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4 The Network Layer 
 The network layer is concerned with getting packets from the source all the way to the destination. 
Getting to the destination may require making many hops at intermediate routers along the way. This 
function clearly contrasts with that of the data link layer, which has the more modest goal of just moving 
frames from one end of a wire to the other. 

4.1 NETWORK LAYER DESIGN ISSUES:  

4.1.1  Store-and-Forward Packet Switching: 

 
 The major components of the system are the carrier's equipment (routers connected by 
transmission lines), shown inside the shaded oval, and the customers' equipment, shown outside the 
oval. Host H1 is directly connected to one of the carrier's routers, A, by a leased line. In contrast, 
H2 is on a LAN with a router, F, owned and operated by the customer. 
This equipment is used as follows. A host with a packet to send transmits it to the nearest router, 
either on its own LAN or over a point-to-point link to the carrier. The packet is stored there until it 
has fully arrived so the checksum can be verified. Then it is forwarded to the next router along the 
path until it reaches the destination host, where it is delivered. This mechanism is store-and-
forward packet switching. 
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4.1.2 Services Provided to the Transport Layer: 

 
The network layer provides services to the transport layer at the network layer/transport layer 
interface. The network layer services have been designed with the following goals in mind. 

1. The services should be independent of the router technology.  
2. The transport layer should be shielded from the number, type, and topology of the routers present.  
3. The network addresses made available to the transport layer should use a uniform numbering plan, 

even across LANs and WANs. 
  

 The network service should be connectionless, with primitives SEND PACKET and 
RECEIVE PACKET and little else. In particular, no packet ordering and flow control should be 
done, because the hosts are going to do that anyway, and there is usually little to be gained by 
doing it twice. Furthermore, each packet must carry the full destination address, because each 
packet sent is carried independently of its predecessors, if any. 
  

4.1.3 Implementation of Connectionless Service: 
 

 In connectionless service, packets are injected into the subnet individually and routed 
independently of each other. No advance setup is needed. In this context, the packets are frequently 
called datagrams and the subnet is called a datagram subnet. 
 Let us now see how a datagram subnet works, 

 
 The process P1 on host H1 has a long message for P2 on host H2. The network layer has 
to break a message into four packets, 1, 2, 3, and 4 and sends each of them in turn to router A. A 
has only two outgoing lines to B and C so every incoming packet must be sent to one of these 
routers, even if the ultimate destination is some other router. A's initial routing table is shown in 
the figure under the label ''initially.'' 
 As they arrived at A, packets 1, 2, and 3 were stored briefly (to verify their checksums). 
Then each was forwarded to C according to A's table. Packet 1 was then forwarded to E and then 
to F. When it got to F, it was encapsulated in a data link layer frame and sent to H2 over the LAN. 
Packets 2 and 3 follow the same route. 
 However, something different happened to packet 4. When it got to A it was sent to router 
B, even though it is also destined for F. For some reason, perhaps it learned of a traffic jam 
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somewhere along the ACE path and updated its routing table, as shown under the label ''later.'' The 
algorithm that manages the tables and makes the routing decisions is called the routing algorithm. 

 
4.1.4 Implementation of Connection-Oriented Service: 

 
 In connection-oriented service, a path from the source router to the destination router must be 
established before any data packets can be sent. This connection is called a VC (virtual circuit), 
and the subnet is called a virtual-circuit subnet. 
 The idea behind virtual circuits is to avoid having to choose a new route for every packet sent. 
Instead, when a connection is established, a route from the source machine to the destination 
machine is chosen as part of the connection setup and stored in tables inside the routers. 

 
 Here, host H1 has established connection 1 with host H2. It is remembered as the first entry 
in each of the routing tables. The first line of A's table says that if a packet bearing connection 
identifier 1 comes in from H1, it is to be sent to router C and given connection identifier 1. 
Similarly, the first entry at C routes the packet to E, also with connection identifier 1. Similarly if 
H3 wants to connect to H2 they have to do the same procedure and it has to use different connection 
identifier in above example host H3 uses connection identifier as one. 
 

4.1.5 Comparison of Virtual-Circuit and Datagram Subnets: 
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4.2  ROUTING ALGORITHMS: 
 
 The main function of the network layer is routing packets from the source machine to the 
destination machine. In most subnets, packets will require multiple hops to make the journey. The 
routing algorithm is that part of the network layer software responsible for deciding which output line 
an incoming packet should be transmitted on. If the subnet uses datagrams internally, this decision 
must be made anew for every arriving data packet since the best route may have changed since last 
time. 
 Routing algorithms can be grouped into two major classes: nonadaptive and adaptive. 
Nonadaptive algorithms do not base their routing decisions on measurements or estimates of the 
current traffic and topology. Instead, the choice of the route to use to get from I to J (for all I and J) 
is computed in advance, off-line, and downloaded to the routers when the network is booted. This 
procedure is sometimes called static routing. 
 Adaptive algorithms, in contrast, change their routing decisions to reflect changes in the topology, 
and usually the traffic as well. Adaptive algorithms differ in where they get their information (e.g., 
locally, from adjacent routers, or from all routers), when they change the routes. This procedure is 
sometimes called Dynamic routing. 

 
4.2.1 The Optimality Principle: 

 
“It states that if router J is on the optimal path from router I to router K, then the optimal 
path from J to K also falls along the same route.”  To see this, call the part of the route from I to 
Jr1 and the rest of the route r2. If a route better than r2 existed from J to K, it could be concatenated 
with r1 to improve the route from I to K, contradicting our statement that r1r2 is optimal. 
the set of optimal routes from all sources to a given destination form a tree rooted at the destination. 
Such a tree is called a sink tree and is illustrated in below Fig. where the distance metric is the 
number of hops. Note that a sink tree is not necessarily unique; since a sink tree is indeed a tree, it 
does not contain any loops, so each packet will be delivered within a finite and bounded number of 
hops. 

 

 
 

4.2.2 Shortest Path Routing: 
 

 The concept of a shortest path deserves some explanation. One way of measuring path length is 
the number of hops. Using this metric, the paths ABC and ABE in below Fig. are equally long. 
Another metric is the geographic distance in kilometers, in which case ABC is clearly much longer 
than ABE (assuming the figure is drawn to scale). 
 Several algorithms for computing the shortest path between two nodes of a graph are known. This 
one is due to Dijkstra (1959). Each node is labeled (in parentheses) with its distance from the source 
node along the best known path. Initially, no paths are known, so all nodes are labeled with infinity. 
As the algorithm proceeds and paths are found, the labels may change, reflecting better paths. A 



label may be either tentative or permanent. Initially, all labels are tentative. When it is discovered 
that a label represents the shortest possible path from the source to that node, it is made permanent 
and never changed thereafter. 
 To illustrate how the labeling algorithm works, look at the weighted, undirected graph of Fig.(a), 
where the weights represent, for example, distance. We want to find the shortest path from A to D. 
We start out by marking node A as permanent, indicated by a filled-in circle. Then we examine, in 
turn, each of the nodes adjacent to A (the working node), relabeling each one with the distance to A. 
Whenever a node is relabeled, we also label it with the node from which the probe was made so that 
we can reconstruct the final path later. Having examined each of the nodes adjacent to A, we examine 
all the tentatively labeled nodes in the whole graph and make the one with the smallest label 
permanent, as shown in Fig.(b). This one becomes the new working node. 
 We now start at B and examine all nodes adjacent to it. If the sum of the label on B and the distance 
from B to the node being considered is less than the label on that node, we have a shorter path, so 
the node is relabeled. The entire graph is searched for the tentatively-labeled node with the smallest 
value. This node is made permanent and becomes the working node for the next round. 
 Look at Fig.(c). At that point we have just made E permanent. Suppose that there were a shorter 
path than ABE, say AXYZE. There are two possibilities: either node Z has already been made 
permanent, or it has not been. If it has, then E has already been probed (on the round following the 
one when Z was made permanent), so the AXYZE path has not escaped our attention and thus cannot 
be a shorter path.  
 Now consider the case where Z is still tentatively labeled. Either the label at Z is greater than or 
equal to that at E, in which case AXYZE cannot be a shorter path than ABE, or it is less than that of 
E, in which case Z and not E will become permanent first, allowing E to be probed from Z. 

 
4.2.3 Flooding: 

 
 Another static algorithm is flooding, in which every incoming packet is sent out on every 
outgoing line except the one it arrived on. Flooding obviously generates vast numbers of duplicate 
packets, in fact, an infinite number unless some measures are taken to damp the process. One such 



measure is to have a hop counter contained in the header of each packet, which is decremented at 
each hop, with the packet being discarded when the counter reaches zero. Ideally, the hop counter 
should be initialized to the length of the path from source to destination. If the sender does not know 
how long the path is, it can initialize the counter to the worst case, namely, the full diameter of the 
subnet. 
 An alternative technique for damming the flood is to keep track of which packets have been 
flooded, to avoid sending them out a second time. Achieve this goal is to have the source router put 
a sequence number in each packet it receives from its hosts. Each router then needs a list per source 
router telling which sequence numbers originating at that source have already been seen. 

 
4.2.4 Intra- and Interdomain Routing: 

 
 Today, an internet can be so large that one routing protocol cannot handle the task of updating the 
routing tables of all routers. For this reason, an internet is divided into autonomous systems. An 
autonomous system (AS) is a group of networks and routers under the authority of a single 
administration. Routing inside an autonomous system is referred to as intradomain routing. Routing 
between autonomous systems is referred to as interdomain routing. 

