UNIT- ©

PYUHam So"w‘nj'_ Sfdfc_ S(Ja(e, §€avdﬂ (,?;40(
Contvol Sfraf(:jvics

In‘hocfucfr'on.' -

—> Pvoblem Qo‘vinj 15 & Method &3 c/m'u{nj Colubon
Steps ggj;mmj from inibak e/u,m'f;{v‘un of the
Pyoblem o the daived Solwbhon.

S The dask 15 solved Aj a Sevies of achorys that
PMINIMI2 Oy the diteveace bW the yl‘b’m Situabon
Omd the c{uﬁe J ?OJJ ’

— TIn AL the /OYOHrmﬁ ave fraczucnﬁ modelled 0%
a stale pyspace proé)em Wheve the stale Space
o a gt ot all possible stadw Awm Stact Do
90& stol .

— The gd of stelo ‘IQW*’I a g?’é’p/n in which Wo
stedes — ave linked it theve 15 an Oferafv'on
wWhich (an ée, ixcfullfc/ + %Ydmsflwm one stafe
b other.

—5 While §0fuinj a /Jm(;/cm/ He stale space ;5.
gmemfec! in the procuys of Qeavdm'nj for 16
ga{uﬁior\.

5 Theve 15 a dittevence blu the stafe space Seavih
wed v AT and the (onvebonal - (omfoufw Cuence,
Seavch mdhods .

= The two tps qr Problom-Solving mcdRols mdhody

ol ave gbﬂc\’alﬁj ffnﬂawe d ."ﬂ(,(udf.- g tneval PUvpose
ﬁﬂd- QF((JIZNL f)uv ose mﬂoc{/)-

“www.Jntufastupdates.com

1

S A Goeak —pupose mdhod 15 applicable b o wide

de'dj of {)Yoé/m 8 wheeas a SP(O-M ~Puvpo se
method (o tailay- made f The /)avlL,'(wlay
pmb!-«:m and often e,(,o)u;{g. vcv} s(:cu'%'c Ko ohov 4
ot ‘Hwe. /JYochm.

= The most 9mcwv(Opproash Lor xo/w’nj a problem
15 T 9w\ewfc. The So/wi{{an ard tut it-

- for gmevm/{‘"ﬂj N fgtode in TAL Seqvih Cpace,
an doﬁon/O[)twALW/mLc f5 af;/)h'zc! and tated
wh dher the ctefe Is T 904)(¢ tafe /m?t .

— Tntwe the ctede is not The ?WJ Ktate , the
Yo(eduve e Yepeoted -

——9’;1{ ovdev U efd/?p/l'(mlfan of ThAt Yuls 'LZ‘J the
Cuvve, L ctede 15 (alted Conten] 5‘{\(&3{(’93,

O\Uf\cvﬁ\i PYOMOM éol\/fnj_i-

The A{oﬂowinj 5%5&.{7'0'\6 J“‘V;éﬂ /QYDC/“J"W’
935’0%9 and- stale space Ceavih mﬂ\cacj Z\‘:\L‘
focilitate the moJoCMl«j of problems a0
pro(wﬁus«

FVOAU’U(_;O“ A%fwt(f)f') s one of the
'}Cvmain'sﬂas Thal Ad’fﬁ /43*' Prigyéms (7 o gfﬂ%f\’
[rocus move &,nv@,’u\ﬂy N /@{d‘c-gpau /Jvué'(/cms.j}.,;d
Sjbf'bm é)mfv';%‘a or Atavt /f{m}/{d gteles A j;é A
clates 0f T prblem Mrﬁ with c?na/mwe_ d&‘ué
Consis{""‘j U Auitable Ema,vﬂdy r'/ulo Ao the /dvﬁ(a/qf
tanl -

www.J n_tufastu pdates.com 2

@
— @CnquH? l(now(eo/ya \/Cf)Y%fn{'ﬂv{"‘Oﬂ éd\fh’\% Qav ¢ Mbd(

{‘*0 stvu thé. f((\‘{\?\(nﬂd {'\.{Jﬂ .\"/‘ ‘{'Aq:_ ({ﬂ.jq Aau_s,%

— Ps @ngl-sb - number . pwJud{-'m vl
whicth — eads /?”Juut"m vele, hon 4t Side Thet
ddtvming 1AL ﬂfp}r‘(mé:'/f? o4+ The rule, and Thu
hight cide Tt desev; A the ackion T bE
pevbmed 4 the wvule 18 applicd.

