
COMPUTER NETWORKS

UNIT - 2: DATA LINK LAYER
Syllabus:
Data link layer: Design issues, Framing: fixed size framing, variable size framing, flow control, error control,
error detection and correction codes, CRC, Checksum: idea, one’s complement internet checksum services
provided to Network Layer,
Elementary Data Link Layer protocols: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy
Channel.
Sliding window protocol: One bit, Go back N, Selective repeat-Stop and wait protocol, Data link layer in
HDLC: configuration and transfer modes, frames, control field,
Point to point protocol (PPP): framing, transition phase, multiplexing, multi-link PPP.

DATA LINK LAYER
 The data link layer transforms the physical layer, a raw transmission facility, to a link responsible for
node-to-node (hop-to-hop) communication. Specific responsibilities of the data link layer include framing,
addressing, flow control, error control, and media access control.

DATA LINK LAYER DESIGN ISSUES
 The data link layer uses the services of the physical layer to send and receive bits over communication
channels. It has a number of functions, including:

 1. Providing a well-defined service interface to the network layer.
2. Dealing with transmission errors.
 3. Regulating the flow of data so that slow receivers are not swamped by fast senders.

 To accomplish these goals, the data link layer takes the packets it gets from the network layer and
encapsulates them into frames for transmission. Each frame contains a frame header, a payload field for holding
the packet, and a frame trailer, as illustrated in Fig.

SERVICES PROVIDED TO THE NETWORK LAYER
 The function of the data link layer is to provide services to the network layer. The principal service is
transferring data from the network layer on the source machine to the network layer on the destination machine.
 The data link layer can be designed to offer various services. The actual services that are offered vary
from protocol to protocol. Three reasonable possibilities that we will consider in turn are:
 1. Unacknowledged connectionless service.
 2. Acknowledged connectionless service.
 3. Acknowledged connection-oriented service.
1. Unacknowledged connectionless service:
 Unacknowledged connectionless service consists of having the source machine send independent frames
to the destination machine without having the destination machine acknowledge them. Ethernet is a good
example of a data link layer that provides this class of service. No logical connection is established beforehand
or released afterward. If a frame is lost due to noise on the line attempt is made to detect the loss or recover
from it in the data link layer. This class of service is appropriate when the error rate is very low, so recovery is
left to higher layers.
2. Acknowledged connectionless service:
 When this service is offered, there are still no logical connections used, but each frame sent is
individually acknowledged. In this way, the sender knows whether a frame has arrived correctly or been lost. If
it has not arrived within a specified time interval, it can be sent again. This service is useful over unreliable
channels, such as wireless systems. 802.11 (WiFi) is a good example of this class of service.
3. Acknowledged connection-oriented service:
 The most sophisticated service the data link layer can provide to the network layer is connection-
oriented service. With this service, the source and destination machines establish a connection before any data
are transferred. Each frame sent over the connection is numbered, and the data link layer guarantees that each
frame sent is indeed received. Furthermore, it guarantees that each frame is received exactly once and that all
frames are received in the right order.
 When connection-oriented service is used, transfers go through three distinct phases. In the first phase,
the connection is established by having both sides initialize variables and counters needed to keep track of
which frames have been received and which ones have not. In the second phase, one or more frames are
actually transmitted. In the third and final phase, the connection is released, freeing up the variables, buffers,
and other resources used to maintain the connection.

FRAMING
 To provide service to the network layer, the data link layer must use the service provided to it by the
physical layer. What the physical layer does is accept a raw bit stream and attempt to deliver it to the
destination. If the channel is noisy, as it is for most wireless and some wired links, the physical layer will add
some redundancy to its signals to reduce the bit error rate to a tolerable level. However, the bit stream received
by the data link layer is not guaranteed to be error free. Some bits may have different values and the number of
bits received may be less than, equal to, or more than the number of bits transmitted. It is up to the data link
layer to detect and, if necessary, correct errors.
 The data link layer to break up the bit stream into discrete frames, compute a short token called a
checksum for each frame, and include the checksum in the frame when it is transmitted.
 When a frame arrives at the destination, the checksum is recomputed. If the newly computed checksum
is different from the one contained in the frame, the data link layer knows that an error has occurred and takes
steps to deal with it.

DLL translates the physical layer's raw bit stream into discrete units (messages) called frames.
A good design must make it easy for a receiver to find the start of new frames while using little of the
channel bandwidth. We will look at four methods:
 1. Byte count.
 2. Flag bytes with byte stuffing.
 3. Flag bits with bit stuffing.
 4. Physical layer coding violations.

1. Byte count (Character Count) :
 This framing method uses a field in the header to specify the number of bytes in the frame. When the
data link layer at the destination sees the byte count, it knows how many bytes follow and hence where the end
of the frame is. This technique is shown in Fig.(a) For four small example frames of sizes 5, 5, 8, and 8 bytes,
respectively.
 The trouble with this algorithm is that the count can be garbled by a transmission error. For example, if
the byte count of 5 in the second frame of Fig.(b) becomes a 7 due to a single bit flip, the destination will get
out of synchronization. It will then be unable to locate the correct start of the next frame.

2. Flag bytes with byte stuffing:
 This framing method gets around the problem of resynchronization after an error by having each frame
start and end with special bytes. Often the same byte, called a flag byte, is used as both the starting and ending
delimiter. This byte is shown in Fig.(a) as FLAG. Two consecutive flag bytes indicate the end of one frame and
the start of the next. Thus, if the receiver ever loses synchronization it can just search for two flag bytes to find
the end of the current frame and the start of the next frame.
 However, there is a still a problem we have to solve. It may happen that the flag byte occurs in the data,
especially when binary data such as photographs or songs are being transmitted. This situation would interfere
with the framing. One way to solve this problem is to have the sender’s data link layer insert a special escape
byte (ESC) just before each ‘‘accidental’’ flag byte in the data.
 The data link layer on the receiving end removes the escape bytes before giving the data to the network
layer. This technique is called byte stuffing.

Four examples of byte sequences before and after byte stuffing.