 
4.2.5 Distance Vector Routing: 
• Distance vector routing algorithms operate by having each router maintain a table (i.e, a 

vector) giving the best known distance to each destination and which line to use to get 
there. 

• These tables are updated by exchanging information with the neighbors. 
• The distance vector routing algorithm is sometimes called by other names, most commonly 

the distributed Bellman-Ford routing algorithm and the Ford-Fulkerson algorithm, after 
the researchers who developed it (Bellman, 1957; and Ford and Fulkerson, 1962). 

• It was the original ARPANET routing algorithm and was also used in the Internet under 
the name RIP. 

 
(a) A subnet. (b) Input from A, I, H, K, and the new routing table for J. 

 
• Part (a) shows a subnet. The first four columns of part (b) show the delay vectors received 

from the neighbours of router J. 
• A claims to have a 12-msec delay to B, a 25-msec delay to C, a 40-msec delay to D, etc. 

Suppose that J has measured or estimated its delay to its neighbours, A, I, H, and K as 8, 
10, 12, and 6 msec, respectively. 



Each node constructs a one-dimensional array containing the "distances"(costs) to all other 
nodes and distributes that vector to its immediate neighbors. 

 
1. The starting assumption for distance-vector routing is that each node knows the cost 

of the link to each of its directly connected neighbors. 
2. A link that is down is assigned an infinite cost. 

 
Example. 

 
 

 

Table 1. Initial distances stored at each node(global view). 
 
 

Information 
 
Stored at Node 

Distance to Reach Node    

A B C D E F G 

A 0 1 1 ∞ 1 1 ∞ 

B 1 0 1 ∞ ∞ ∞ ∞ 

C 1 1 0 1 ∞ ∞ ∞ 

D ∞ ∞ 1 0 ∞ ∞ 1 

E 1 ∞ ∞ ∞ 0 ∞ ∞ 

F 1 ∞ ∞ ∞ ∞ 0 1 

G ∞ ∞ ∞ 1 ∞ 1 0 
 
 
 
 

We can represent each node's knowledge about the distances to all other nodes as a table like 
the one given in Table 1. 

 
Note that each node only knows the information in one row of the table. 



1. Every node sends a message to its directly connected neighbors containing its personal 
list of distance. ( for example, A sends its information to its neighbors B,C,E, 
and F. ) 

2. If any of the recipients of the information from A find that A is advertising a path shorter 
than the one they currently know about, they update their list to give the new path length 
and note that they should send packets for that destination through A. ( node B learns 
from A that node E can be reached at a cost of 1; B also knows it can reach A at a cost 
of 1, so it adds these to get the cost of reaching E by means of A. B records that 
it can reach E at a cost of 2 by going through A.) 

3. After every node has exchanged a few updates with its directly connected neighbors, 
all nodes will know the least-cost path to all the other nodes. 

4. In addition to updating their list of distances when they receive updates, the nodes need 
to keep track of which node told them about the path that they used to calculate the cost, 
so that they can create their forwarding table. ( for example, B knows that it was A who 
said " I can reach E in one hop" and so B puts an entry in its table that says " To 
reach E, use the link to A.) 

 
Table 2. final distances stored at each node ( global view). 

 
 

Information 
 
Stored at Node 

Distance to Reach Node    

A B C D E F G 

A 0 1 1 2 1 1 2 

B 1 0 1 2 2 2 3 

C 1 1 0 1 2 2 2 

D  2 1 0 3 2 1 

E 1 2 2 3 0 2 3 

F 1 2 2 2 2 0 1 

G  3 2 1 3 1 0 
 
 
 
 

In practice, each node's forwarding table consists of a set of triples of the form: 

( Destination, Cost, NextHop). 

For example, Table 3 shows the complete routing table maintained at node B for the network 
in figure1. 



Table 3. Routing table maintained at node B. 
 
 

Destination Cost NextHop 

A 1 A 

C 1 C 

D 2 C 

E 2 A 

F 2 A 

G 3 A 
 
 
 
 
 
 

THE COUNT-TO-INFINITY PROBLEM 

 
The count-to-infinity problem. 

 

 

• Consider the five-node (linear) subnet of above fig, where the delay metric is the number 
of hops. Suppose A is down initially and all the other routers know this. In other words, 
they have all recorded the delay to A as infinity. 

• Now let us consider the situation of Fig (b), in which all the lines and routers are initially 
up. Routers B, C, D, and E have distances to A of 1, 2, 3, and 4, respectively. Suddenly A 
goes down, or alternatively, the line between A and B is cut, which is effectively the same 
thing from B's point of view. 



4.2.6 LINK STATE ROUTING: 
 

The idea behind link state routing is simple and can be stated as five parts. Each router must 
do the following: 

1. Discover its neighbors and learn their network addresses. 
2. Measure the delay or cost to each of its neighbors. 
3. Construct a packet telling all it has just learned. 
4. Send this packet to all other routers. 
5. Compute the shortest path to every other router 

 
Learning about the Neighbours 

 
When a router is booted, its first task is to learn who its neighbours are. It accomplishes 

this goal by sending a special HELLO packet on each point-to-point line. The router on the 
other end is expected to send back a reply telling who it is. 

 

 
(a) Nine routers and a LAN. (b) A graph model of (a).  

Measuring Line Cost 

• The link state routing algorithm requires each router to know, or at least have a reasonable 
estimate of, the delay to each of its neighbors. The most direct way to determine this delay 
is to send over the line a special ECHO packet that the other side is required to send back 
immediately. 

• By measuring the round-trip time and dividing it by two, the sending router can get a 
reasonable estimate of the delay. 

• For even better results, the test can be conducted several times, and the average used. Of 
course, this method implicitly assumes the delays are symmetric, which may not always 
be the case. 

 

 
Figure: A subnet in which the East and West parts are connected by two lines. 



 
• Unfortunately, there is also an argument against including the load in the delay calculation. 

Consider the subnet of above Fig. which is divided into two parts, East and West, 
connected by two lines, CF and EI. 

 

Building Link State Packets 
 

 
(a) A subnet. (b) The link state packets for this subnet. 

• Once the information needed for the exchange has been collected, the next step is for 
each router to build a packet containing all the data. 

• The packet starts with the identity of the sender, followed by a sequence number and age 
(to be described later), and a list of neighbours. 

• For each neighbour, the delay to that neighbour is given. 
• An example subnet is given in Fig.(a) with delays shown as labels on the lines. The 

corresponding link state packets for all six routers are shown in Fig. (b). 
Distributing the Link State Packets 

 

 
The packet buffer for router B. 

• In above Fig. the link state packet from A arrives directly, so it must be sent to C and F 
and acknowledged to A, as indicated by the flag bits. 

• Similarly, the packet from F has to be forwarded to A and C and acknowledged to F. 
 
 
 
 
 
 



4.2.7 Hierarchical Routing: 
 

 As networks grow in size, the router routing tables grow proportionally. Not only is router memory 
consumed by ever-increasing tables, but more CPU time is needed to scan them and more bandwidth 
is needed to send status reports about them. 
 When hierarchical routing is used, the routers are divided into what we will call regions, with each 
router knowing all the details about how to route packets to destinations within its own region, but 
knowing nothing about the internal structure of other regions. 
 For huge networks, a two-level hierarchy may be insufficient; it may be necessary to group the 
regions into clusters, the clusters into zones, the zones into groups, and so on, until we run out of 
names for aggregations. 
 Below Fig. (a) Gives a quantitative example of routing in a two-level hierarchy with five regions. 
The full routing table for router 1A has 17 entries, as shown in Fig. (b). When routing is done 
hierarchically, as in Fig. (c), there are entries for all the local routers as before, but all other regions 
have been condensed into a single router, so all traffic for region 2 goes via the 1B -2A line, but the 
rest of the remote traffic goes via the 1C -3B line. Hierarchical routing has reduced the table from 
17 to 7 entries. As the ratio of the number of regions to the number of routers per region grows, the 
savings in table space increase. 

 
 

 
4.3 CONGESTION CONTROL ALGORITHMS 

• When too many packets are present in (a part of) the subnet, performance degrades. This 
situation is called congestion. 

• Below Figure depicts the symptom. When the number of packets dumped into the subnet 
by the hosts is within its carrying capacity, they are all delivered (except for a few that are 
afflicted with transmission errors) and the number delivered is proportional to the number 
sent. 

• However, as traffic increases too far, the routers are no longer able to cope and they begin 
losing packets. This tends to make matters worse. At very high traffic, performance 
collapses completely and almost no packets are delivered. 



 

 
Fig:. When too much traffic is offered, congestion sets in and performance degrades 

sharply. 
• Congestion can be brought on by several factors. If all of a sudden, streams of packets begin 

arriving on three or four input lines and all need the same output line, a queue will build 
up. 

• If there is insufficient memory to hold all of them, packets will be lost. 
• Slow processors can also cause congestion. If the routers' CPUs are slow at performing the 

bookkeeping tasks required of them (queuing buffers, updating tables, etc.), queues can 
build up, even though there is excess line capacity. Similarly, low-bandwidth lines can also 
cause congestion. 

 
4.3.1 APPROACHES TO CONGESTION CONTROL 

• Many problems in complex systems, such as computer networks, can be viewed from a 
control theory point of view. This approach leads to dividing all solutions into two groups: 
open loop and closed loop. 

 
 
 

 
Fig: Timescales Of Approaches To Congestion Control 

 
• Open loop solutions attempt to solve the problem by good design. 
• Tools for doing open-loop control include deciding when to accept new traffic, deciding 

when to discard packets and which ones, and making scheduling decisions at various points 
in the network. 