Lt Gide of the Ywle s Cuve stede
Wheveas T yijiJ gide dowibe, The nNew Atate

that s obtained Aom applypng The vides

(}}JCY.— Tj /JYOBI(mj =

—

f’Yubfem S{Jcme_ilif— we have two Ju?s, a ¢<- 3"”"" (g-ﬂ)

ok the othes g—jd“uq @-9) Wity ne meuwsuring
: ﬂm I f5 C"‘lc{{ us _ ﬁuf/)i; OIL L:/c”ij/

I 9,_1' O ?a(/aM N

mavkey on them -

thwu gh {’479 ouy task | (s
(n the S$<9 Jug- | |

Sb:{&j;:ni’ ¢tafe ipace for his probles (an be c/qc,;,g“{

Ny T sd g ovdwed //a;'vs of Idwgeb €<,)

Suh thet X’Yéf)lfﬂbdj s no U 94.!!00\4 v

Waker —in - ¢-9 J“j o Y 4fwv 3-9 Jug-

a) ctat stale 15 (o{o)

) (aoed 2tede f's(q//u) Hine 5\7

yolue)y VL 3

o www.d ntufastu__pdates.c_gm 3

77\(, [)0%!{9,6
theo Pmélem

Opwaffo% that (on be wned in
AY L listed ar follows:

X F‘l" ‘5-3 JUj ‘;Y{_‘Jnﬂ ‘H‘t@- %df) dmd((m/’? fA@ g,j

Juﬂ Bg Hwowinj waley down the dvain.
* F,“ 3-3 Juj 7(""\”“1 ‘h\c. +&/o de(3(:!4,09 The S-j
J‘uﬁ b:j thwwin g Wat o down the Jvd«f‘nn;;)
g (th «
X Pouv Some oV 3-3 waff»/ ‘/"’0"’7 -9 J%9
: ' alle it ‘FubL
3_,3 Juj 't& m .
* i The §- :
X Pouy Some. ov futh 3-9 Juj (A)ﬁj"\/ e 31“2
E;Ie. Nor_ [eft of yule ijl'\t of yuwle Otuv{{){‘i'on
l (x, Y1 x<5) (s,7) fill 5-9 J49
%Q (x,y | X>0) (O,‘/) Empty S-3 Juq
T3 | (k7] 7<3) (%, 2) Fll 3-9 jug
- 4 (K/\/' 7/70) (X/O) ' émfofj 3,3 JUj
T & (X, Y x+y<sayro)| (x+v,0) bopty 379 i
5 9 Jug
6 |(xY1xtYgzAxy0) | (0, x1Y) Crpty 5-3 inls
3-9 JUj
7 [T Ixtrnsnyr0) | (s, ¥-6-x)) |puv water from
until S-9Jug (s full] 3-9 Jug into - g
- T
Q (X/W’ IX+‘/>/3 N\ X?O) (X‘(B'-Y) 3> [ouy ‘L,’J,gd'c,,‘,r +ron
: /, . $-9 Jug tils
U(J\'! 3'3’ A 15 . .
J5 3-9 jugqg.
fot . 49

’F‘g FYDC[LL/U(“OH M

WWW. Jntufastupdates com 4

©)

Tt Qkou"c} to bhe poted that theve ray be
Mo e than 00ne So lhons fAv a IV G /’Né/mn .
e have ghown Towo /Jo i ble sc/uf"oM /)&jZ_s
oA bc/ow-
~ Rule applied 5-9 J49 3-9 Jug _ﬁéfcﬁ— No
ctavt ctate 0 0
) r S © l
g . B Lo
4 2 0 3
& e, 2 2
I S 3]
é 4 3
(rock Atede G _
90 Lolubo paJZ J
e ayplicd i W 3-9 Jug step - wo
__QJCAY{' AjJL O O
> © 3 \ |
? 3 ®) %
3 3 3 N
1 c | n
e O l <
S |) 6
3 | 3 ~
5 G \ o \ g
__C"O l Afdjc' __ Q#WW.J_ntufastL\pdates.E'r‘_n 4_ 5