3. Flag bits with bit stuffing:

 Framing can be also be done at the bit level, so frames can contain an arbitrary number of bits made up
of units of any size. It was developed for the once very popular HDLC (Highlevel Data Link Control)

protocol. Each frame begins and ends with a special bit pattern, 01111110 or 0x7E in hexadecimal. This pattern
is a flag byte. Whenever the sender’s data link layer encounters five consecutive 1s in the data, it automatically
stuffs a 0 bit into the outgoing bit stream. This bit stuffing is analogous to byte stuffing, in which an escape
byte is stuffed into the outgoing character stream before a flag byte in the data. It also ensures a minimum
density of transitions that help the physical layer maintain synchronization. USB (Universal Serial Bus) uses bit
stuffing for this reason.
 When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs
(i.e., deletes) the 0 bit. Just as byte stuffing is completely transparent to the network layer in both computers, so
is bit stuffing. If the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but
stored in the receiver’s memory as 01111110. Figure gives an example of bit stuffing.

4. Physical layer coding violations:
• This Framing Method is used only in those networks in which Encoding on the Physical Medium

contains some redundancy.
• Some LANs encode each bit of data by using two Physical Bits i.e. Manchester coding is used. Here,

Bit 1 is encoded into high- low (10) pair and Bit 0 is encoded into low-high (01) pair.
• The scheme means that every data bit has a transition in the middle, making it easy for the receiver

to locate the bit boundaries. The combinations high-high and low-low are not used for data but
are used for delimiting frames in some protocols.

ERROR CONTROL:
 Error control is concerned with ensuring that all frames are eventually delivered (possibly in order) to a
destination. How? Three items are required.

• Acknowledgements: Typically, reliable delivery is achieved using the “acknowledgments with
 retransmission" paradigm, whereby the receiver. returns a special acknowledgment
(ACK) frame to the sender indicating the correct receipt of a frame. In some systems, the
receiver also returns a negative acknowledgment (NACK) for incorrectly-received frames.
This is nothing more than a hint to the sender so that it can retransmit a frame right away without
waiting for a timer to expire.

• Timers: One problem that simple ACK/NACK schemes fail to address is recovering from
a frame that is lost? Retransmission timers are used to resend frames that don't produce an
ACK. When sending a frame, schedule a timer to expire at some time after the ACK should
have been returned. If the timer goes o, retransmit the frame.

• Sequence Numbers: Retransmissions introduce the possibility of duplicate frames. To suppress
duplicates, add sequence numbers to each frame, so tha1t 9a receiver can distinguish between
new frames and old copies.

FLOW CONTROL:

Flow control deals with controlling the speed of the sender to match that of the receiver.
 Two Approaches:

 feedback-based flow control, the receiver sends back information to the sender
giving it permission to send more data or at least telling the sender how the
receiver is doing

 rate-based flow control, the protocol has a built-in mechanism that limits
the rate at which senders may transmit data, without using feedback from the
receiver.

TYPES OF ERRORS:
There are two main types of errors in transmissions:
1. Single bit error: It means only one bit of data unit is changed from 1 to 0 or from 0

to 1.

 2. Burst error: It means two or more bits in data unit are changed from 1 to 0 from 0 to
 1. In burst error, it is not necessary that only consecutive bits are changed. The
 length of burst error is measured from first changed bit to last changed bit

ERROR DETECTION AND CORRECTION:
 Network designers have developed two basic strategies for dealing with errors. Both add redundant
information to the data that is sent. One strategy is to include enough redundant information to enable the
receiver to deduce what the transmitted data must have been. The other is to include only enough redundancy to
allow the receiver to deduce that an error has occurred and have it request a retransmission. The former strategy
uses error-correcting codes and the latter uses error-detecting codes.
 Error Detecting Codes: Include enough redundancy bits to detect errors and use ACKs and
retransmissions to recover from the errors.

Error Correcting Codes: Include enough redundancy to detect and correct errors.

ERROR-DETECTING CODES:
 Error detection means to decide whether the received data is correct or not without having a copy of the
original message. Error detection uses the concept of redundancy, which means adding extra bits for detecting
errors at the destination.

1. Vertical Redundancy Check(VRC):
Append a single bit at the end of data block such that the number of one’s is even
 À Even Parity (odd parity is similar)

 0110011 01100110
 0110001 01100011

VRC is also known as Parity Check. Detects all odd-number errors in a data block.

The problem with parity is that it can only detect odd numbers of bit substitution errors, i.e. 1 bit, 3bit,
5, bit, etc. Errors. If there two, four, six, etc. bits which are transmitted in error, using VRC will not be
able to detect the error.

2. Longitudinal Redundancy Check(LRC):

3. Cyclic Redundancy Check(CRC):
The cyclic redundancy check, or CRC, is a technique for detecting errors in digital data, but not for
making corrections when errors are detected. The CRC (Cyclic Redundancy Check), also known as a
polynomial code
 Polynomial codes are based upon treating bit strings as representations of polynomials with
coefficients of 0 and 1 only. For example, 110001 has 6 bits and thus represents a six-term polynomial
with coefficients 1, 1, 0, 0, 0, and 1: 1x5 + 1x4 + 0x3 + 0x2 + 0x1 + 1x0.
Polynomial arithmetic is done modulo 2, according to the rules of algebraic field theory. It does not
have carries for addition or borrows for subtraction. Both addition and subtraction are identical to
exclusive OR. For example:
 10011011 00110011 11110000 01010101
 + 11001010 + 11001101 − 10100110 − 10101111
 01010001 11111110 01010110 11111010

 When the polynomial code method is employed, the sender and receiver must agree upon a generator
polynomial, G(x), in advance. Both the high- and low order bits of the generator must be 1. To compute the
CRC for some frame with m bits corresponding to the polynomial M(x), the frame must be longer than the
generator polynomial. The idea is to append a CRC to the end of the frame in such a way that the polynomial
represented by the check summed frame is divisible by G(x). When the receiver gets the check summed frame,
it tries dividing it by G(x). If there is a remainder, there has been a transmission error.
 The algorithm for computing the CRC is as follows:

1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now
contains m + r bits and corresponds to the polynomial xrM(x).

2. Divide the bit string corresponding to G(x) into the bit string corresponding to xrM(x), using
modulo 2 divisions.

3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to
xrM(x) using modulo 2 subtractions. The result is the check summed frame to be transmitted.
Call its polynomial T(x).

 Below figure illustrates the calculation for a frame 1101011111 using the generator G(x) = x4 + x + 1.

Example calculation of the CRC.