• Closed loop solutions are based on the concept of a feedback loop. 
• This approach has three parts when applied to congestion control: 

1. Monitor the system to detect when and where congestion occurs. 
2. Pass this information to places where action can be taken. 
3. Adjust system operation to correct the problem. 

• A variety of metrics can be used to monitor the subnet for congestion. Chief among these 
are the percentage of all packets discarded for lack of buffer space, the average queue 
lengths, the number of packets that time out and are retransmitted, the average packet delay, 



and the standard deviation of packet delay. In all cases, rising numbers indicate growing 
congestion. 

• The second step in the feedback loop is to transfer the information about the congestion 
from the point where it is detected to the point where something can be done about it. 

• In all feedback schemes, the hope is that knowledge of congestion will cause the hosts to 
take appropriate action to reduce the congestion. 

• The presence of congestion means that the load is (temporarily) greater than the resources 
(in part of the system) can handle. Two solutions come to mind: increase the resources or 
decrease the load. 

 
4.3.2 CONGESTION PREVENTION POLICIES 

The methods to control congestion by looking at open loop systems. These systems are 
designed to minimize congestion in the first place, rather than letting it happen and reacting 
after the fact. They try to achieve their goal by using appropriate policies at various levels. In 
Fig. 5-26 we see different data link, network, and transport policies that can affect congestion 
(Jain, 1990). 

 
 
 

 

Figure 5-26. Policies that affect congestion. 

 
The data link layer Policies. 

 
• The retransmission policy is concerned with how fast a sender times out and what it 

transmits upon timeout. A jumpy sender that times out quickly and retransmits all 
outstanding packets using go back n will put a heavier load on the system than will a 
leisurely sender that uses selective repeat. 

• Closely related to this is the buffering policy. If receivers routinely discard all out-of- order 
packets, these packets will have to be transmitted again later, creating extra load. With 
respect to congestion control, selective repeat is clearly better than go back n. 

• Acknowledgement policy also affects congestion. If each packet is acknowledged 
immediately, the acknowledgement packets generate extra traffic. However, if 
acknowledgements are saved up to piggyback onto reverse traffic, extra timeouts and 



retransmissions may result. A tight flow control scheme (e.g., a small window) reduces the 
data rate and thus helps fight congestion. 

The network layer Policies. 

• The choice between using virtual circuits and using datagrams affects congestion since 
many congestion control algorithms work only with virtual-circuit subnets. 

• Packet queueing and service policy relates to whether routers have one queue per input 
line, one queue per output line, or both. It also relates to the order in which packets are 
processed (e.g., round robin or priority based). 

• Discard policy is the rule telling which packet is dropped when there is no space. 

• A good routing algorithm can help avoid congestion by spreading the traffic over all the 
lines, whereas a bad one can send too much traffic over already congested lines. 

• Packet lifetime management deals with how long a packet may live before being 
discarded. If it is too long, lost packets may clog up the works for a long time, but if it is 
too short, packets may sometimes time out before reaching their destination, thus inducing 
retransmissions. 

The transport layer Policies, 

• The same issues occur as in the data link layer, but in addition, determining the timeout 
interval is harder because the transit time across the network is less predictable than the 
transit time over a wire between two routers. If the timeout interval is too short, extra 
packets will be sent unnecessarily. If it is too long, congestion will be reduced but the 
response time will suffer whenever a packet is lost. 

4.3.3 ADMISSION CONTROL 
• One technique that is widely used to keep congestion that has already started from getting 

worse is admission control. 
• Once congestion has been signaled, no more virtual circuits are set up until the problem has 

gone away. 
• An alternative approach is to allow new virtual circuits but carefully route all new virtual 

circuits around problem areas. For example, consider the subnet of Fig. 5-27(a), in which 
two routers are congested, as indicated. 

 

 
Figure 5-27. (a) A congested subnet. (b) A redrawn subnet that eliminates the congestion. 

A virtual circuit from A to B is also shown. 

Suppose that a host attached to router A wants to set up a connection to a host attached to 
router B. Normally, this connection would pass through one of the congested routers. To avoid 



this situation, we can redraw the subnet as shown in Fig. 5-27(b), omitting the congested routers 
and all of their lines. The dashed line shows a possible route for the virtual circuit that avoids 
the congested routers. 

4.3.4 TRAFFIC AWARE ROUTING 

These schemes adapted to changes in topology, but not to changes in load. The goal in 
taking load into account when computing routes is to shift traffic away from hotspots that will 
be the first places in the network to experience congestion. 

The most direct way to do this is to set the link weight to be a function of the (fixed) link 
bandwidth and propagation delay plus the (variable) measured load or average queuing delay. 
Least-weight paths will then favor paths that are more lightly loaded, all else being equal. 

Consider the network of Fig. 5-23, which is divided into two parts, East and West, connected 
by two links, CF and EI. Suppose that most of the traffic between East and West is using link 
CF, and, as a result, this link is heavily loaded with long delays. Including queueing delay in 
the weight used for the shortest path calculation will make EI more attractive. After the new 
routing tables have been installed, most of the East-West traffic will now go over EI, loading 
this link. Consequently, in the next update, CF will appear to be the shortest path. As a result, 
the routing tables may oscillate wildly, leading to erratic routing and many potential problems. 

 

If load is ignored and only bandwidth and propagation delay are considered, this problem 
does not occur. Attempts to include load but change weights within a narrow range only slow 
down routing oscillations. Two techniques can contribute to a successful solution. The first is 
multipath routing, in which there can be multiple paths from a source to a destination. In our 
example this means that the traffic can be spread across both of the East to West links. The 
second one is for the routing scheme to shift traffic across routes slowly enough that it is able 
to converge. 

 
4.3.5 TRAFFIC THROTTLING 
 

• Each router can easily monitor the utilization of its output lines and other resources. For 
example, it can associate with each line a real variable, u, whose value, between 0.0 and 
1.0, reflects the recent utilization of that line. To maintain a good estimate of u, a sample 
of the instantaneous line utilization, f (either 0 or 1), can be made periodically and u 
updated according to 



 

 
where the constant a determines how fast the router forgets recent history. 

Whenever u moves above the threshold, the output line enters a ''warning'' state. Each newly- 
arriving packet is checked to see if its output line is in warning state. If it is, some action is 
taken. The action taken can be one of several alternatives, which we will now discuss. 

 
4.3.6 THE WARNING BIT 

• The old DECNET architecture signaled the warning state by setting a special bit in the 
packet's header. 

• When the packet arrived at its destination, the transport entity copied the bit into the next 
acknowledgement sent back to the source. The source then cut back on traffic. 

• As long as the router was in the warning state, it continued to set the warning bit, which 
meant that the source continued to get acknowledgements with it set. 

• The source monitored the fraction of acknowledgements with the bit set and adjusted its 
transmission rate accordingly. As long as the warning bits continued to flow in, the source 
continued to decrease its transmission rate. When they slowed to a trickle, it increased its 
transmission rate. 

• Note that since every router along the path could set the warning bit, traffic increased only 
when no router was in trouble. 

 
4.3.7 CHOKE PACKETS 

• In this approach, the router sends a choke packet back to the source host, giving it the 
destination found in the packet. 

• The original packet is tagged (a header bit is turned on) so that it will not generate any 
more choke packets farther along the path and is then forwarded in the usual way. 

• When the source host gets the choke packet, it is required to reduce the traffic sent to the 
specified destination by X percent. Since other packets aimed at the same destination are 
probably already under way and will generate yet more choke packets, the host should 
ignore choke packets referring to that destination for a fixed time interval. After that period 
has expired, the host listens for more choke packets for another interval. If one arrives, 
the line is still congested, so the host reduces the flow still more and begins ignoring choke 
packets again. If no choke packets arrive during the listening period, the host may increase 
the flow again. 

• The feedback implicit in this protocol can help prevent congestion yet not throttle any 
flow unless trouble occurs. 

• Hosts can reduce traffic by adjusting their policy parameters. 
• Increases are done in smaller increments to prevent congestion from reoccurring quickly. 
• Routers can maintain several thresholds. Depending on which threshold has been 

crossed, the choke packet can contain a mild warning, a stern warning, or an ultimatum. 
 

4.3.8 HOP-BY-HOP BACK PRESSURE 
• At high speeds or over long distances, sending a choke packet to the source hosts does not 

work well because the reaction is so slow. 



Consider, for example, a host in San Francisco (router A in Fig. 5-28) that is sending traffic 
to a host in New York (router D in Fig. 5-28) at 155 Mbps. If the New York host begins to run 
out of buffers, it will take about 30 msec for a choke packet to get back to San Francisco to tell 
it to slow down. The choke packet propagation is shown as the second, third, and fourth steps 
in Fig. 5-28(a). In those 30 msec, another 4.6 megabits will have been sent. Even if the host in 
San Francisco completely shuts down immediately, the 4.6 megabits in the pipe will continue 
to pour in and have to be dealt with. Only in the seventh diagram in Fig. 5- 28(a) will the New 
York router notice a slower flow. 

An alternative approach is to have the choke packet take effect at every hop it passes 
through, as shown in the sequence of Fig. 5-28(b). Here, as soon as the choke packet reaches 
F, F is required to reduce the flow to D. Doing so will require F to devote more buffers to the 
flow, since the source is still sending away at full blast, but it gives D immediate relief, like a 
headache remedy in a television commercial. In the next step, the choke packet reaches E, 
which tells E to reduce the flow to F. This action puts a greater demand on E's buffers but gives 
F immediate relief. Finally, the choke packet reaches A and the flow genuinely slows down. 