! @

Missionavies and cannibals Problem

Problem statement :-Théece missionavies and +hyee cannibals want 4o

c¥0ss & ¥ivev. Theve is a boat on theis side of the ¥ivey that can be wced
by either one ov two pevsonS. How should they Use this boat to cvose the
Yiver in such a way that cannibals nevey outhumbes MISSIONAYiIeS on elthey
Side 0f the ¥ivex 1 Tt the cannibals puey outnumbes the misSsionaxie ¢

(on either bank) then the micsionaxies will be eaten. How can f:heg all cyoss
over without anyone being eaten)

solution:- state space fox this problem con be desesibed as the set op
oxdeved paive of lett § ¥ight banke of +the YiVer o8 ¢L,R) wheye each bank
IS vepresented as a [ist [PM,mC, B8] Heve h.is the no.ok misSsionaries
M,m is the pumbes of cannibals ¢, and B Yepresents the boat.

I'Start state: ([3m,3¢,18], (om, oc, 08]), 18 means that boat- is Present

and 0B means it is abgsent.

zafﬂng State ([n, M, m,C, _J) (ny™, m,c,_])) with Constraints
any State as h (F0)>m,; Ny (#£0>2my
boat can be eithes side

3 Goal state : ((oM,0c,08, (3M, 3¢, 18])

[conditions at |

> m+n2 =3, m,-}_m}.:B).

—2 Tt should be poted that by o means, this Yepresentetion < unique
. Th

fact, ohe may have number of TepYesentations for the came Proble
n.
Table 24 consists of producHon yule based on 4,

€ 3:")05(’_]’] e ;
states on the left or 'rf‘gh{- sides pp +jver should La pPresenta bpy .

Va{l‘c{ Sfc[t‘eg S ' P
the constraints gfuen in (2) above- ahs@mﬂ

One of the possible Solution path trace f1g given in the a1
e 2.5

www.Jntufastupdates.com 6

~—
Table 2:Y ;- Producbon wules for missionaries and canntbals Problem

RN

lett side of vule &

__>

Right side of wule

Rules fer Lsat gomg frem bt bank fo Ut bonk o the sturn

L) | (CyMym ¢, 48], [nyM,m;¢,087) = |((¢n-2M ™ C,08], [fnzmﬂ:%c,ﬂz])
Ly | @M, m,C, 48], (nyM,m;c, 08)) = [(Ltn~2)H,(m—1)6,08], [ny+1)M, (st C, 48])
w3 | (Cni M, mC 18], (naM,myc, 08]) |— C[ﬂ;ﬂ,(m;-z)C,OBJ,fnzi“l)fm;+z)C;133)
LY | (o, m, C,48], [nsM, myc,08]) | (C tni-1) Mym G 0B], [(ngt)M>M2C,18])
bs | (CoyMymiC, 48], (ny M,myc,08]) |= | ([m M5, -D G o8], [naM(mstC>1E])
Puler fer boat coming from sught bonk to Jeft bond 4 the e
er | (Cm ™, mcC,08], anéf,%c,igj) - |((enr)M, m,Cy 48], [(n3-2)M, my ¢, 08])
Re | ((nMym,C,08], CnaM,myc,18]) |= (Ctn,mH;f"’f'“)c)iB],[Cn,_-DH,Cm,_-!)C)os])
Rs | ((nyH, m, €,087, Oy, my C,4R1) [|(Cnit, (o 42)C » 48], [M, tmy-2)c,08])
Ry (Cn,M,m.c,osj,[n;r‘l,n‘hc,isj) = | CCenit1 M, My C,:tB];[(nl—:)H}mzc,Da])
Rs | oM, m 608 [natt, myc, 48]) = | ([0, (Mt 48], [ns M5 (m3~12¢,08])

Table 25 i solution Path
—

Rule number ([3M,3C,18],[0M,0¢,08]) < start state
Lo ((2My26,08],(2M,1C, 18])
Ru: ((3M,2¢,48],[er, 1¢c,08])
L3: ((3H,0¢,08], (oM, 3¢, 48])
RS: ((3M,4¢, 18], (oM, 2¢,08])
L1} ([4M, 1¢,08]; (2M, 2¢, 48])
Ry (C2M, 2¢,481 5 (1M, 1¢,08])
L (Lom,2¢,08],[3M, 1¢,18])
RS (Com,3¢, ABJ, [311,0¢, 0B])
13 * (LoM, 26,08]; (30, 90,087)
Rs 1 ((oM,2¢,48),(3M,416087)
L3 (Com,0¢,08, (3M,3¢,18]) —5 Goal state

www.Jntufastupdates.com

3 ®
£:32 state ~-Space Search

similay to produckon systm , State space (s anothes method of
psoblem wepresentation that facilitates easy seasch. Using this method , one
can also fnd a path #om start state o goal state while solving a problem.
A state space basically consists of fous components:

4. A set of S @ntaining staxt states of the problem

2: A set of G (ontaining goal states of the problem

3-set of nodes (statec) in the gvaph[tree. gcach node wepresents the state
in problem -solving Process.