 It should be clear that T(x) is divisible (modulo 2) by G(x). In any division problem, if you diminish the
dividend by the remainder, what is left over is divisible by the divisor.
Example of CRC:

At sender side calculation of CRC:

At receiver side calculation of CRC:

4. CHECKSUM:
• Checksum is the error detection scheme used in IP, TCP & UDP.
• Here, the data is divided into k segments each of n bits. In the sender’s end the segments are

added using 1’s complement arithmetic to get the sum. The sum is complemented to get the
checksum. The checksum segment is sent along with the data segments

• At the receiver’s end, all received segments are added using 1’s complement arithmetic to get
the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise
discarded

• The checksum detects all errors involving an odd number of bits. It also detects most errors
involving even number of bits.

Checksum procedure at sender and receiver end:

Diagrammatic approach:

Example for Checksum:

Elementary Data Link Layer protocols:
Now let us see how the data link layer can combine framing, flow control, and error control to achieve

the delivery of data from one node to another. The protocols are normally implemented in software by using
one of the common programming languages.

We divide the discussion of protocols into those that can be used for noiseless (error-free) channels and
those that can be used for noisy (error-creating) channels. The protocols in the first category cannot be used in real
life, but they serve as a basis for understanding the protocols of noisy channels.

NOISELESS CHANNELS:

Let us first assume we have an ideal channel in which no frames are lost, duplicated, or corrupted. We
introduce two protocols for this type of channel. The first is a protocol that does not use flow control; the second is
the one that does. Of course, neither has error control because we have assumed that the channel is a perfect
noiseless channel.

Simplest Protocol:

Our first protocol, which we call the Simplest Protocol for lack of any other name, is one that has no flow or
error control. Like other protocols we will discuss in this chapter, it is a unidirectional protocol in which data
frames are traveling in only one direction-from the sender to receiver. We assume that the receiver can
immediately handle any frame it receives with a processing time that is small enough to be negligible. The data
link layer of the receiver immediately removes the header from the frame and hands the data packet to its
network layer, which can also accept the packet immediately. In other words, the receiver can never be
overwhelmed with incoming frames.

Design
There is no need for flow control in this scheme. The data link layer at the sender site gets data from its network
layer, makes a frame out of the data, and sends it. The data link layer at the receiver site receives a frame from
its physical layer, extracts data from the frame, and delivers the data to its network layer. The data link layers of
the sender and receiver provide transmission services for their network layers.

Algorithms
Sender-site algorithm for the simplest protocol

Analysis The algorithm has an infinite loop, which means lines 3 to 9 are repeated forever once the program
starts. The algorithm is an event-driven one, which means that it sleeps (line 3) until an event wakes it up (line 4).
This means that there may be an undefined span of time between the execution of line 3 and line 4; there is a
gap between these actions. When the event, a request from the network layer, occurs, lines 6 through 8 are
executed. The program then repeats The loop and again sleeps at line 3 until the next occurrence of the event.
We have written pseudo code for the main process. We do not show any details for the modules Get Data,
Make Frame, and Send Frame.

Receiver-site algorithm for the simplest protocol

Analysis This algorithm has the same format as above Algorithm except that the direction of the frames and
data is upward. The event here is the arrival of a data frame. After the event occurs, the data link layer receives
the frame from the physical layer using the ReceiveFrame() process, extracts the data from the frame using the
ExtractData() process, and delivers the data to the network layer using the DeliverData() process. Here, we also
have an event-driven algorithm because the algorithm never knows when the data frame will arrive.

Example:
Below Figure shows an example of communication using this protocol. It is very simple. The sender sends a
sequence of frames without even thinking about the receiver. To send three frames, three events occur at the
sender site and three events at the receiver site. Note that the data frames are shown by tilted boxes; the height
of the box defines the transmission time difference between the first bit and the last bit in the frame.

Stop-and-Wait Protocol:
If data frames arrive at the receiver site faster than they can be processed, the frames must be stored

until their use. Normally, the receiver does not have enough storage space, especially if it is receiving data from
many sources. This may result in either the discarding of frames or denial of service. To prevent the receiver
from becoming overwhelmed with frames, we somehow need to tell the sender to slow down. There must be
feedback from the receiver to the sender.

The protocol we discuss now is called the Stop-and-Wait Protocol because the sender sends one frame,
stops until it receives confirmation from the receiver (okay to go ahead), and then sends the next frame. We still
have unidirectional communication for data frames, but auxiliary ACK frames (simple tokens of
acknowledgment) travel from the other direction. We add flow control to our previous protocol.

Design
We can see the traffic on the forward channel (from sender to receiver) and the reverse channel. At any time,
there is either one data frame on the forward channel or one ACK frame on the reverse channel. We therefore
need a half-duplex link.

Algorithms
Sender-site algorithm for Stop-and- Wait Protocol

Analysis Here two events can occur: a request from the network layer or an arrival notification from the
physical layer. The responses to these events must alternate. In other words, after a frame is sent, the algorithm
must ignore another network layer request until that frame is acknowledged. We know that two arrival events
cannot happen one after another because the channel is error-free and does not duplicate the frames. The
requests from the network layer, however, may happen one after another without an arrival event in between.
We need somehow to prevent the immediate sending of the data frame. Although there are several methods, we
have used a simple canSend variable that can either be true or false. When a frame is sent, the variable is set to
false to indicate that a new network request cannot be sent until canSend is true. When an ACK is received,
canSend is set to true to allow the sending of the next frame.

Receiver-site algorithm for Stop-and-Wait Protocol

Analysis This is very similar to above Algorithm with one exception. After the data frame arrives, the receiver
sends an ACK frame (line 9) to acknowledge the receipt and allow the sender to send the next frame.

Example:
Below Figure shows an example of communication using this protocol. It is still very simple. The sender sends
one frame and waits for feedback from the receiver. When the ACK arrives, the sender sends the next frame.
Note that sending two frames in the protocol involves the sender in four events and the receiver in two events.

NOISY CHANNELS:

Although the Stop-and-Wait Protocol gives us an idea of how to add flow control to its predecessor,

noiseless channels are nonexistent. We can ignore the error (as we sometimes do), or we need to add error
control to our protocols. We discuss three protocols in this section that use error control.

Stop-and-Wait Automatic Repeat Request:

Our first protocol, called the Stop-and-Wait Automatic Repeat Request (Stop-and Wait ARQ), adds a
simple error control mechanism to the Stop-and-Wait Protocol. Let us see how this protocol detects and
corrects errors.