The net effect of this hop-by-hop scheme is to provide quick relief at the point of 
congestion at the price of using up more buffers upstream. In this way, congestion can be 
nipped in the bud without losing any packets. 

 

 
 

Figure 5-28. (a) A choke packet that affects only the source. (b) A choke packet that affects 
each hop it passes through. 



4.3.9 LOAD SHEDDING 
• When none of the above methods make the congestion disappear, routers can bring out 

the heavy artillery: load shedding. 
• Load shedding is a fancy way of saying that when routers are being in undated by 

packets that they cannot handle, they just throw them away. 
• A router drowning in packets can just pick packets at random to drop, but usually it can do 

better than that. 
• Which packet to discard may depend on the applications running. 
• To implement an intelligent discard policy, applications must mark their packets in priority 

classes to indicate how important they are. If they do this, then when packets have to be 
discarded, routers can first drop packets from the lowest class, then the next lowest class, 
and so on. 

4.3.10 RANDOM EARLY DETECTION 
• It is well known that dealing with congestion after it is first detected is more effective than 

letting it gum up the works and then trying to deal with it. This observation leads to the 
idea of discarding packets before all the buffer space is really exhausted. A popular 
algorithm for doing this is called RED (Random Early Detection). 

• In some transport protocols (including TCP), the response to lost packets is for the source 
to slow down. The reasoning behind this logic is that TCP was designed for wired networks 
and wired networks are very reliable, so lost packets are mostly due to buffer overruns 
rather than transmission errors. This fact can be exploited to help reduce congestion. 

• By having routers drop packets before the situation has become hopeless (hence the ''early'' 
in the name), the idea is that there is time for action to be taken before it is too late. To 
determine when to start discarding, routers maintain a running average of their queue 
lengths. When the average queue length on some line exceeds a threshold, the line is said 
to be congested and action is taken. 

 
4.3.12 How to correct the Congestion Problem: 

 
Congestion Control refers to techniques and mechanisms that can either prevent 

congestion, before it happens, or remove congestion, after it has happened. Congestion control 
mechanisms are divided into two categories, one category prevents the congestion from 
happening and the other category removes congestion after it has taken place. 



 

 
These two categories are: 

 
1. Open loop 
2. Closed loop 

Open Loop Congestion Control 
 

• In this method, policies are used to prevent the congestion before it happens. 
• Congestion control is handled either by the source or by the destination. 
• The various methods used for open loop congestion control are: 

 
1. Retransmission Policy 

 
• The sender retransmits a packet, if it feels that the packet it has sent is lost or corrupted. 
• However retransmission in general may increase the congestion in the network. But we 
need to implement good retransmission policy to prevent congestion. 
• The retransmission policy and the retransmission timers need to be designed to optimize 
efficiency and at the same time prevent the congestion. 

 
2. Window Policy 

 
• To implement window policy, selective reject window method is used for congestion 
control. 
• Selective Reject method is preferred over Go-back-n window as in Go-back-n method, when 
timer for a packet times out, several packets are resent, although some may have arrived safely 
at the receiver. Thus, this duplication may make congestion worse. 
• Selective reject method sends only the specific lost or damaged packets. 

 
3. Acknowledgement Policy 

 
• The acknowledgement policy imposed by the receiver may also affect congestion. 
• If the receiver does not acknowledge every packet it receives it may slow down the sender 
and help prevent congestion. 

 



• Acknowledgments also add to the traffic load on the network. Thus, by sending fewer 
acknowledgements we can reduce load on the network. 
• To implement it, several approaches can be used: 

1. A receiver may send an acknowledgement only if it has a packet to be sent. 
2. A receiver may send an acknowledgement when a timer expires. 
3. A receiver may also decide to acknowledge only N packets at a time. 

4. Discarding Policy 
 

• A router may discard less sensitive packets when congestion is likely to happen. 
• Such a discarding policy may prevent congestion and at the same time may not harm the 
integrity of the transmission. 

 
5. Admission Policy 

 
• An admission policy, which is a quality-of-service mechanism, can also prevent congestion 
in virtual circuit networks. 
• Switches in a flow first check the resource requirement of a flow before admitting it to the 
network. 
• A router can deny establishing a virtual circuit connection if there is congestion in the 
"network or if there is a possibility of future congestion. 

 
Closed Loop Congestion Control 

 
• Closed loop congestion control mechanisms try to remove the congestion after it happens. 
• The various methods used for closed loop congestion control are: 

 
1. Backpressure 

 
• Backpressure is a node-to-node congestion control that starts with a node and propagates, in 
the opposite direction of data flow. 

 

 
• The backpressure technique can be applied only to virtual circuit networks. In such virtual 
circuit each node knows the upstream node from which a data flow is coming. 
• In this method of congestion control, the congested node stops receiving data from the 
immediate upstream node or nodes. 
• This may cause the upstream node on nodes to become congested, and they, in turn, reject 
data from their upstream node or nodes. 
• As shown in fig node 3 is congested and it stops receiving packets and informs its upstream 
node 2 to slow down. Node 2 in turns may be congested and informs node 1 to slow down. 
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Now node 1 may create congestion and informs the source node to slow down. In this way the 
congestion is alleviated. Thus, the pressure on node 3 is moved backward to the source to 
remove the congestion. 

 
2. Choke Packet 

 
• In this method of congestion control, congested router or node sends a special type of packet 
called choke packet to the source to inform it about the congestion. 
• Here, congested node does not inform its upstream node about the congestion as in 
backpressure method. 
• In choke packet method, congested node sends a warning directly to the source station 
i.e. the intermediate nodes through which the packet has traveled are not warned. 

 

 
3. Implicit Signaling 

 
• In implicit signaling, there is no communication between the congested node or nodes and 
the source. 
• The source guesses that there is congestion somewhere in the network when it does not 
receive any acknowledgment. Therefore the delay in receiving an acknowledgment is 
interpreted as congestion in the network. 
• On sensing this congestion, the source slows down. 
• This type of congestion control policy is used by TCP. 

 
4. Explicit Signaling 

 
• In this method, the congested nodes explicitly send a signal to the source or destination to 
inform about the congestion. 
• Explicit signaling is different from the choke packet method. In choke packed method, a 
separate packet is used for this purpose whereas in explicit signaling method, the signal is 
included in the packets that carry data . 
• Explicit signaling can occur in either the forward direction or the backward direction . 
• In backward signaling, a bit is set in a packet moving in the direction opposite to the 
congestion. This bit warns the source about the congestion and informs the source to slow 
down. 
• In forward signaling, a bit is set in a packet moving in the direction of congestion. This bit 
warns the destination about the congestion. The receiver in this case uses policies such as 
slowing down the acknowledgements to remove the congestion. 

 

4.3.13 Traffic Control Algorithm 
    Traffic shaping is a mechanism to control the amount and the rate of the traffic sent to 
the network. Two techniques can shape traffic: leaky bucket and token bucket. 
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1. Leaky Bucket 
If a bucket has a small hole at the bottom, the water leaks from the bucket at a constant rate as 

long as there is water in the bucket. The rate at which the water leaks does not depend on the rate at 
which the water is input to the bucket unless the bucket is empty. The input rate can vary, but the 
output rate remains constant. Similarly, in networking, a technique called leaky bucket can smooth out 
bursty traffic. Bursty chunks are stored in the bucket and sent out at an average rate. Below Figure 
shows a leaky bucket and its effects. 

 
In the figure, we assume that the network has committed a bandwidth of 3 Mbps for a host. The 

use of the leaky bucket shapes the input traffic to make it conform to this commitment. In Figure 24.19 
the host sends a burst of data at a rate of 12 Mbps for 2 s, for a total of 24 Mbits of data. The host is 
silent for 5 s and then sends data at a rate of 2 Mbps for 3 s, for a total of 6 Mbits of data. In all, the 
host has sent 30 Mbits of data in l0s. The leaky bucket smooth’s the traffic by sending out data at a rate 
of 3 Mbps during the same 10 s. Without the leaky bucket, the beginning burst may have hurt the 
network by consuming more bandwidth than is set aside for this host. We can also see that the leaky 
bucket may prevent congestion.  

A simple leaky bucket implementation is shown in below Figure. A FIFO queue holds the 
packets. If the traffic consists of fixed-size packets, the process removes a fixed number of packets 
from the queue at each tick of the clock. If the traffic consists of variable-length packets, the fixed 
output rate must be based on the number of bytes or bits. 
The following is an algorithm for variable-length packets: 

1. Initialize a counter to n at the tick of the clock. 
2. If n is greater than the size of the packet, send the packet and decrement the counter by the 
packet size. Repeat this step until n is smaller than the packet size. 
3. Reset the counter and go to step 1. 

 
2. Token Bucket 

The leaky bucket is very restrictive. It does not credit an idle host. For example, if a host is not 
sending for a while, its bucket becomes empty. Now if the host has bursty data, the leaky bucket 
allows only an average rate. The time when the host was idle is not taken into account. On the other 
hand, the token bucket algorithm allows idle hosts to accumulate credit for the future in the form of 
tokens. For each tick of the clock, the system sends n tokens to the bucket. The system removes one 
token for every cell (or byte) of data sent. For example, if n is 100 and the host is idle for 100 ticks, 



the bucket collects 10,000 tokens. Now the host can consume all these tokens in one tick with 10,000 
cells, or the host takes 1000 ticks with 10 cells per tick. In other words, the host can send bursty data 
as long as the bucket is not empty. Below Figure shows the idea. 