4. Set of av(s (onnecting nodes. gach are Cov¥esponds

to opevator that tc
a step In o pyoblem-Solving pyocess.

= A solublon path is a path thvough the g¥aph from a node in S 4 4

node in G.The main objective of seasch algovtthm is to deteymine a solution

Path in the graph- Theve may be move than one olution paths, as there
may be move than one ways of solw”ng the psoblem .One would exeyelce
a choice bekween vaxious solutong pathe based on Some Critexia of
goodness o¥ on some heuvistic functon. Cbmmonfy Used approach is to
apply approp¥iate epetaler to transfey one state of pYoblem +p
anothey- Tt is simila¥ to production system geavch method wheve e
use pvoduction vules instead of Opevators. let us Considex again the
problem of (misstonaxies and cahnibals’

The possible opevators that are applied in this p¥obl
¥Oblem are

[2MoC, AM4c,0Msc, IMoc, OM4c}-Here M is missionayy and ¢ ;
g IS cannibal.
Digit befove these chavactevs indicates numbey of MisSionayies o -
an

Cannibalg possible at any point fn Hme «Thege OPe¥atoys can be yey ;
: ed in

both the sSituabions,i-e.,if boat [son the left bank then, we wyity
Copevator —~ and (£ the boat is on the vight bank op the vivex, then
e wyite LOPerafnfé——7~

www.Jntufastupdates.com 8

Y

for the sake of simplicity,let us wepresent state(L:R), wheve
L=nMHmMm, B and
R = r),_'HmLCUB

Heve B weprecents boat with 4 ov 0 1ndu’cab‘ng the presence oy absence
of the boat-

4. stavt state : (3M 3C1B:1oMDCOB) oy stmply (331 ; 000)
2. Goal state : (oMpcoB :3M 3cIB)ox simply (000:331)

Favthexmore, e will 'ltey out tnvalid st-afes)}’lfegat opevators

not applicable o some states,and some states that are ot vequived
at all. fov example ,

¢ An %nuvalid state Ifke (j_M);cIB:leCOB) iS$ not a possible state ac 't
leads 4o one missionavy and two canntbals on the left bank.
e Th case 0f a valid state like (2M2CIBIMICOB), the opevator OM|c
of oMy ¢ would be fllegal. Hence, the opexators when applied should
satisfy Some conditions +that should not lead to thvalid state
Applying the same opevatoy poth ways would be a waste of time, stnce

we have vetuvned t0 a previous states.This is called ctoopfng Situation

locping may occu¥ after few sipseven, Such opevations are 4o Le.
avoided. |

—7 To illustvate the progress of search,we are vequived to develop a
tree of nodes, with each node in the tree vepresenting astate, the yopt
node of the trvee may be uted to vepresent the ctart state.The areac
0f the tree indicate the application of one of the o petators. The nodes
for which no opevators are applied , are called leat nodes, gohich have
ho arcs leading from them. o <implity , we have not genevated epntiye
Seaxch space and avorded llegal and looping states. De pth - fryst-

Of bYeadth- fivst Strategy oy Some ilegal heuvistic seayches Is
used to genevate the search space.

www.Jntufastupdates.com 9

g ©

-The space for searching can be genevated USiNG opesators which

ave, valid, are shown in the fig a-1. The Sequence of opexators applied 4,
Solve this problem 1s given in the table 8.6

(331:000)
lmc%ﬂwll WC%
(2320
IMOC &) (310:041) (320:011)
\L oMIC o J/owc -
3215 010) 4 Same
" izl)= (321:010) (331000)
M2.C :
/—/N‘[Cﬁ mei}
C@ooupal) (310 021) X
e < | om2e <
(3111020) (331:000)
smoc =7 |, '—°°PJ/
(Nos 221) : %
imMmic < \l,
(221: 10D
2m0c =5 |,
(020 311)
omiC (—J,
(031 300)
omzc = |,
(0o, 321)
om|c <— IMDCQ—-
(021+310) (111:220)
0N2—> l/ ‘LIN'HC —
(000:331) (000:331) Goal state