To detect and correct corrupted frames, we need to add redundancy bits to our data frame. When the
frame arrives at the receiver site, it is checked and if it is corrupted, it is silently discarded. The detection of
errors in this protocol is manifested by the silence of the receiver.

Lost frames are more difficult to handle than corrupted ones. In our previous protocols, there was no
way to identify a frame. The received frame could be the correct one, or a duplicate, or a frame out of order.
The solution is to number the frames. When the receiver receives a data frame that is out of order, this means
that frames were either lost or duplicated.

The lost frames need to be resent in this protocol. If the receiver does not respond when there is an error,
how can the sender know which frame to resend? To remedy this problem, the sender keeps a copy of the sent
frame. At the same time, it starts a timer. If the timer expires and there is no ACK for the sent frame, the frame
is resent, the copy is held, and the timer is restarted. Since the protocol uses the stop-and-wait mechanism, there
is only one specific frame that needs an ACK even though several copies of the same frame can be in the
network.

Sequence Numbers

As we discussed, the protocol specifies that frames need to be numbered. This is done by using
sequence numbers. A field is added to the data frame to hold the sequence number of that frame.

One important consideration is the range of the sequence numbers. Since we want to minimize the
frame size, we look for the smallest range that provides unambiguous communication. The sequence numbers
of course can wrap around. For example, if we decide that the field is m bits long, the sequence numbers start
from 0, go to 2m - 1, and then are repeated.

Acknowledgment Numbers

Since the sequence numbers must be suitable for both data frames and ACK frames, we use this
convention: The acknowledgment numbers always announce the sequence number of the next frame expected
by the receiver. For example, if frame 0 has arrived safe and sound, the receiver sends an ACK frame with
acknowledgment 1 (meaning frame 1 is expected next). If frame 1 has arrived safe and sound, the receiver
sends an ACK frame with acknowledgment 0 (meaning frame 0 is expected).

Design

Below Figure shows the design of the Stop-and-WaitARQ Protocol. The sending device keeps a copy of
the last frame transmitted until it receives an acknowledgment for that frame. A data frames uses a seqNo
(sequence number); an ACK frame uses an ackNo (acknowledgment number). The sender has a control
variable, which we call Sn (sender, next frame to send), that holds the sequence number for the next frame to be
sent (0 or 1).

The receiver has a control variable, which we call Rn (receiver, next frame expected), that holds the
number of the next frame expected. When a frame is sent, the value of Sn is incremented (modulo-2), which
means if it is 0, it becomes 1 and vice versa. When a frame is received, the value of Rn is incremented (modulo-
2), which means if it is 0, it becomes 1 and vice versa. Three events can happen at the sender site; one event can
happen at the receiver site. Variable Sn points to the slot that matches the sequence number of the frame that
has been sent, but not acknowledged; Rn points to the slot that matches the sequence number of the expected
frame.

Algorithms
Sender-site algorithm for Stop-and- Wait ARQ

Analysis We first notice the presence of Sn' the sequence number of the next frame to be sent. This variable is
initialized once (line 1), but it is incremented every time a frame is sent (line 13) in preparation for the next
frame. However, since this is modulo-2 arithmetic, the sequence numbers are 0, 1, 0, 1, and so on. Note that the
processes in the first event (SendFrame, Store Frame, and Purge Frame) use an Sn defining the frame sent out.
We need at least one buffer to hold this frame until we are sure that it is received safe and sound. Line 10 shows
that before the frame is sent, it is stored. The copy is used for resending a corrupt or lost frame. We are still
using the canSend variable to prevent the network layer from making a request before the previous frame is
received safe and sound. If the frame is not corrupted and the ackNo of theACK frame matches the sequence
number of the next frame to send, we stop the timer and purge the copy of the data frame we saved. Otherwise,
we just ignore this event and wait for the next event to happen. After each frame is sent, a timer is started.
When the timer expires (line 28), the frame is resent and the timer is restarted.

Receiver-site algorithm for Stop-and-WaitARQ Protocol

Analysis This is noticeably different from Algorithm 11.4. First, all arrived data frames that are corrupted are
ignored. If the seqNo of the frame is the one that is expected (Rn), the frame is accepted, the data are delivered
to the network layer, and the value of Rn is incremented. However, there is one subtle point here. Even if the
sequence number of the data frame does not match the next frame expected, an ACK is sent to the sender. This
ACK, however, just reconfirms the previous ACK instead of confirming the frame received. This is done
because the receiver assumes that the previous ACK might have been lost; the receiver is sending a duplicate
frame. The resent ACK may solve the problem before the time-out does it.

Efficiency

The Stop-and-Wait ARQ discussed in the previous section is very inefficient if our channel is thick and
long. By thick, we mean that our channel has a large bandwidth; by long, we mean the round-trip delay is long.
The product of these two is called the bandwidth delay product, as we discussed in Chapter 3. We can think of
the channel as a pipe. The bandwidth-delay product then is the volume of the pipe in bits. The pipe is always
there. If we do not use it, we are inefficient. The bandwidth-delay product is a measure of the number of bits we
can send out of our system while waiting for news from the receiver.

Example

Below Figure shows an example of Stop-and-Wait ARQ. Frame a is sent and acknowledged. Frame 1 is
lost and resent after the time-out. The resent frame 1 is acknowledged and the timer stops. Frame a is sent and
acknowledged, but the acknowledgment is lost. The sender has no idea if the frame or the acknowledgment is
lost, so after the time-out, it resends frame 0, which is acknowledged.

Pipelining

In networking and in other areas, a task is often begun before the previous task has ended. This is
known as pipelining. There is no pipelining in Stop-and-Wait ARQ because we need to wait for a frame to
reach the destination and be acknowledged before the next frame can be sent. However, pipelining does apply
to our next two protocols because several frames can be sent before we receive news about the previous frames.
Pipelining improves the efficiency of the transmission if the number of bits in transition is large with respect to
the bandwidth-delay product.

Go-Back-N Automatic Repeat Request:

To improve the efficiency of transmission (filling the pipe), multiple frames must be in transition while
waiting for acknowledgment. In other words, we need to let more than one frame be outstanding to keep the
channel busy while the sender is waiting for acknowledgment.

Go-Back-N Automatic Repeat Request protocol we can send several frames before receiving
acknowledgments; we keep a copy of these frames until the acknowledgments arrive.