The token bucket can easily be implemented with a counter. The token is initialized to zero. 
Each time a token is added, the counter is incremented by 1. Each time a unit of data is sent, the 
counter is decremented by 1. When the counter is zero, the host cannot send data. 

 
 
 

4.4 INTERNETWORKING 
 
 4.4.1 How Networks Differ: 

 Networks can differ in many ways. Some of the differences, such as different modulation 
techniques or frame formats, are internal to the physical and data link layers. These differences will 
not concern us here. Instead, in Fig. 5-38 we list some of the differences that can be exposed to the 
network layer. It is papering over these differences that makes internetworking more difficult than 
operating within a single network. 

 
4.4.2 How Networks Can Be Connected 

 There are two basic choices for connecting different networks: we can build devices that translate 
or convert packets from each kind of network into packets for each other network, or, like good 
computer scientists, we can try to solve the problem by adding a layer of indirection and building a 
common layer on top of the different networks. In either case, the devices are placed at the boundaries 
between networks.  



Let us first explore at a high level how interconnection with a common network layer can be 
used to interconnect dissimilar networks. An internet comprised of 802.11, MPLS, and Ethernet 
networks is shown in Fig. 5-39(a). Suppose that the source machine on the 802.11 network wants to 
send a packet to the destination machine on the Ethernet network. Since these technologies are 
different, and they are further separated by another kind of network (MPLS), some added processing 
is needed at the boundaries between the networks. 

Because different networks may, in general, have different forms of addressing, the packet 
carries a network layer address that can identify any host across the three networks. The first boundary 
the packet reaches is when it transitions from an 802.11 network to an MPLS network. 802.11 provides 
a connectionless service, but MPLS provides a connection-oriented service. This means that a virtual 
circuit must be set up to cross that network. Once the packet has traveled along the virtual circuit, it 
will reach the Ethernet network. At this boundary, the packet may be too large to be carried, since 
802.11 can work with larger frames than Ethernet. To handle this problem, the packet is divided into 
fragments, and each fragment is sent separately. When the fragments reach the destination, they are 
reassembled. Then the packet has completed its journey.  

The protocol processing for this journey is shown in Fig. 5-39(b). The source accepts data from 
the transport layer and generates a packet with the common network layer header, which is IP in this 
example. The network header contains the ultimate destination address, which is used to determine 
that the packet should be sent via the first router. So the packet is encapsulated in an 802.11 frame 
whose destination is the first router and transmitted. At the router, the packet is removed from the 
frame’s data field and the 802.11 frame header is discarded. The router now examines the IP address 
in the packet and looks up this address in its routing table. Based on this address, it decides to send the 
packet to the second router next. For this part of the path, an MPLS virtual circuit must be established 
to the second router and the packet must be encapsulated with MPLS headers that travel this circuit. 
At the far end, the MPLS header is discarded and the network address is again consulted to find the 
next network layer hop. It is the destination itself. Since the packet is too long to be sent over Ethernet, 
it is split into two portions. Each of these portions is put into the data field of an Ethernet frame and 
sent to the Ethernet address of the destination. At the destination, the Ethernet header is stripped from 
each of the frames, and the contents are reassembled. The packet has finally reached its destination. 

 
 

4.4.3 Tunneling 
• Handling the general case of making two different networks interwork is exceedingly 



difficult. However, there is a common special case that is manageable. 

• This case is where the source and destination hosts are on the same type of network, but 
there is a different network in between. 

• As an example, think of an international bank with a TCP/IP-based Ethernet in Paris, a 
TCP/IP-based Ethernet in London, and a non-IP wide area network (e.g., ATM) in between, 
as shown in Fig. 5-47. 

 

 
Figure 5-47. Tunneling a packet from Paris to London. 

 
• The solution to this problem is a technique called tunneling. 

• To send an IP packet to host 2, host 1 constructs the packet containing the IP address of 
host 2, inserts it into an Ethernet frame addressed to the Paris multiprotocol router, and 
puts it on the Ethernet. When the multiprotocol router gets the frame, it removes the IP 
packet, inserts it in the payload field of the WAN network layer packet, and addresses the 
latter to the WAN address of the London multiprotocol router. When it gets there, the 
London router removes the IP packet and sends it to host 2 inside an Ethernet frame. 

• The WAN can be seen as a big tunnel extending from one multiprotocol router to the 
other. The IP packet just travels from one end of the tunnel to the other, snug in its nice 
box. Neither do the hosts on either Ethernet. Only the multiprotocol router has 
to understand IP and WAN packets. In effect, the entire distance from the middle of one 
multiprotocol router to the middle of the other acts like a serial line. 

• Consider a person driving her car from Paris to London. Within France, the car moves 
under its own power, but when it hits the English Channel, it is loaded into a high-speed 
train and transported to England through the Chunnel (cars are not permitted to drive 
through the Chunnel). Effectively, the car is being carried as freight, as depicted in Fig. 5- 
48. At the far end, the car is let loose on the English roads and once again continues to 
move under its own power. Tunneling of packets through a foreign network works the same 
way. 



 

 
Figure 5-48. Tunneling a car from France to England. 

 
4.4.4 Internetwork Routing 

• Routing through an internetwork is similar to routing within a single subnet, but with some 
added complications. 

• Consider, for example, the internetwork of Fig. 5-49(a) in which five networks are 
connected by six (possibly multiprotocol) routers. Making a graph model of this situation 
is complicated by the fact that every router can directly access (i.e., send packets to) every 
other router connected to any network to which it is connected. For example, B in Fig. 5- 
49(a) can directly access A and C via network 2 and also D via network 3. This leads to the 
graph of Fig. 5-49(b). 

 

 
Figure 5-49. (a) An internetwork. (b) A graph of the internetwork. 

 
• Once the graph has been constructed, known routing algorithms, such as the distance 

vector and link state algorithms, can be applied to the set of multiprotocol routers. 

• This gives a two-level routing algorithm: within each network an interior gateway 
protocol is used, but between the networks, an exterior gateway protocol is used 
(''gateway'' is an older term for ''router''). 

• Network in an internetwork is independent of all the others, it is often referred to as an 
Autonomous System (AS). 

• A typical internet packet starts out on its LAN addressed to the local multiprotocol router 
(in the MAC layer header). After it gets there, the network layer code decides which 
multiprotocol router to forward the packet to, using its own routing tables. If that router 
can be reached using the packet's native network protocol, the packet is forwarded there 
directly. Otherwise it is tunneled there, encapsulated in the protocol required by the 



intervening network. This process is repeated until the packet reaches the destination 
network. 

• One of the differences between internetwork routing and intranet work routing is that 
internetwork routing may require crossing international boundaries. Various laws 
suddenly come into play, such as Sweden's strict privacy laws about exporting personal 
data about Swedish citizens from Sweden. Another example is the Canadian law saying 
that data traffic originating in Canada and ending in Canada may not leave the country. 
This law means that traffic from Windsor, Ontario to Vancouver may not be routed via 
nearby Detroit, even if that route is the fastest and cheapest. 

Another difference between interior and exterior routing is the cost. Within a single network, 
a single charging algorithm normally applies. However, different networks may be under 
different managements, and one route may be less expensive than another. Similarly, the 
quality of service offered by different networks may be different, and this may be a reason to 
choose one route over another. 

 
4.4.5 Fragmentation 

Each network imposes some maximum size on its packets. These limits have various causes, 
among them: 

1. Hardware (e.g., the size of an Ethernet frame). 

2. Operating system (e.g., all buffers are 512 bytes). 

3. Protocols (e.g., the number of bits in the packet length field). 

4. Compliance with some (inter)national standard. 

5. Desire to reduce error-induced retransmissions to some level. 

6. Desire to prevent one packet from occupying the channel too long. 

• From the above factors maximum payloads range from 48 bytes (ATM cells) to 65,515 
bytes (IP packets), although the payload size in higher layers is often larger. 

• If the original source packet is too large to be handled by the destination network? The 
routing algorithm can hardly bypass the destination. 

• The only solution to the problem is to allow gateways to break up packets into fragments, 
sending each fragment as a separate internet packet. Packet-switching networks, too, 
have trouble putting the fragments back together again. 

Two opposing strategies exist for recombining the fragments back into the original packet. 

The first strategy is to make fragmentation caused by a ''small-packet'' network transparent 
to any subsequent networks through which the packet must pass on its way to the ultimate 
destination. This option is shown in Fig. 5-50(a). In this approach, the small-packet network 
has gateways (most likely, specialized routers) that interface to other networks. When an 
oversized packet arrives at a gateway, the gateway breaks it up into fragments. Each fragment 
is addressed to the same exit gateway, where the pieces are recombined. In this way passage 



through the small-packet network has been made transparent. Subsequent networks are not 
even aware that fragmentation has occurred. 

 

 
Figure 5-50. (a) Transparent fragmentation. (b) Nontransparent fragmentation. 

 
• Transparent fragmentation is straightforward but has some problems. 

• For one thing, the exit gateway must know when it has received all the pieces, so either a 
count field or an ''end of packet'' bit must be provided. 

• For another thing, all packets must exit via the same gateway. By not allowing some 
fragments to follow one route to the ultimate destination and other fragments a disjoint 
route, some performance may be lost. 