Fig - Search Space

www.Jntufastupdates.com 10

4

Toble 3:6 Two solubon Paths

splution path 4 solution path 2
iMic = AMiCc —
AmMoc < IMDC <«
oMzc —> OH2zCc —
OMiC <— OHAC <
2Moc —> 2IMOC —
AMde <- T Nde <
2Moc — 2Moc —
OMiC <« " OMAc <
oM2C — | oM2c —>
OMAC é—l iMoc <—
oHic — IMAic — N

let g consides another pvoblem called eight-puzzle problem and see
how we can model this using state space seavch method.

The gight -puzzle Problem
Psoblem statement :- The eight -puzile problem has a 2x3 gvid with

¢ ¥andomly numbeved (Ltog) Hles armngcd on 1t w?ﬁb one empty
cell. At any point ,the adjustro adjacent tile can Move 4o the empty
cell, tveating o new empty cetl. golving this pvoblem tnvolves a¥ranging

Liles such that we get the goal state from the Stavt State.

fg 22 shows start and qoal States

start state Goal State
3 ¥+ ¢ 5 3 ¢
5 1 5 F 0O =2
y 0O 3 y | 8

FIg 22 - grght —puztle problem

www.J ntufeis_tu pdates.com 11

e @

A ctate for this p¥oblem should kKecp track of the position of all
Lles on the game board, with 0 vepre senting the blank (empty cell)
posttion on the board. The Start and goal ctates may be veprecented

as follows with cach list vepresenting covvesponding youw;

A Stavt state: [[3,%,6],(51,2], [tr,o,sJ]

2. The goat state should be yepresented a4: (rs, 3,6](%,0,2], (y,i,e]]

3. the opevators can be thought of mouing §up, pown, Lett, rz:‘ghb},
the divechion in which blank space effectively moves.

— 10 simplify, a search tree up to level 2 is dvawn as chown 1 F93.3
to illustrate the wse of opexato¥s o genevate next State.

Tnital state

3 *+ 6

Fqure 2:3 : Partial SearchTvee for
Eight pugile Problem

www.Jntufastupdates.com 12

5
Continue Searcfu‘ng like this Hll we reach the goal State. the
exhaustive seavch can pvoceed using depth fiyst oy breadth —fivst

Strategies explained latex in this chapfer- Some ‘infcth‘gme seawvches
can alko be mode to find solubon faster

2:2:3 (Contyol St‘ra.fegu‘b&_

Control Strategy is one ot the Mmoot Impovtant: components op
problem 50{\,;”3 that descxibes the ovdey of application of the wules +p

the cuvvent State- Centrol strateqy should be such that 7t causes motion
towavyds a solution. For example , in water jug problem, i+ we apply a
stmple control strategy of stavbing each time from the 4op of vule [isg
and celect the fyst applicable one then we will nevey mouve towwarde
eolution - The Second ¥equi vement of (ontrol strategy iS that it should
explove the soluton space Tn a sysiemab'c manner. foy example , £ 4,
Select o control strategy where we Select a vule yandomly #om the

opplicable vules, then definitely 57t causes motion and eventually
will lead o a Solution.

But there s evevy Posstbility that we ayvive +o same State
ceveval Hmes. This is because control stvateqy fs not SYstemabc-
Depth fivst and bveadth- £ivst and SYystemab'e control Strategies byt
thece are blind Seavches: Tn depth-#vst strateqy, we follows a single
byanch of the tree untl it yields a golubon or come Pre- spetigied
depth has veached and then go back +v Tramediate Previous node and
explove othey branches witng depth —fivst Strategy - 4 bve‘?{tbh_f,«rgt—
geavch , a Seavch space tree is genevated level wise until oe find o
colution oy some Specitied depth s veached: thes, Strategies are
dha%b\;e,unﬁomed, and blind Searches tn natitve, T Lhe Proble
s simple, then any contyol stmategy that cauces moton and fe 7
systematie Wil tead to a colutyon. However

>0 solve come veal-woxld
Problems ; efpective Control strategies must be uged.