Sequence Numbers

Frames from a sending station are numbered sequentially. However, because we need to include the
sequence number of each frame in the header, we need to set a limit. If the header of the frame allows m bits for
the sequence number, the sequence numbers range from 0 to 2m - 1. For example, if m is 4, the only sequence
numbers are 0 through 15 inclusive. However, we can repeat the sequence. So the sequence numbers are

0, 1,2,3,4,5,6, 7,8,9, 10, 11, 12, 13, 14, 15,0, 1,2,3,4,5,6,7,8,9,10, 11, ...
In other words, the sequence numbers are modulo-2m

.
Sliding Window

In this protocol the sliding window is an abstract concept that defines the range of sequence numbers
that is the concern of the sender and receiver. In other words, the sender and receiver need to deal with only
part of the possible sequence numbers. The range which is the concern of the sender is called the send sliding
window; the range that is the concern of the receiver is called the receive sliding window.

The send window is an imaginary box covering the sequence numbers of the data frames which can be
in transmit. In each window position, some of these sequence numbers define the frames that have been sent;

others define those that can be sent. The maximum size of the window is 2m - 1 we let the size be fixed and set
to the maximum value, below figure a shows a sliding window of size 15 (m =4).

The window at any time divides the possible sequence numbers into four regions. The first region, from
the far left to the left wall of the window, defines the sequence numbers belonging to frames that are already
acknowledged. The sender does not worry about these frames and keeps no copies of them. The second region,
colored in Figure a, defines the range of sequence numbers belonging to the frames that are sent and have an
unknown status. The sender needs to wait to find out if these frames have been received or were lost. We call
these outstanding frames. The third range, white in the figure, defines the range of sequence numbers for frames
that can be sent; however, the corresponding data packets have not yet been received from the network layer.
Finally, the fourth region defines sequence numbers that cannot be used until the window slides, as we see next.

Below Figure b shows how a send window can slide one or more slots to the right when an
acknowledgment arrives from the other end. As we will see shortly, the acknowledgments in this protocol are
cumulative, meaning that more than one frame can be acknowledged by an ACK frame. In Figure b, frames 0,
I, and 2 are acknowledged, so the window has slid to the right three slots. Note that the value of Sf is 3 because
frame 3 is now the first outstanding frame.

The window itself is an abstraction; three variables define its size and location at any time. We call
these variables Sf(send window, the first outstanding frame), Sn (send window, the next frame to be sent), and
Ssize (send window, size). The variable Sf defines the sequence number of the first (oldest) outstanding frame.
The variable Sn holds the sequence number that will be assigned to the next frame to be sent. Finally, the
variable Ssize defines the size of the window, which is fixed in our protocol.

The receive window makes sure that the correct data frames are received and that the correct

acknowledgments are sent. The size of the receive window is always 1. The receiver is always looking for the
arrival of a specific frame. Any frame arriving out of order is discarded and needs to be resent. Below figure
shows the receive window.

We need only one variable Rn (receive window, next frame expected) to define this abstraction. The
sequence numbers to the left of the window belong to the frames already received and acknowledged; the
sequence numbers to the right of this window define the frames that cannot be received. Any received frame
with a sequence number in these two regions is discarded. Only a frame with a sequence number matching the
value of Rn is accepted and acknowledged.

Timers
Although there can be a timer for each frame that is sent, in our protocol we use only one. The reason is that the
timer for the first outstanding frame always expires first; we send all outstanding frames when this timer
expires.

Acknowledgment
The receiver sends a positive acknowledgment if a frame has arrived safe and sound and in order. If a frame is
damaged or is received out of order, the receiver is silent and will discard all subsequent frames until it receives
the one it is expecting. The silence of the receiver causes the timer of the unacknowledged frame at the sender
site to expire. This, in turn, causes the sender to go back and resend all frames, beginning with the one with the
expired timer. The receiver does not have to acknowledge each frame received. It can send one cumulative
acknowledgment for several frames.

Resending a Frame
When the timer expires, the sender resends all outstanding frames. For example, suppose the sender has already
sent frame 6, but the timer for frame 3 expires. This means that frame 3 has not been acknowledged; the sender
goes back and sends frames 3, 4,5, and 6 again. That is why the protocol is called Go-Back-N ARQ.

Design
Below Figure shows the design for this protocol. As we can see, multiple frames can be in transit in the forward
direction, and multiple acknowledgments in the reverse direction. The idea is similar to Stop-and-Wait ARQ;
the difference is that the send window allows us to have as many frames in transition as there are slots in the
send window.

Algorithms
Go-Back-N sender algorithm

Analysis this algorithm first initializes three variables. Unlike Stop-and-Wait ARQ, this protocol allows several
requests from the network layer without the need for other events to occur; we just need to be sure that the
window is not full (line 12). In our approach, if the window is full, the request is just ignored and the network
layer needs to try again. Some implementations use other methods such as enabling or disabling the network
layer. The handling of the arrival event is more complex than in the previous protocol. If we receive a corrupted
ACK, we ignore it.

Analysis This algorithm is simple. We ignore a corrupt or out-of-order frame. If a frame arrives with an
expected sequence number, we deliver the data, update the value of Rn, and send an ACK with the ackNa
showing the next frame expected.

Example

Below Figure shows an example of Go-Back-N. This is an example of a case where the forward channel
is reliable, but the reverse is not. No data frames are lost, but some ACKs are delayed and one is lost. The
example also shows how cumulative acknowledgments can help if acknowledgments are delayed or lost.

After initialization, there are seven sender events. Request events are triggered by data from the network
layer; arrival events are triggered by acknowledgments from the physical layer. There is no time-out event here
because all outstanding frames are acknowledged before the timer expires. Note that although ACK 2 is lost,
ACK 3 serves as both ACK 2 and ACK3.

Selective Repeat Automatic Repeat Request:
 Go-Back-N ARQ simplifies the process at the receiver site. The receiver keeps track of only one
variable, and there is no need to buffer out-of-order frames; they are simply discarded. However, this protocol
is very inefficient for a noisy link. In a noisy link a frame has a higher probability of damage, which means the
resending of multiple frames. This resending uses up the bandwidth and slows down the transmission. For noisy
links, there is another mechanism that does not resend N frames when just one frame is damaged; only the
damaged frame is resent. This mechanism is called Selective RepeatARQ.