• A last problem is the overhead required to repeatedly reassemble and then refragment a 
large packet passing through a series of small-packet networks. ATM requires transparent 
fragmentation. 

The other fragmentation strategy is to refrain from recombining fragments at any 
intermediate gateways. Once a packet has been fragmented, each fragment is treated as though 
it were an original packet. All fragments are passed through the exit gateway (or gateways), as 
shown in Fig. 5-50(b). Recombination occurs only at the destination host. IP works this way. 

• Nontransparent fragmentation also has some problems. 

• For example, it requires every host to be able to do reassembly. 

• Yet another problem is that when a large packet is fragmented, the total overhead 
increases because each fragment must have a header. Whereas in the first method this 
overhead disappears as soon as the small-packet network is exited, in this method the 
overhead remains for the rest of the journey. 

• An advantage of nontransparent fragmentation, however, is that multiple exit gateways 
can now be used and higher performance can be achieved. 

• When a packet is fragmented, the fragments must be numbered in such a way that the 
original data stream can be reconstructed. 



• One way of numbering the fragments is to use a tree. If packet 0 must be split up, the 
pieces are called 0.0, 0.1, 0.2, etc. If these fragments themselves must be fragmented later 
on, the pieces are numbered 0.0.0, 0.0.1, 0.0.2, . . . , 0.1.0, 0.1.1, 0.1.2, etc. 

• No duplicates are generated anywhere, this scheme is sufficient to ensure that all the 
pieces can be correctly reassembled at the destination, no matter what order they arrive 
in. 

• However, if even one network loses or discards packets, end-to-end retransmissions are 
needed, with unfortunate effects for the numbering system. 

• Suppose that a 1024-bit packet is initially fragmented into four equal-sized fragments, 0.0, 
0.1, 0.2, and 0.3. Fragment 0.1 is lost, but the other parts arrive at the destination. 
Eventually, the source time out and retransmits the original packet again. 

• When a packet is fragmented, all the pieces are equal to the elementary fragment size 
except the last one, which may be shorter. An internet packet may contain several 
fragments, for efficiency reasons. 

• The internet header must provide the original packet number and the number of the (first) 
elementary fragment contained in the packet. 

• A bit indicating that the last elementary fragment contained within the internet packet is 
the last one of the original packet. 

This approach requires two sequence fields in the internet header: 

• The original packet number and the fragment number. There is clearly a trade-off 
between the size of the elementary fragment and the number of bits in the fragment 
number. Because the elementary fragment size is presumed to be acceptable to every 
network, subsequent fragmentation of an internet packet containing several fragments 
causes no problem. The ultimate limit here is to have the elementary fragment be a single 
bit or byte, with the fragment number then being the bit or byte offset within the original 
packet, as shown in Fig. 5-51. 

 

 
 

Figure 5-51. Fragmentation when the elementary data size is 1 byte. (a) Original packet, 



containing 10 data bytes. (b) Fragments after passing through a network with maximum 
packet size of 8 payload bytes plus header. (c) Fragments after passing through a size 5 

gateway. 
 

Some internet protocols take this method even further and consider the entire transmission on 
a virtual circuit to be one giant packet, so that each fragment contains the absolute byte number 
of the first byte within the fragment. 

 
4.4.6 The Network Layer in The Internet 
 

Top 10 principles 

1. Make sure it works. Do not finalize the design or standard until multiple prototypes have 
successfully communicated with each other. All too often designers first write a 

1000-page standard, get it approved, then discover it is deeply flawed and does not work. 
Then they write version 1.1 of the standard. This is not the way to go. 

2. Keep it simple. When in doubt, use the simplest solution. William of Occam stated this 
principle (Occam's razor) in the 14th century. Put in modern terms: fight features. If a 
feature is not absolutely essential, leave it out, especially if the same effect can be 
achieved by combining other features. 

3. Make clear choices. If there are several ways of doing the same thing, choose one. Having 
two or more ways to do the same thing is looking for trouble. Standards often have 
multiple options or modes or parameters because several powerful parties insist that their 
way is best. Designers should strongly resist this tendency. Just say no. 

4. Exploit modularity. This principle leads directly to the idea of having protocol stacks, each 
of whose layers is independent of all the other ones. In this way, if circumstances that 
require one module or layer to be changed, the other ones will not be affected. 

5. Expect heterogeneity. Different types of hardware, transmission facilities, and 
applications will occur on any large network. To handle them, the network design must be 
simple, general, and flexible. 

6. Avoid static options and parameters. If parameters are unavoidable (e.g., maximum 
packet size), it is best to have the sender and receiver negotiate a value than defining 
fixed choices. 

7. Look for a good design; it need not be perfect. Often the designers have a good design but 
it cannot handle some weird special case. Rather than messing up the design, the 
designers should go with the good design and put the burden of working around it on the 
people with the strange requirements. 

8. Be strict when sending and tolerant when receiving. In other words, only send packets 
that rigorously comply with the standards, but expect incoming packets that may not be 
fully conformant and try to deal with them. 

9. Think about scalability. If the system is to handle millions of hosts and billions of users 



effectively, no centralized databases of any kind are tolerable and load must be spread as 
evenly as possible over the available resources. 

10. Consider performance and cost. If a network has poor performance or outrageous costs, 
nobody will use it. 

• At the network layer, the Internet can be viewed as a collection of subnetworks or 
Autonomous Systems (ASes) that are interconnected. 

• There is no real structure, but several major backbones exist. These are constructed from 
high-bandwidth lines and fast routers. Attached to the backbones are regional (midlevel) 
networks, and attached to these regional networks are the LANs at many universities, 
companies, and Internet service providers. 

• A sketch of this quasi-hierarchical organization is given in Fig. 5-52. 
 

 
Figure 5-52. The Internet is an interconnected collection of many networks. 



• The glue that holds the whole Internet together is the network layer protocol, IP 
(Internet Protocol). Unlike most older network layer protocols, it was designed 
from the beginning with internetworking in mind. 

• The network layer job is to provide a best-efforts (i.e., not guaranteed) way to 
transport datagram from source to destination, without regard to whether these 
machines are on the same network or whether there are other networks in 
between them. 

• The transport layer takes data streams and breaks them up into datagram’s. 

• Each datagram is transmitted through the Internet, possibly being fragmented 
into smaller units as it goes. 

• When all the pieces finally get to the destination machine, they are 
reassembled by the network layer into the original datagram. 

• This datagram is then handed to the transport layer, which inserts it into the 
receiving process' input stream. 

 

4.4.7 The IP Protocol 
 

• An IP datagram consists of a header part and a text part. The header has 
a 20-byte fixed part and a variable length optional part. 

 

 
• The Version field keeps track of which version of the protocol the datagram belongs to. 

• The header length is not constant, a field in the header, IHL, is provided to tell how 
long the header is, in 32-bit words. 

• The Type of service field is one of the few fields that have changed its meaning 
(slightly) over the years. It was and is still intended to distinguish between 
different classes of service. 



• The Total length includes everything in the datagram—both header and data. The 
maximum length is 65,535 bytes. 

• The Identification field is needed to allow the destination host to determine which 
datagram a newly arrived fragment belongs to. All the fragments of a datagram 
contain the same Identification value. Next comes an unused bit and then two 1-
bit fields. 

• DF stands for Don't Fragment. It is an order to the routers not to fragment the 
datagram because the destination is incapable of putting the pieces back together 
again. 

• MF stands for More Fragments. All fragments except the last one have this bit set. 
It is needed to know when all fragments of a datagram have arrived. 

• The Fragment offset tells where in the current datagram this fragment belongs. 
All fragments except the last one in a datagram must be a multiple of 8 bytes, the 
elementary fragment unit. Since 13 bits are provided, there is a maximum of 8192 
fragments per datagram, giving a maximum datagram length of 65,536 bytes, one 
more than the Total length field. 

• The Time to live field is a counter used to limit packet lifetimes. It is supposed to 
count time in seconds, allowing a maximum lifetime of 255 sec. 

• When the network layer has assembled a complete datagram, it needs to know 
what to do with it. The Protocol field tells it which transport process to give it to. 
TCP is one possibility, but so are UDP and some others. The numbering of protocols 
is global across the entire Internet. 

• The Header checksum verifies the header only. 

• The Source address and Destination address indicate the network number and 
host number. 

• The Options field was designed to provide an escape to allow subsequent versions 
of the protocol to include information not present in the original design, to permit 
experimenters to try out new ideas, and to avoid allocating header bits to 
information that is rarely needed. 

• The options are variable length. 

4.4.8 IP Address 
 

IP addresses were divided into the five categories listed in Fig. This allocation has come to be 
called classful addressing. It is no longer used, but references to it in the literature are still 
common. 



 
 The class A, B, C, and D formats allow for up to 128 networks with 16 million hosts each, 
16,384 networks with up to 64K hosts, and 2 million networks (e.g., LANs) with up to 256 
hosts each (although a few of these are special). Also supported is multicast, in which a 
datagram is directed to multiple hosts. Addresses beginning with 1111 are reserved for future 
use. 
 Network addresses, which are 32-bit numbers, are usually written in dotted decimal 
notation. In this format, each of the 4 bytes is written in decimal, from 0 to 255. For example, 
the 32-bit hexadecimal address C0290614 is written as 192.41.6.20. The lowest IP address is 
0.0.0.0 and the highest is 255.255.255.255. 
 
