enabled, the contents are transferred from bus to the memory unit. 

2. Address Register (AR) : Address Register contains address for the memory. It contains 12 bit memory 

address. Their controls inputs are Load (LD), increment (INR), and Clear (CLR). 

3. Program Counter (PC): Program Counter contains address of the next instruction to be fetched from 

memory. It consists of 12 bits. It allows the computer to read the instructions from the memory in 

sequential manner. To hold the next instruction it is incremented by 1. Its control inputs are Load (LD), 

Increment (INR), and Clear (CLR). 

4. Data Register (DR): Data Register contains data read from memory. It consists of 16 bits. Its control 

inputs are Load (LD), Increment (INR) and Clear (CLR). 

5. Accumulator (AC): Accumulator contains temporary operands and results of the ALU. It consists of 

16 bits. Its control inputs are Load (LD), Increment (INR), and Clear (CLR). 

6. Instruction Register (IR): Instruction Register contains an instruction which is currently being executed. 

It consists of 16 bits. Its control input is Load (LD). 
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7. Temporary Register (TR): Temporary Register contains temporary data. It consists of 16 bits. Their 

control inputs are Load (LD), Increment (INR), and Clear (CLR). 

8. Input Register (INPR): Input Register contains data read from the input device. It consists of 8 bits. 

9. Output Register (OUTR): Output Register contains the data to be sent to the output device. It consists 

of 8 bits. Its control input is Load (LD). It receives information from the bus. 

10. Flip Flop (E): A flip flop is a storage device which is capable of storing 1 bit of information. It contains 

the end carry out of the all arithmetic operations performed. 

11. Adder and Logic Circuit: It consists of 3 sets of inputs. First set of 16 bit inputs coming from the AC. 

Second set of 16 bit inputs coming from the DR. Third set of 8 bi inputs coming from the INPR. 
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The outputs of seven registers and memory are connected to the common bus. The specific output that 

is selected for the bus lines at any given time is determined from the binary value of the selection variables S2,  

S1, and S0. The number along each output shows the decimal equivalent of the required binary selection. For 

example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the bus lines when 

S2S1S0 = 011 since this is the binary value of decimal 3. The lines from the common bus are connected to the 

inputs of each register and the data inputs of the memory. The particular register whose LD (load) input is 

enabled receives the data from the bus during the next clock pulse transition. The memory receives the contents 

of the bus when its write input is activated. The memory places its 16-bit output onto the bus when the read 

input is activated and S2S1S0 = 111. 

 

Computer Instructions : A computer instruction is a binary code that specifies a sequence of micro 

operations for the computer. Instruction codes together with data are stored in memory. The computer reads 

each instruction from memory and places it in a control register. The control then interprets the binary code of 

the instruction and proceeds to execute it by issuing a sequence of micro operations.  

A basic computer has three types of instructions, with each of 16 bit long. They are 

 

1. Memory Reference Instruction : A Memory Reference Instruction uses 12 bits to specify an address, 3 

bits to specify the operation code and one bit to specify the addressing mode I. I is equal to 0 for direct 

address and to 1 for indirect address. The following are different types of memory reference 

instructions. 
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2. Register Reference Instruction : Register Reference Instructions are recognized by the operation code 

111 with a 0 in the leftmost bit of the instruction. The remaining 12 bits represent the type of register 

reference instruction. The following are different types of register reference instructions. 

 

3. Input – Output Instruction : An Input-Output instruction is recognized by the operation code 111 with 

a 1 in the left most bit of the instruction. The remaining 12 bits are used to specify the type of input-

output operation. The following are different types of Input-Output instructions. 

 

Instruction Cycle : The process of executing a program by allowing each instruction through a cycle in a 

sequential manner is known as Instruction Cycle. Each instruction cycle is divided into sub cycles or sub 

phases. To execute an instruction each instruction should pass these sub phases. Instruction Cycle consists of 

the following phases: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect address. 

4. Execute the instruction. 

1. Fetch Phase : Initially, the program counter PC is loaded with the address of the first instruction in the 

program. The sequence counter SC is cleared to 0, providing a decoded timing signal T0. After each 

clock pulse, SC is incremented by one, so that the timing signals go through a sequence T0, T1, T2, and 

so on. The microoperations for the fetch phase can be specified by the following register transfer 

statements. 