- www.Jntufastupdates.com

¢
As menboned eavlier that H‘i problem can be solved by seaxching
tov a. Solution. The main woxk ™ the area of seavch strategies s to
£ind the Covvect seavch stvategy for a given problem. theye are oo
Jivections fn which such a seaxch could proceed.
v pata.priven search > alled fovward cKining from the start state
e Goal- pyiven seaxch, called backeaxd Chaim‘ng, from the goal state

Pm’wafd Chfhl‘ng'.- The process of ovwaxd dmim‘ng begr‘ns with Known

eacts and wozks towarde a conclusion. for example 10 eight—pu2zle
problem, we stavt from the Start state and wosk foyward to the
conclusion s ite:, the goal state- In this case, we begin buildfng a tree
of move Sequences ofth the yoot of the tree as start state. The statec
of next level of the tree are genevated by H#inding all wules whose

left stdec match with Yoot and wse thelr ¥ight stde to cveate the
process is conBinued until a configuration that matches

new state: This
(s gcncm&d»lﬂnguag& opss usesS fo¥ward easoning

the goal. State
cules: Rules ave expvessed Tnhe foxm of iF-then wles

Backwaxd chainlng . Tt is a goal divected strateqy that begine ioith the
g;;L state and continues wovking backwax d ; genevating move sub -goals

that must alzo be satistied +o sa*b's:#y ma'in goal anﬁL we veach +p
Staxt state. Pyolog (Progvamming in logic) language uces this stategy.

2.3, Cbavac&eﬁsﬁcsw

Before stavting modelling the seavch and 4ying 0 find solution
for the psoblem ,0ne must analyze {t along geveval Key chavacteristycs

inibally. Some of these are given below-

Type oF P¥oblem: There are three types of problems T yea lite .

(a) Tgnovable (b) Rewvevable () Tyvecovevable

@) Tgnovable .- These are the problems where we can ignove g, St
steps - For example ,in proving @ theovem, if Some lemma. (¢ Proved 4

www.Jntufastupdates.com 14

10
we can ignore this solution step and prove another lemma. Such pyoblems

can be solved ucing Simple contiol strategy,
() Recovesable :-These are the problems wheve solubion steps can be

undone . for example , in water jug problem , 18 we. have £iled up the Juj,
we can emply it also. Any State can be wveached again by wundoing

the Steps . these problems are generally Puziles played by a single player.
such problems can be solved by backbracking, so contvol stvategy can
be implemented uting a push-down Stack,

(€) Twve covernble ;. The problems wheve soution steps cannot be undone,

for example ; any two-player game such as chess, pPlaytng cards ; spage

and ladder,etc. are axamples of this categovy Such pvoblems can be

solved by planning process .
Decomposability of a Hgoblem ..

Divide the problem fnto a set of independent smalley sub-prob.
ler s, solve them and combine the Solubons to get the final solutin.
the process of dividing sub~problems continues il we ger 1, set of
the smallest sub—pvoblems Sox which a small collection OF spectic vules

are used . Divide -and — COHCZQCY -&t’cbm‘q/ua e the Commgn(,/ el m:’-x%a»(
for solving such problems: T fis an tmportant and wiefut characterishe,

e each sub-problem {s sfmplewr to solve and can be handed over o
n ditberent pyocessor-Thus, each such problems can be solved

psallel processing envivonment -
Pole of knowledge : knowledge playe an tmportant vole i solving

any psoblem . knoledge and could be n the form of yules and facts
which help genesating seavch space fox finding the Solution.
Consistency of Knowledge bated wsed In Solvi'ng problem - maye sure

that knowledge bate wied to colve psoblem (S Contictent. onconsistent
Ynowledge bese poill lead +o tovong solubions. fox example , £ we have

15

www.J ntufast_u pdates.com

Il (9

knowfecfj& in the form of ~vules and facts ax follows:
Tf 1k IS humid, tt will vain. of it 13 sunny ,then it is daytime . Tt
15 sunny day «Tt S npighttime.

this knowledge 1S not congistent as there 1S o contradickon becaus,
€ft is a daytime’ ean be deduced Fom the knowoledge ,and thus both
€t fs nighf Hme’ and ETIVIN day #me’ are not possible at the same 8me,
T knowledge base has such tnconsistency , then <ome methods may be
twed +o avold such Contlicts:

Pequivement of sb!ub‘_o_n_.-‘, We should analyie priblern whrther |
golubon wequived 75 abolute or velabue - Loe call solution 4o be absolute -
P we have to find exact Solublon ywhereas 1S wlabve £ we have
veasonably good and oppxopriade approximate Solution. For example,™n
water jug problem, if there are move than one ways 4o solve a problem,
then we follow one Path successtully- There S no need o go back and
#ind a better solubion . 4n this case, the solution s absolute . T travelling
anlesman problem , our geal is to #ind eut the Shorteck youte . Unless all
voutese are known, jt is dittcult +o know the shortest Youte . Thls |c
& best-path problem, whereas water Jug is any —path problem. Any
path problem 18 genevally solved in wealonable amount ot Hme by
using heurfsbics that suggest qood paths to explore - Best-path problems
o ComPM'bCKHOﬂﬂ”L{ hardex cOmPared with any- path problems .

2Y exhausBve Searches

let ws discuss come of sysdematc unitormed exhaustive
searches like breadth-fivst depth-fivst, depth-fvst fterabve
deepentng ,and bidivecbonal searches, and present thiév algorithms,

www.Jntufastupdates.com 16

12

2-4-) BreadfthfrsL’ Search 1 _

-the breadth-fivst search (BFS) expands all the states ene skep away

brom the start statey and then expands oll states are examined at b
same depth before golng deeper: the BFS always gives an optimal
path eor colution - |
This search 1< fmplemenbed ucing two lists called O0pEN and cwsED:
4he OPEN list contains these states thatare to be expanded and
CloSED list Keeps track ot States ah’eadq expanded Here 0P EN 7St
¢ maintained a¢ a quene and CLOSED (st asa stack: for the
sake of stmplicity) we are w-r:‘b'ng BFs olgorithm for checking
Whether a goal node exisks or not: Furthermore, this algorithm can be
modi bed 4o get a path fom start 4o goal nodes by matntatning
cLoSED list with pofnter back tv its parent in the Search tree.

Afgorfﬂ\m (BFS)

Thputs START and GoAl states . -
local variables s 0PEN , CLOSED , STATE-X , Succs, FOUND;
output : Yes or No

mMethod :

“Initialize ppen st with cTapT and Closep —cp.
* FOUND = falre 4)

« whtle (OPEN £¢ and ropnD =+falze) do
2

* vemoVe the fiysk State from 6PEN and call it sTATE-X.
* Put SATE-X in the font of ClosEp |ist (maihtained)
€a a4

¢ if STATE-X = QOAL then FouND e elge Stack),
S

* Perform £xPAND operabon pn STATE —x , Producin
. a
liSE of SUCCs ; ’

www.Jntufastupdates.com 17

L

&

=)

3
e Yemove o) successors those ctates. (£ any, that are In the
ClOSED |ist;

* append SUCCe at the end of the OPEN (ist /*Queue*/

3

/*end tohile */

if FOOND =tue then yedurn Yes else veturn No
stop

let us cee the search tree generation from start state of the
water jug pvoblem wring BPs algovithm . At each state ywe apply
fvst applicable vule. Tt it generates peviously genevatipoed
state then cvoss it and try another yule in the sequence 4o aypid
the {ooPrng , TE new state 1< genes ated then exfxmd this State
tn breadbh st fashion.the vules given in Table 3.1 £ water
Jug problem are applied and enclosed tn §£}. Fqure -y shows the
trace of search tree wsing BFs

Search tree 15 developed level wise:This 1S not memory

elficient a3 partially devploped tree is to be Kept fn the memory
but tt finds ophmal soludon er path. we can eastly see the path
Hom start 1o goal by tracing the tree from goal state tv start
state -through parent link . This Path fs opﬁmaL and we Cnnno[,—gf,g
a path shortey than +this -

solution path: (0,0) — (5,0) — (9,3) — (0)—(0,2) —
Gi12) - (y,3)

CRefey -ﬁﬁ{ '2"’{

The path information can be obtained by maoditying etosep
list in the a!goﬁH\m by puting pointer back 4p 14s pParent.

www.Jntufastupdates.com 18

3.4y Depth _Prsk search

4y +the depth—fivst search (BFS),we go as far down as posstble

into the search 'hfeefﬂmf’h before backfﬂg up and trying altenatives.
Tt wovke by always genexating a descendent of the most vecently
expanded node until Some depth cut off is veached and then backtrcks
to next most vecently expanded pade and genexates one of fEs
deccendents: DRs ts memovy efhclent , ar it only Stores a single
path fom the voot 1o leak node along with the yemaining unexpanded
stblings for each node on the path.