Windows

The Selective Repeat Protocol also uses two windows: a send window and a receive window. However,
there are differences between the windows in this protocol and the ones in Go-Back-N. First, the size of the
send window is much smaller; it is 2m- I . The reason for this will be discussed later. Second, the receive window
is the same size as the send window. The send window maximum size can be 2m- I . For example, if m = 4, the
sequence numbers go from 0 to 15, but the size of the window is just 8

The receive window in Selective Repeat is totally different from the one in GoBack-N. First, the size of

the receive window is the same as the size of the send window (2m- I). The Selective Repeat Protocol allows as
many frames as the size of the receive window to arrive out of order and be kept until there is a set of in-order
frames to be delivered to the network layer. Because the sizes of the send window and receive window are the
same.

Design

Algorithms
Sender-side Selective Repeat algorithm

Analysis The handling of the request event is similar to that of the previous protocol except that one timer is
started for each frame sent. The arrival event is more complicated here. An ACK or a NAK frame may arrive. If
a valid NAK frame arrives, we just resend the corresponding frame. If a valid ACK arrives, we use a loop to
purge the buffers, stop the corresponding timer. and move the left wall of the window. The time-out event is
simpler here; only the frame which times out is resent.

Receiver-site Selective Repeat algorithm

Analysis Here we need more initialization. In order not to overwhelm the other side with NAKs, we use a
variable called NakSent. To know when we need to send an ACK, we use a variable called AckNeeded. Both of
these are initialized to false. We also use a set of variables to mark the slots in the receive window once the
corresponding frame has arrived and is stored. If we receive a corrupted frame and a NAK has not yet been
sent, we send a NAK to tell the other site that we have not received the frame we expected. If the frame is not
corrupted and the sequence number is in the window, we store the frame and mark the slot. If contiguous
frames, starting from Rn have been marked, we deliver their data to the network layer and slide the window.
Below Figure shows this situation.

Example
This example is similar to go back N Example in which frame 1 is lost. We show how Selective Repeat behaves
in this case. Below Figure shows the situation.

Piggybacking:
The three protocols we discussed in this section are all unidirectional: data frames flow in only one

direction although control information such as ACK and NAK frames can travel in the other direction. In real
life, data frames are normally flowing in both directions: from node A to node B and from node B to node A.
This means that the control information also needs to flow in both directions. A technique called piggybacking
is used to improve the efficiency of the bidirectional protocols. When a frame is carrying data from A to B, it
can also carry control information about arrived (or lost) frames from B; when a frame is carrying data from B
to A, it can also carry control information about the arrived (or lost) frames from A.

We show the design for a Go-Back-N ARQ using piggybacking in below Figure. Note that each node
now has two windows: one send window and one receive window. Both also need to use a timer. Both are
involved in three types of events: request, arrival, and time-out. However, the arrival event here is complicated;
when a frame arrives, the site needs to handle control information as well as the frame itself. Both of these
concerns must be taken care of in one event, the arrival event. The request event uses only the send window at
each site; the arrival event needs to use both windows.

HDLC:

High-level Data Link Control (HDLC) is a bit-oriented protocol for communication over point-to-point
and multipoint links. It implements the ARQ mechanisms

Configurations and Transfer Modes

HDLC provides two common transfer modes that can be used in different configurations: normal
response mode (NRM) and asynchronous balanced mode (ABM).

Normal Response Mode

In normal response mode (NRM), the station configuration is unbalanced. We have one primary station
and multiple secondary stations. A primary station can send commands; a secondary station can only respond.
The NRM is used for both point-to-point and multiple-point links, as shown in below Figure.

Asynchronous Balanced Mode

In asynchronous balanced mode (ABM), the configuration is balanced. The link is point-to-point, and
each station can function as a primary and a secondary (acting as peers), as shown in below Figure. This is the
common mode today.

Frames

To provide the flexibility necessary to support all the options possible in the modes and configurations
just described, HDLC defines three types of frames: information frames (I-frames), supervisory frames (S-
frames), and unnumbered frames (V-frames). Each type of frame serves as an envelope for the transmission of
a different type of message. I-frames are used to transport user data and control information relating to user data
(piggybacking). S-frames are used only to transport control information. V-frames are reserved for system
management. Information carried by V-frames is intended for managing the link itself.

Fields
Let us now discuss the fields and their use in different frame types.
Flag field. The flag field of an HDLC frame is an 8-bit sequence with the bit pattern 01111110 that identifies
both the beginning and the end of a frame and serves as a synchronization pattern for the receiver.
Address field. The second field of an HDLC frame contains the address of the secondary station. If a primary
station created the frame, it contains a to address. If a secondary creates the frame, it contains afrom address.
An address field can be 1 byte or several bytes long, depending on the needs of the network. One byte can
identify up to 128 stations (l bit is used for another purpose). Larger networks require multiple-byte address

fields. If the address field is only 1 byte, the last bit is always a 1. If the address is more than 1 byte, all bytes
but the last one will end with 0; only the last will end with 1. Ending each intermediate byte with 0 indicates to
the receiver that there are more address bytes to come.
Control field. The control field is a 1- or 2-byte segment of the frame used for flow and error control. The
interpretation of bits in this field depends on the frame type. We discuss this field later and describe its format
for each frame type.
Information field. The information field contains the user's data from the network layer or management
information. Its length can vary from one network to another.
FCS field. The frame check sequence (FCS) is the HDLC error detection field. It can contain either a 2- or 4-
byte ITU-T CRC.

Control Field
The control field determines the type of frame and defines its functionality. So let us discuss the format of this
field in greater detail. The format is specific for the type of frame, as shown in below Figure.

Control Field for I-Frames

I-frames are designed to carry user data from the network layer. In addition, they can include flow and
error control information (piggybacking). The subfields in the control field are used to define these functions.
The first bit defines the type. If the first bit of the control field is 0, this means the frame is an I-frame. The next
3 bits, called N(S), define the sequence number of the frame. Note that with 3 bits, we can define a sequence
number between 0 and 7; but in the extension format, in which the control field is 2 bytes, this field is larger.
The last 3 bits, called N(R), correspond to the acknowledgment number when piggybacking is used. The single
bit between N(S) and N(R) is called the PIF bit. The PIP field is a single bit with a dual purpose. It has meaning
only when it is set (bit = 1) and can mean poll or final. It means poll when the frame is sent by a primary station
to a secondary (when the address field contains the address of the receiver). It means final when the frame is
sent by a secondary to a primary (when the address field contains the address of the sender).