16 www.Jntufastupdates.com



At timing signal T0, address of the instruction is transferred from program counter to address 

register. At timing signal T1, the instruction register is loaded with instruction read from the memory 

and program counter is incremented by 1. 

 Register Transfers for the Fetch Phase : 

To provide the data path for the transfer of PC to AR, apply timing signal T0 to achieve the 

following connection:  

o Place the content of  PC  onto the bus by making the bus selection inputs S2S1S0 equal to 010. 

o Transfer the content of the bus to AR by enabling the LD input of AR. 

In order to implement second statement it is necessary to use timing signal T1 to provide the 

following connections in the bus system. 

o Enable the read input of memory. 

o Place the content of memory onto the bus by making S2S1S0 = 111. 

o Transfer the content of the bus to IR by enabling the LD input of IR. 

o Increment PC by enabling the INR input of PC. 

2. Decode Phase : During this phase, the decoding of an instruction is performed at timing signal T2. To 

decode 

• A 3 X 8 decoder is used to decode the 12 – 14 bits of instruction register as shown below. 

• The 0 – 11 bits of instruction register are loaded into address register 

• The 15th bit of instruction register is loaded into the addressing mode. 

• The decoding phase micro operations are, 

17 www.Jntufastupdates.com



 

3. Determining the type of Instruction : The timing signal that is active after the decoding is T3. During 

time T3, the control unit determines the type of instruction that was just read from memory. Before 

executing the instruction type of instruction must be determined. This will be done as shown below: 

• If the 7th bit of the output of the decoder i.e. D7 = 1, then it represents register reference instruction 

or input – output instruction. 

• If the 7th bit of the output of the decoder i.e. D7 = 0, then it represents memory reference instruction. 

• If the 7th bit of the output of the decoder i.e. D7 = 1 and addressing mode (I) = 0, then it represents 

a register reference instruction. 

• If the 7th bit of the output of the decoder i.e. D7 = 1 and addressing mode (I) = 1, then it represents 

a input-output instruction.  
 

4. Execution Phase : The three instruction types are subdivided into four separate paths. The selected 

operation is activated with the clock transition associated with timing signal T3. This can be symbolized 

as follows: 

 

When a memory-reference instruction with I = 0 is encountered, it is not necessary to do 

anything since the effective address is already in AR. However, the sequence counter SC must be 

incremented when  D7`T3 = 1, so that the execution of the memory-reference instruction can be 

continued with timing variable T4. A register-reference or input-output instruction can be executed with 

the clock associated with timing signal T3. After the instruction is executed, SC is cleared to 0 and 

control returns to the fetch phase with  T0 = 1. 

Register Reference Instructions : Register-reference instructions are recognized by the control when D7 = 1 

and I = 0. These instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions. 

These 12 bits are available in IR (0–11). They were also transferred to AR during time T2. The control functions 

and microoperations for the register-reference instructions are listed below. 

The first seven register-reference instructions perform clear, complement, circular shift, and increment 

microoperations on the AC or E registers. The next four instructions cause a skip of the next instruction in 

sequence when a stated condition is satisfied. The skipping of the instruction is achieved by incrementing PC 

once again. The condition control statements must be recognized as part of the control conditions. The AC is 

positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of AC is zero (AC = 0) 

if all the flip-flops of the register are zero. The HLT instruction clears a start-stop flip-flop S and stops the 
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sequence counter from counting. To restore the operation of the computer, the start–stop flip-flop must be set 

manually. 

Block Diagram or Flowchart of Instruction Cycle : 
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Memory – Reference Instructions : The following table lists the seven memory reference instructions. 

If the decoded output is D0, AND operation is performed. Similarly, for the decoded output D1, ADD operation 

will be performed and so on. 