Subnets: 
 As we have seen, all the hosts in a network must have the same network number. This 
property of IP addressing can cause problems as networks grow. The solution is to allow a 
network to be split into several parts for internal use but still act like a single network to the 
outside world.  
 In the Internet literature, the parts of the network (in this case, Ethernets) are called 
subnets. 
 To implement subnetting, the main router needs a subnet mask that indicates the split 
between network + subnet number and host, as shown in Fig.  Subnet masks are also written 
in dotted decimal notation, with the addition of a slash followed by the number of bits in the 
network + subnet part. For the example of Fig. the subnet mask can be written as 
255.255.252.0. An alternative notation is /22 to indicate that the subnet mask is 22 bits long. 

 
 

CIDR—Classless Inter Domain Routing: 
 The basic idea behind CIDR, which is described in RFC 1519, is to allocate the remaining 
IP addresses in variable-sized blocks, without regard to the classes. If a site needs, say, 2000 
addresses, it is given a block of 2048 addresses on a 2048-byte boundary. 
 Using CIDR, each IP address has a network prefix that identifies either one or several 
network gateways. The length of the network prefix in IPv4 CIDR is also specified as part of 



the IP address and varies depending on the number of bits needed, rather than any arbitrary 
class assignment structure. A destination IP address or route that describes many possible 
destinations has a shorter prefix and is said to be less specific. A longer prefix describes a 
destination gateway more specifically. 
 CIDR notation:           a.b.c.d/n 
   Where n = number of network IDs 
    Host ID = 32-n 
    IP = 2(32-n) 

  

 Example:   20.10.20.100/20 
   Network ID = 20. 
   Host ID = 32-20 = 12. 
   IP = 2(32-20) = 4096. 

 
NAT—Network Address Translation: 
 IP addresses are scarce. An ISP might have a /16 (formerly class B) address, giving it 
65,534 host numbers. If it has more customers than that, it has a problem. This quick fix came 
in the form of NAT (Network Address Translation), which is described in RFC 3022 and 
which we will summarize below. 
 The basic idea behind NAT is to assign each company a single IP address (or at most, a 
small number of them) for Internet traffic. Within the company, every computer gets a unique 
IP address, which is used for routing intramural traffic. However, when a packet exits the 
company and goes to the ISP, an address translation takes place. To make this scheme possible, 
three ranges of IP addresses have been declared as private. 
10.0.0.0     –  10.255.255.255/8    (16,777,216 hosts)   
172.16.0.0   –  172.31.255.255/12   (1,048,576 hosts)   
192.168.0.0  –  192.168.255.255/16 (65,536 hosts) 
 The operation of NAT is shown in Fig. Within the company premises, every machine has 
a unique address of the form 10.x.y.z. However, when a packet leaves the company premises, 
it passes through a NAT box that converts the internal IP source address, 10.0.0.1 in the figure, 
to the company's true IP address, 198.60.42.12 in this example. 

 
4.4.9 IP Version 6 

  Internet Protocol version 6 is a new addressing protocol designed to incorporate all 
the possible requirements of future Internet. This protocol as its predecessor IPv4, works on 
the Network Layer (Layer-3). Along with its offering of an enormous amount of logical address 
space, this protocol has ample features to address the shortcoming of IPv4. 
The major goals of IPV6 are: 

1. Support billions of hosts, even with inefficient address allocation. 



2. Reduce the size of the routing tables. 
3. Simplify the protocol, to allow routers to process packets faster. 
4. Provide better security (authentication and privacy). 
5. Pay more attention to the type of service, particularly for real-time data. 
6. Aid multicasting by allowing scopes to be specified. 
7. Make it possible for a host to roam without changing its address. 
8. Allow the protocol to evolve in the future. 
9. Permit the old and new protocols to coexist for years. 

 
First and foremost, IPv6 has longer addresses than IPv4. They are 128 bits long, which 

solves the problem that IPv6 set out to solve: providing an effectively unlimited supply of 
Internet addresses.  

The second major improvement of IPv6 is the simplification of the header. It contains only 
seven fields (versus 13 in IPv4). This change allows routers to process packets faster and thus 
improves throughput and delay.  

The third major improvement is better support for options. This change was essential with 
the new header because fields that previously were required are now optional (because they are 
not used so often). In addition, the way options are represented is different, making it simple 
for routers to skip over options not intended for them. This feature speeds up packet processing 
time. 

A fourth area in which IPv6 represents a big advance is in security. Authentication and 
privacy are key features of the new IP. 

 
 

The Main IPv6 Header 
  

 The IPv6 header is shown in Fig. 5-56. The Version field is always 6 for IPv6 (and 4 for 
IPv4). During the transition period from IPv4, which has already taken more than a decade, routers 
will be able to examine this field to tell what kind of acket they have. 
 

 
The Differentiated services field (originally called Traffic class) is used to distinguish the class 
of service for packets with different real-time delivery requirements. It is used with the 
differentiated service architecture for quality of service in the same manner as the field of the 
same name in the IPv4 packet. 



The Flow label field provides a way for a source and destination to mark groups of packets 
that have the same requirements and should be treated in the same way by the network, forming 
a pseudo connection. The flow can be set up in advance and given an identifier. 
The Payload length field tells how many bytes follow the 40-byte header of Fig. 5-56. The 
name was changed from the IPv4 Total length field because the meaning was changed slightly: 
the 40 header bytes are no longer counted as part of the length (as they used to be). This change 
means the payload can now be 65,535 bytes instead of a mere 65,515 bytes. 
The Next header field lets the cat out of the bag. The reason the header could be simplified is 
that there can be additional (optional) extension headers. This field tells which of the 
(currently) six extension headers, if any, follow this one. 
The Hop limit field is used to keep packets from living forever. It is, in practice, the same as 
the Time to live field in IPv4, namely, a field that is decremented on each hop. 
Next the Source address and Destination address fields which contains 1228 bit address. 
A new notation has been devised for writing 16-byte addresses. They are written as eight 
groups of four hexadecimal digits with colons between the groups, like this: 

8000:0000:0000:0000:0123:4567:89AB:CDEF 
Since many addresses will have many zeros inside them, three optimizations have been 
authorized. First, leading zeros within a group can be omitted, so 0123 can be written as 123. 
Second, one or more groups of 16 zero bits can be replaced by a pair of colons. Thus, the above 
address now becomes 

8000::123:4567:89AB:CDEF 
 
Transition from IPV4 to IPV6: 
 
 Because of the huge number of systems on the Internet, the transition from IPv4 to IPv6 cannot 

happen suddenly. It takes a considerable amount of time before every system in the Internet 
can move from IPv4 to IPv6. The transition must be smooth to prevent any problems between 
IPv4 and IPv6 systems. Three strategies have been devised by the IETF to help the transition. 

 
 

1. Dual Stack 
It is recommended that all hosts, before migrating completely to version 6, have a dual stack 
of protocols. In other words, a station must run IPv4 and IPv6 simultaneously until all the 
Internet uses IPv6. See below Figure for the layout of a dual-stack configuration.  
To determine which version to use when sending a packet to a destination, the source host 
queries the DNS. If the DNS returns an IPv4 address, the source host sends an IPv4 packet. 
If the DNS returns an IPv6 address, the source host sends an IPv6 packet. 

 



 
2. Tunneling 

Tunneling is a strategy used when two computers using IPv6 want to communicate with 
each other and the packet must pass through a region that uses IPv4. To pass through this 
region, the packet must have an IPv4 address. So the IPv6 packet is encapsulated in an IPv4 
packet when it enters the region, and it leaves its capsule when it exits the region. It seems 
as if the IPv6 packet goes through a tunnel at one end and emerges at the other end. To make 
it clear that the IPv4 packet is carrying an IPv6 packet as data. 

 
3. Header Translation 

Header translation is necessary when the majority of the Internet has moved to IPv6 but 
some systems still use IPv4. The sender wants to use IPv6, but the receiver does not 
understand IPv6. Tunneling does not work in this situation because the packet must be in 
the IPv4 format to be understood by the receiver. 

 
Comparison of IPV4 & IPV6 

IPv4 Address IPv6 Address 

Address Length – 32 bits 128 bits 

Address Representation - decimal hexadecimal 

Internet address classes Not applicable in IPv6 

Multicast addresses (224.0.0.0/4) IPv6 multicast addresses (FF00::/8) 

Broadcast addresses Not applicable in IPv6 

Unspecified address is 0.0.0.0 Unspecified address is :: 

Loopback address is 127.0.0.1 Loopback address is ::1 

Public IP addresses  Global unicast addresses 

Private IP addresses (10.0.0.0/8, 
172.16.0.0/12, and 192.168.0.0/16)  

Site-local addresses (FEC0::/10) 

Autoconfigured addresses (169.254.0.0/16)  Link-local addresses (FE80::/64) 

 



 
4.4.10 Internet Control Protocols: 
 

 In addition to IP, which is used for data transfer, the Internet has several companion control 
protocols that are used in the network layer. They include ICMP, ARP, and DHCP. 

 
3.  IMCP—The Internet Control Message Protocol 

The operation of the Internet is monitored closely by the routers. When something unexpected 
occurs during packet processing at a router, the event is reported to the sender by the ICMP 
(Internet Control Message Protocol). ICMP is also used to test the Internet. About a dozen 
types of ICMP messages are defined. Each ICMP message type is carried encapsulated in an 
IP packet. The most important ones are listed in Fig. 5-60. 

 
The DESTINATION UNREACHABLE message is used when the router cannot locate the 

destination or when a packet with the DF bit cannot be delivered because a ‘‘small-packet’’ 
network stands in the way. 