Control Field for S-Frames

Supervisory frames are used for flow and error control whenever piggybacking is either impossible or
inappropriate (e.g., when the station either has no data of its own to send or needs to send a command or
response other than an acknowledgment). S-frames do not have information fields. If the first 2 bits of the
control field is 10, this means the frame is an S-frame. The last 3 bits, called N(R), corresponds to the
acknowledgment number (ACK) or negative acknowledgment number (NAK) depending on the type of S-
frame. The 2 bits called code is used to define the type of S-frame itself. With 2 bits, we can have four types of
S-frames, as described below:
Receive ready (RR). If the value of the code subfield is 00, it is an RR S-frame. This kind of frame
acknowledges the receipt of a safe and sound frame or group of frames. In this case, the value N(R) field
defines the acknowledgment number.

Receive not ready (RNR). If the value of the code subfield is 10, it is an RNR S-frame. This kind of frame is
an RR frame with additional functions. It acknowledges the receipt of a frame or group of frames, and it
announces that the receiver is busy and cannot receive more frames. It acts as a kind of congestion control
mechanism by asking the sender to slow down. The value of NCR) is the acknowledgment number.
Reject (REJ). If the value of the code subfield is 01, it is a REJ S-frame. This is a NAK frame, but not like the
one used for Selective Repeat ARQ. It is a NAK that can be used in Go-Back-N ARQ to improve the efficiency
of the process by informing the sender, before the sender time expires, that the last frame is lost or damaged.
The value of NCR) is the negative acknowledgment number.
Selective reject (SREJ). If the value of the code subfield is 11, it is an SREJ S-frame. This is a NAK frame
used in Selective Repeat ARQ. Note that the HDLC Protocol uses the term selective reject instead of selective
repeat. The value of N(R) is the negative acknowledgment number.

Control Field for V-Frames

Unnumbered frames are used to exchange session management and control information between
connected devices. Unlike S-frames, U-frames contain an information field, but one used for system
management information, not user data. As with S-frames, however, much of the information carried by U-
frames is contained in codes included in the control field. U-frame codes are divided into two sections: a 2-bit
prefix before the P/F bit and a 3-bit suffix after the P/F bit. Together, these two segments (5 bits) can be used to
create up to 32 different types of U-frames. Some of the more common types are shown in below Table.

Uframe control command and response

Example: Connection/Disconnection
Below Figure shows how V-frames can be used for connection establishment and connection release. Node A
asks for a connection with a set asynchronous balanced mode (SABM) frame; node B gives a positive response
with an unnumbered acknowledgment (VA) frame. After these two exchanges, data can be transferred between
the two nodes (not shown in the figure). After data transfer, node A sends a DISC (disconnect) frame to release
the connection; it is confirmed by node B responding with a VA (unnumbered acknowledgment).

POINT-TO-POINT PROTOCOL:

Although HDLC is a general protocol that can be used for both point-to-point and multipoint configurations,
one of the most common protocols for point-to-point access is the Point-to-Point Protocol (PPP). Today,
millions of Internet users who need to connect their home computers to the server of an Internet service
provider use PPP. The majority of these users have a traditional modem; they are connected to the Internet
through a telephone line, which provides the services of the physical layer. But to control and manage the
transfer of data, there is a need for a point-to-point protocol at the data link layer. PPP is by far the most
common.
PPP provides several services:
1. PPP defines the format of the frame to be exchanged between devices.
2. PPP defines how two devices can negotiate the establishment of the link and the exchange of data.
3. PPP defines how network layer data are encapsulated in the data link frame.
4. PPP defines how two devices can authenticate each other.
5. PPP provides multiple network layer services supporting a variety of network layer protocols.
6. PPP provides connections over multiple links.
7. PPP provides network address configuration. This is particularly useful when a home user needs a temporary
network address to connect to the Internet.

On the other hand, to keep PPP simple, several services are missing:
I. PPP does not provide flow control. A sender can send several frames one after another with no concern about
overwhelming the receiver.
2. PPP has a very simple mechanism for error control. A CRC field is used to detect errors. If the frame is
corrupted, it is silently discarded; the upper-layer protocol needs to take care of the problem. Lack of error
control and sequence numbering may cause a packet to be received out of order.
3. PPP does not provide a sophisticated addressing mechanism to handle frames in a multipoint configuration.

Framing:

PPP is a byte-oriented protocol. Framing is done according to the discussion of byte oriented protocols.

Frame Format
Below Figure shows the format of a PPP frame. The description of each field follows:

Flag. A PPP frame starts and ends with a I-byte flag with the bit pattern 01111110. Although this pattern is the
same as that used in HDLC, there is a big difference. PPP is a byte-oriented protocol; HDLC is a bit-oriented
protocol. The flag is treated as a byte, as we will explain later.
Address. The address field in this protocol is a constant value and set to 11111111(broadcast address). During
negotiation (discussed later), the two parties may agree to omit this byte.
Control. This field is set to the constant value 11000000 (imitating unnumbered frames in HDLC). As we will
discuss later, PPP does not provide any flow control. Error control is also limited to error detection. This means
that this field is not needed at all, and again, the two parties can agree, during negotiation, to omit this byte.
Protocol. The protocol field defines what is being carried in the data field: either user data or other information.
We discuss this field in detail shortly. This field is by default 2 bytes long, but the two parties can agree to use
only 1 byte.
Payload field. This field carries either the user data or other information that we will discuss shortly. The data
field is a sequence of bytes with the default of a maximum of 1500 bytes; but this can be changed during
negotiation. The data field is byte stuffed if the flag byte pattern appears in this field. Because there is no field
defining the size of the data field, padding is needed if the size is less than the maximum default value or the
maximum negotiated value.
FCS. The frame check sequence (FCS) is simply a 2-byte or 4-byte standard CRC.

Transition Phases

A PPP connection goes through phases which can be shown in a transition phase diagram.