 

AND : This is an instruction that performs the AND logic operation on pairs of bits in AC and the memory 

word specified by the effective address. The result of the operation is transferred to AC. The micro operations 

that execute this instruction are: 

The control function for this instruction uses the operation decoder D0 since this output of the decoder 

is active when the instruction has an AND operation whose binary code value is 000. Two timing signals are 

needed to execute the instruction. The clock transition associated with timing signal T4 transfers the operand 

from memory into DR. The clock transition associated with the next timing signal T5 transfers to AC the result 

of the AND logic operation between the contents of DR and AC. The same clock transition clears SC to 0, 

transferring control to timing signal T0 to start a new instruction cycle. 

 

ADD : This instruction adds the content of the memory word specified by the effective address to the value of  

AC. The sum is transferred into AC and the output carry Cout is transferred to the E (extended accumulator) 

flip-flop. The microoperations needed to execute this instruction are 

The same two timing signals, T4 and T5, are used again but with operation decoder D1 instead of D0, 

which was used for the AND instruction. After the instruction is fetched from memory and decoded, only one 

output of the operation decoder will be active, and that output determines the sequence of microoperations that 

the control follows during the execution of a memory reference instruction. 

 

LDA (Load to AC) : This instruction transfers the memory word specified by the effective address to  AC.  

The microoperations needed to execute this instruction are 

Here, read the memory word into DR first and then transfer the content of DR into AC. 
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STA (Store AC) : This instruction stores the content of  AC  into the memory word specified by the effective 

address. Since the output of AC  is applied to the bus and the data input of memory is connected to the bus, we 

can execute this instruction with one microoperation: 

 

BUN (Branch Unconditionally) : This instruction transfers the program to the instruction specified by the 

effective address. In general, PC holds the address of the instruction to be read from memory in the next 

instruction cycle. PC is incremented at time T1 to prepare it for the address of the next instruction in the program 

sequence. The BUN instruction allows the programmer to specify an instruction out of sequence to branche 

(or jump) unconditionally. The instruction is executed with one microoperation:  

The effective address from AR is transferred through the common bus to PC. Resetting SC to 0 transfers 

control to T0. The next instruction, is then fetched and executed from the memory address given by the new 

value in PC.  

 

BSA (Branch and Save Return Address) : This instruction is useful for branching to a portion of the program 

called a subroutine or procedure. When executed, the  BSA instruction stores the address of the next instruction 

in sequence (which is available in  PC) into a memory location specified by the effective address. The effective 

address plus one is then transferred to  PC  to serve as the address of the first instruction in the subroutine. 

To use the memory and the bus properly, the  BSA instruction must be executed with a sequence of 

two microoperations: 

Timing signal T4 initiates a memory write operation, places the content of  PC onto the bus, and enables 

the INR input of AR. The memory write operation is completed and AR is incremented by the time the next 

clock transition occurs. The bus is used at T5 to transfer the content of AR to PC. 

 

ISZ (Increment and Skip if Zero) : This instruction increments the word specified by the effective address, 

and if the incremented value is equal to 0, PC is incremented by 1. Since it is not possible to increment a word 

inside the memory, it is necessary to read the word into DR, increment DR, and store the word back into 

memory. This is done with the following sequence of microoperations: 

 

Control Flowchart: A flowchart showing all micro operations for the execution of the seven memory-

reference instructions is shown in below. The control functions are indicated on top of each box. The 

microoperations that are performed during time T4, T5, or T6 depend on the operation code value. This is 

indicated in the flowchart by six different paths, one of which the control takes after the instruction is decoded. 
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The sequence counter SC is cleared to 0 with the last timing signal in each case. This causes a transfer of 

control to timing signal T0 to start the next instruction cycle. 

 

Input –Output and Interrupt : Instructions and data stored in memory must come from some input 

device. Computational results must be transmitted to the user through some output device. Each quantity of 

information has eight bits of an alphanumeric code. The serial information from the keyboard is shifted into 

the input register INPR.  The serial information for the printer is stored in the output register OUTR. These 

two registers communicate with a communication interfaces serially and with the AC in parallel. The 

communication interfaces are 

• The transmitter interface receives serial information from the keyboard and transmits it to  INPR. 

• The receiver interface receives information from  OUTR  and sends it to the printer serially. 