The TIME EXCEEDED message is sent when a packet is dropped because it’s TTL (Time 
to live) counter has reached zero. This event is a symptom that packets are looping, or that the 
counter values are being set too low. 

The PARAMETER PROBLEM message indicates that an illegal value has been detected 
in a header field. This problem indicates a bug in the sending host’s IP software or possibly in the 
software of a router transited. 

The SOURCE QUENCH message was long ago used to throttle hosts that were sending 
too many packets. When a host received this message, it was expected to slow down. It is rarely 
used anymore because when congestion occurs, these packets tend to add more fuel to the fire and 
it is unclear how to respond to them. 

The REDIRECT message is used when a router notices that a packet seems to be routed 
incorrectly. It is used by the router to tell the sending host to update to a better route. 

The ECHO and ECHO REPLY messages are sent by hosts to see if a given destination is 
reachable and currently alive. Upon receiving the ECHO message, the destination is expected to 
send back an ECHO REPLY message. These messages are used in the ping utility that checks if a 
host is up and on the Internet. 

The TIMESTAMP REQUEST and TIMESTAMP REPLY messages are similar, except 
that the arrival time of the message and the departure time of the reply are recorded in the reply. 
This facility can be used to measure network performance. 

The ROUTER ADVERTISEMENT and ROUTER SOLICITATION messages are 
used to let hosts find nearby routers. A host needs to learn the IP address of at least one router to 
be able to send packets off the local network. 



 
 

4. ARP—The Address Resolution Protocol 
Although every machine on the Internet has one or more IP addresses, these addresses are 

not sufficient for sending packets. Data link layer NICs (Network Interface Cards) such as Ethernet 
cards do not understand Internet addresses. In the case of Ethernet, every NIC ever manufactured 
comes equipped with a unique 48-bit Ethernet address. Manufacturers of Ethernet NICs request a 
block of Ethernet addresses from IEEE to ensure that no two NICs have the same address. The 
NICs send and receive frames based on 48-bit Ethernet addresses. They know nothing at all about 
32-bit IP addresses. 
 The question now arises, how do IP addresses get mapped onto data link layer addresses, 
such as Ethernet? To explain how this works, let us use the example of Fig. 5-61, in which a small 
university with two /24 networks is illustrated. One network (CS) is a switched Ethernet in the 
Computer Science Dept. It has the prefix 192.32.65.0/24. The other LAN (EE), also switched 
Ethernet, is in Electrical Engineering and has the prefix 192.32.63.0/24. The two LANs are 
connected by an IP router. Each machine on an Ethernet and each interface on the router has a 
unique Ethernet address, labeled E1 through E6, and a unique IP address on the CS or EE network. 

 
Let us start out by seeing how a user on host 1 sends a packet to a user on host 2 on the CS 

network. Let us assume the sender knows the name of the intended receiver, possibly something 
like eagle.cs.uni.edu. The first step is to find the IP address for host 2. This lookup is performed 
by DNS. 
. The upper layer software on host 1 now builds a packet with 192.32.65.5 in the Destination 
address field and gives it to the IP software to transmit. The IP software can look at the address 
and see that the destination is on the CS network, (i.e., its own network). However, it still needs 
some way to find the destination’s Ethernet address to send the frame. One solution is to have a 
configuration file somewhere in the system that maps IP addresses onto Ethernet addresses. 
While this solution is certainly possible, for organizations with thousands of machines keeping 
all these files up to date is an error-prone, time-consuming job. 

A better solution is for host 1 to output a broadcast packet onto the Ethernet asking who 
owns IP address 192.32.65.5. The broadcast will arrive at every machine on the CS Ethernet, 



and each one will check its IP address. Host 2 alone will respond with its Ethernet address (E2). 
In this way host 1 learns that IP address 192.32.65.5 is on the host with Ethernet address E2. The 
protocol used for asking this question and getting the reply is called ARP (Address Resolution 
Protocol). 
 At this point, the IP software on host 1 builds an Ethernet frame addressed to E2, puts the 
IP packet (addressed to 192.32.65.5) in the payload field, and dumps it onto the Ethernet. The IP 
and Ethernet addresses of this packet are given in Fig. 5-61. 
 Now let us look at Fig. 5-61 again, only this time assume that host 1 wants to send a packet 
to host 4 (192.32.63.8) on the EE network. Host 1 will see that the destination IP address is not 
on the CS network. It knows to send all such off-network traffic to the router, which is also 
known as the default gateway. By convention, the default gateway is the lowest address on the 
network (198.31.65.1). To send a frame to the router, host 1 must still know the Ethernet address 
of the router interface on the CS network. It discovers this by sending an ARP broadcast for 
198.31.65.1, from which it learns E3. It then sends the frame. The same lookup mechanisms are 
used to send a packet from one router to the next over a sequence of routers in an Internet path. 

When the Ethernet NIC of the router gets this frame, it gives the packet to the IP software. 
It knows from the network masks that the packet should be sent onto the EE network where it 
will reach host 4. If the router does not know the Ethernet address for host 4, then it will use 
ARP again. The table in Fig. 5-61 lists the source and destination Ethernet and IP addresses that 
are present in the frames as observed on the CS and EE networks. Observe that the Ethernet 
addresses change with the frame on each network while the IP addresses remain constant. 

It is also possible to send a packet from host 1 to host 4 without host 1 knowing that host 
4 is on a different network. The solution is to have the router answer ARPs on the CS network 
for host 4 and give its Ethernet address, E3, as the response. It is not possible to have host 4 reply 
directly because it will not see the ARP request (as routers do not forward Ethernet-level 
broadcasts). The router will then receive frames sent to 192.32.63.8 and forward them onto the 
EE network. This solution is called proxy ARP. 

 
5. DHCP—The Dynamic Host Configuration Protocol 

With DHCP, every network must have a DHCP server that is responsible for configuration. 
When a computer is started, it has a built-in Ethernet or other link layer address embedded in the 
NIC, but no IP address. Much like ARP, the computer broadcasts a request for an IP address on its 
network. It does this by using a DHCP DISCOVER packet. This packet must reach the DHCP 
server. If that server is not directly attached to the network, the router will be configured to receive 
DHCP broadcasts and relay them to the DHCP server, wherever it is located. 

When the server receives the request, it allocates a free IP address and sends it to the host 
in a DHCP OFFER packet (which again may be relayed via the router). To be able to do this work 
even when hosts do not have IP addresses, the server identifies a host using its Ethernet address 
(which is carried in the DHCP DISCOVER packet) 

An issue that arises with automatic assignment of IP addresses from a pool is for how long 
an IP address should be allocated. If a host leaves the network and does not return its IP address 
to the DHCP server, that address will be permanently lost. After a period of time, many addresses 
may be lost. To prevent that from happening, IP address assignment may be for a fixed period of 
time, a technique called leasing. Just before the lease expires, the host must ask for a DHCP 
renewal. If it fails to make a request or the request is denied, the host may no longer use the IP 
address it was given earlier. 


	(a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.
	Table 1. Initial distances stored at each node(global view).
	Table 2. final distances stored at each node ( global view).
	Table 3. Routing table maintained at node B.
	The count-to-infinity problem.

	4.2.6 LINK STATE ROUTING:
	Learning about the Neighbours
	(a) Nine routers and a LAN. (b) A graph model of (a).
	Figure: A subnet in which the East and West parts are connected by two lines.
	Building Link State Packets
	Distributing the Link State Packets

	4.3 CONGESTION CONTROL ALGORITHMS
	Fig:. When too much traffic is offered, congestion sets in and performance degrades sharply.

	4.3.1 APPROACHES TO CONGESTION CONTROL
	Fig: Timescales Of Approaches To Congestion Control

	4.3.2 CONGESTION PREVENTION POLICIES
	The data link layer Policies.
	The network layer Policies.
	The transport layer Policies,

	4.3.3 ADMISSION CONTROL
	Figure 5-27. (a) A congested subnet. (b) A redrawn subnet that eliminates the congestion.

	4.3.4 TRAFFIC AWARE ROUTING
	4.3.5 TRAFFIC THROTTLING
	4.3.6 THE WARNING BIT
	4.3.7 CHOKE PACKETS
	4.3.8 HOP-BY-HOP BACK PRESSURE
	Figure 5-28. (a) A choke packet that affects only the source. (b) A choke packet that affects each hop it passes through.

	4.3.9 LOAD SHEDDING
	4.3.10 RANDOM EARLY DETECTION
	4.3.12 How to correct the Congestion Problem:
	Open Loop Congestion Control
	1. Retransmission Policy
	2. Window Policy
	3. Acknowledgement Policy
	4. Discarding Policy
	5. Admission Policy
	Closed Loop Congestion Control
	1. Backpressure
	2. Choke Packet
	3. Implicit Signaling
	4. Explicit Signaling

	4.4.3 Tunneling
	Figure 5-47. Tunneling a packet from Paris to London.

	4.4.4 Internetwork Routing
	Figure 5-49. (a) An internetwork. (b) A graph of the internetwork.
	Autonomous System (AS).

	4.4.5 Fragmentation
	Figure 5-50. (a) Transparent fragmentation. (b) Nontransparent fragmentation.
	Figure 5-51. Fragmentation when the elementary data size is 1 byte. (a) Original packet, containing 10 data bytes. (b) Fragments after passing through a network with maximum packet size of 8 payload bytes plus header. (c) Fragments after passing throu...
	Top 10 principles
	Figure 5-52. The Internet is an interconnected collection of many networks.


	4.4.7 The IP Protocol
	4.4.8 IP Address