Dead. In the dead phase the link is not being used. There is no active carrier (at the physical layer) and the line
is quiet.
Establish. When one of the nodes starts the communication, the connection goes into this phase. In this phase,
options are negotiated between the two parties. If the negotiation is successful, the system goes to the

authentication phase (if authentication is required) or directly to the networking phase. The link control protocol
packets, discussed shortly, are used for this purpose. Several packets may be exchanged here.
Authenticate. The authentication phase is optional; the two nodes may decide, during the establishment phase,
not to skip this phase. However, if they decide to proceed with authentication, they send several authentication
packets, discussed later. If the result is successful, the connection goes to the networking phase; otherwise, it
goes to the termination phase.
Network. In the network phase, negotiation for the network layer protocols takes place. PPP specifies that two
nodes establish a network layer agreement before data at the network layer can be exchanged. The reason is that
PPP supports multiple protocols at the network layer. If a node is running multiple protocols simultaneously at
the network layer, the receiving node needs to know which protocol will receive the data.
Open. In the open phase, data transfer takes place. When a connection reaches this phase, the exchange of data
packets can be started. The connection remains in this phase until one of the endpoints wants to terminate the
connection.
Terminate. In the termination phase the connection is terminated. Several packets are exchanged between the
two ends for house cleaning and closing the link.

Multiplexing

Although PPP is a data link layer protocol, PPP uses another set of other protocols to establish the link,
authenticate the parties involved, and carry the network layer data. Three sets of protocols are defined to make
PPP powerful: the Link Control Protocol (LCP), two Authentication Protocols (APs), and several Network
Control Protocols (NCPs). At any moment, a PPP packet can carry data from one of these protocols in its data
field, as shown in below Figure. Note that there is one LCP, two APs, and several NCPs. Data may also come
from several different network layers.

Link Control Protocol

The Link Control Protocol (LCP) is responsible for establishing, maintaining, configuring, and
terminating links. It also provides negotiation mechanisms to set options between the two endpoints. Both
endpoints of the link must reach an agreement about the options before the link can be established.

All LCP packets are carried in the payload field of the PPP frame with the protocol field set to C021 in
hexadecimal.

The code field defines the type of LCP packet. There are 11 types of packets as shown in below Table.

There are three categories of packets. The first category, comprising the first four packet types, is used
for link configuration during the establish phase. The second category, comprising packet types 5 and 6, is used
for link termination during the termination phase. The last five packets are used for link monitoring and
debugging.

The ID field holds a value that matches a request with a reply. One endpoint inserts a value in this field,
which will be copied into the reply packet. The length field defines the length of the entire LCP packet. The
information field contains information, such as options, needed for some LCP packets.

There are many options that can be negotiated between the two endpoints. Options are inserted in the
information field of the configuration packets. In this case, the information field is divided into three fields:
option type, option length, and option data. We list some of the most common options in below Table.

Authentication Protocols
Authentication plays a very important role in PPP because PPP is designed for use over dial-up links where
verification of user identity is necessary. Authentication means validating the identity of a user who needs to
access a set of resources. PPP has created two protocols for authentication: Password Authentication Protocol
and Challenge Handshake Authentication Protocol.
PAP The Password Authentication Protocol (PAP) is a simple authentication procedure with a two-step
process:
1. The user who wants to access a system sends an authentication identification (usually the user name) and a
password.
2. The system checks the validity of the identification and password and either accepts or denies connection.

Below Figure shows the three types of packets used by PAP and how they are actually exchanged. When a PPP
frame is carrying any PAP packets, the value of the protocol field is OxC023. The three PAP packets are
authenticate-request, authenticate-ack, and authenticate-nak. The first packet is used by the user to send the user
name and password. The second is used by the system to allow access. The third is used by the system to deny
access.

CHAP The Challenge Handshake Authentication Protocol (CHAP) is a three-way hand-shaking
authentication protocol that provides greater security than PAP. In this method, the password is kept secret; it is
never sent online.
1. The system sends the user a challenge packet containing a challenge value, usually a few bytes.
2. The user applies a predefined function that takes the challenge value and the user's own password and creates
a result. The user sends the result in the response packet to the system.
3. The system does the same. It applies the same function to the password of the user (known to the system) and
the challenge value to create a result. If the result created is the same as the result sent in the response packet,
access is granted; otherwise, it is denied. CHAP is more secure than PAP, especially if the system continuously
changes the challenge value. Even if the intruder learns the challenge value and the result, the password is still
secret. Below Figure shows the packets and how they are used.

CHAP packets are encapsulated in the PPP frame with the protocol value C223 in hexadecimal. There
are four CHAP packets: challenge, response, success, and failure. The first packet is used by the system to send
the challenge value. The second is used by the user to return the result of the calculation. The third is used by
the system to allow access to the system. The fourth is used by the system to deny access to the system.

Network Control Protocols

PPP is a multiple-network layer protocol. It can carry a network layer data packet from protocols
defined by the Internet, OSI, Xerox, DECnet, AppleTalk, Novel, and so on. To do this, PPP has defined a
specific Network Control Protocol for each network protocol. For example, IPCP (Internet Protocol Control
Protocol) configures the link for carrying IP data packets. Xerox CP does the same for the Xerox protocol data
packets, and so on.

IPCP One NCP protocol is the Internet Protocol Control Protocol (IPCP). This protocol configures the
link used to carry IP packets in the Internet. IPCP is especially of interest to us. The format of an IPCP packet is
shown in below Figure. Note that the value of the protocol field in hexadecimal is 8021.

IPCP defines seven packets, distinguished by their code values, as shown in below Table

Multilink PPP

PPP was originally designed for a single-channel point-to-point physical link. The availability of
multiple channels in a single point-to-point link motivated the development of Multilink PPP. In this case, a
logical PPP frame is divided into several actual PPP frames. A segment of the logical frame is carried in the
payload of an actual PPP frame, as shown in below Figure. To show that the actual PPP frame is carrying a
fragment of a logical PPP frame, the protocol field is set to Ox003d. This new development adds complexity.
For example, a sequence number needs to be added to the actual PPP frame to show a fragment's position in the
logical frame.

Example

Let us go through the phases followed by a network layer packet as it is transmitted through a PPP
connection. Below Figure shows the steps. For simplicity, we assume unidirectional movement of data from the
user site to the system site (such as sending an e-mail through an ISP).

The first two frames show link establishment. We have chosen two options (not shown in the figure):
using PAP for authentication and suppressing the address control fields. Frames 3 and 4 are for authentication.
Frames 5 and 6 establish the network layer connection using IPCP.