The input–output configuration is shown below. 
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The data is transferred from keyboard to INPR in the following manner: 

1. Initially, the input flag FGI is cleared to 0. 

2. The input flag is set to 1 (FGI = 1) so that the data received from keyboard can be transmitted to input 

register INPR 

3. The data in the input register INPR remains same till the input flag is 1. 

4. The data gets transferred from INPR to accumulator AC, when FGI = 1. 

5. Once the transfer is completed FGI is set to 0 and INPR starts receiving input. 

 

The data is transferred from OUTR to printer in the following manner: 

1. Initially, the output flag FGO is set to 1. 

2. The computer checks the flag bit; if it is 1, the information present in the AC is transferred to OUTR. 

3. Once the data transfer is completed FGI is set to 0. 

4. Printer accepts data and prints it 

5. Again the flag bit is set to 1 

 

Input-Output Instructions : Input and output instructions are needed for transferring information to and from 

AC register, for checking the flag bits, and for controlling the interrupt facility. Input–output instructions have 

an operation code 1111 and are recognized by the control when D7 = 1. The remaining bits of the instruction 

specify the  particular operation. The control functions and microoperations for the input–output instructions 

are listed below. 
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The INP instruction transfers the input information from INPR into the eight low-order bits of AC and 

also clears the input flag to 0. The OUT instruction transfers the eight least significant bits of AC into the 

output register OUTR and clears the output flag to 0. The next two instructions in the above table check the 

status of the flags and cause a skip of the next instruction if the flag is 1.  The instruction that is skipped will 

normally be a branch instruction to return and check the flag again. The branch instruction is not skipped if the 

flag is 0. If the flag is 1, the branch instruction is skipped and an input or output instruction is executed. The 

last two instructions set and clear an interrupt enable flip-flop IEN.  

 

Interrupt : An interrupt is a routine which causes disturbance to normal flow of execution. When interrupt is 

occurred, the computer deviates momentarily from what it is doing to take care of the input or output transfer. 

It then returns to the current program to continue what it was doing before the interrupt. The interrupt enable 

flip-flop IEN can be set and cleared with two instructions. 

• When IEN is cleared to 0 (with the Interrupt Enable Off instruction), the flags cannot interrupt 

the computer. 

• When IEN is set to 1 (with the Interrupt Enable On instruction), the computer can be interrupted.  

An interrupt flip-flop R is included which checks whether R = 0 or 1. 

When R = 0 

• The computer goes through an instruction cycle 

• During the execution phase of the instruction cycle, if IEN is 1control checks the flag bits. If 

both are 0, it indicated that neither the input nor the output registers are ready to transfer 

information. 

• So control continues with the next instruction cycle. 

• At the end of the execute phase, control checks the value of R and if it is equal to 1, control 

goes to the interrupt cycle instead of instruction cycle. 

When R = 1 

• The return address available in PC is stored in M[0] (Memory Stack) 

• Control inserts 1 into PC and clears IEN (IEN ←  0) and R (R ← 0) to avoid other interruptions. 

• Once the information transfer is completed control return back to the instruction cycle and 

continue with the execution of next instruction. 
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Interrupt Cycle : The interrupt cycle is a hardware implementation of a branch and save return address 

operation. The return address available in  PC  is stored in a specific location where it can be found later when 

the program returns to the instruction at which it was interrupted. This location may be a processor register, a 

memory stack, or a specific memory location. The way that the interrupt is handled by the computer can be 

explained by means of the flowchart. 

 

Complete Computer Description : The final flowchart of the instruction cycle, including the interrupt 

cycle for the basic computer, is shown below.  
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The interrupt flip-flop R may be set at any time during the indirect or execute phases. Control returns 

to timing signal T0 after SC is cleared to 0. If  R = 1, the computer goes through an interrupt cycle. If R = 0, 

the computer goes through an instruction cycle. If the instruction is one of the memory-reference instructions, 

the computer first checks if there is an indirect address and then continues to execute the decoded instruction 

according to the flowchart of memory reference instructions. If the instruction is one of the register-reference 

instructions, it is executed with one of the microoperations related to register reference instructions. If it is an 

input–output instruction, it is executed with one of the microoperations related to input-output instructions. 

 The following diagram represents flowchart for computer operation. 
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 The following diagram represents control functions and microoperations for basic computer. 
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