We can :mpleme.nf: PFS by using 4o l(stS called opEN and CLOSED,
the. open list contains those states that are to be expanded , and
CLOSED list Keeps track of states alveady expanded. Here open

and closED |ists are maintained as stacks- T e discove¥ that
frest element of oPEN 1S the Goal state , then Search teyminates

successtully - we can 361'—‘ track of the path through state cpace

we draversed , but tn those Situations where many nodes oftey
exX pansion are tn the closed list,we fail to Feep trock of our
Path:This information aan be obtained by modifying CloseD [(st
by putbing Pofnter back to 15 parent tn the cearch tree. The

algorithm for DFs is given at foltows ;-

Afgorifhm (DES)

Snput: START and GoAl states of the problem

local variables : OPEN, cLOSED , RECORD-X , SUCCc ESSORS) FOUND

output - A path sequence fom START 4o GoAL State, Tfone
exisks otheswise veturn NO

me{‘hod -

o inthalite opEN WSt with (START,n1l) and set Closep -
J

- www.Jntufastupdates.com 19

e FOUND = false

o while (opeN #P and FOUND =£alze) do
2
P ¥emove the fivst vecord (inity

ally CSTART, ni 1)) fom OPEN list
and call ¢ PE (ORD-x

]

Maintained as staex).
4

=tue elge

Pot RECORD-x 1n the #ont of CLOSED Iist ¢
it (STATE_x of RECORD_x =GopL) then Founp

¢

* Pevform EXPAND opevation on STATE _x prod uey
_— f
Yecloyd¢ Cﬁ!“éd SUCCESSORS'

Ng a list of

closep |ist .

* Thgevxt SUCCESSORe %
: in the front of the OPEN list"/# stack+)

Y/ *end whele +/

* 7t FOUND: bue #hen vetuyn +he

POINKEYS b the parents
. Stop

path by tacing fﬁmugh the
on the closep [ist else wetuyn No

jug problem a,s?ng DFs algorfthm

atex Jug problem
Seaxvch bree generation Wsing DFs OPEN ISt Closep Iist
Start state (p,0) ECeo00inil)
AR
(5,0)
51y - .
133 [((be)J(D/D))J ([O,D)_, n'[)
'] []
(5:3)
) [((5:37,(50))] [((510, 00)), ((uﬂ),nu'lﬂ
(6,3) '

www.Jntufastupdates.com 20

16

(0'3) :'-['((0,3')) (5'{3-))_] r([ﬁ}fi);(5}0)))((§{O)}(0!D))J
0 “ﬂ z)s'j | (Co,07, nTl)]
% 30 [((3,0),(0,3))
3 [(30), J [‘((0,3),(5“,3)),(05‘,3),(5,0)3, (ts)0),
(3,3 €010)) ((o,0), n”)]
lei‘q
% % 2«2}5 [((3|3)) C3;0))] [((315)) (5;0‘)); ((0(3)) (§{3)) ((5}3)
(5> (5,0)),((5,0),(0,0)), ((o,o),nilg]
\‘/ 215 ' P
{0;‘) : :
1‘.‘1*“1’ ' ’
X /I/ ' '
(1,0)] '
12 | ’
(1,5 j :
Ty ‘ (Ccu0), 132, (1,3),t1,00), ((1),
f ,{L 23—3 . (@t{ro),(7,3))J | (0,!)))({D,l),fS‘;l)),[{5‘);),(3’,3)))
mp)%ats{ak. | (€3,3),(3,00), ((3,03,(0,3)), ((0,2),
| (513)),((5,32,(5,09), ((50), (0,0)),
(CO}O))”fL))

Fiqg:- 9.5 Search Tyee Cfenembon Uxing DFs

The path (s obtained from the Iist Stoved in CLoSED . The <olubon path
1S (0,0) =2 (5,0) = (5,3, (0,3) > (3,00 (3,3)—(s,

1) — (o)1) =
(L,o) = (H3d)=5(Yeo)

ComParisions:. since these are unguided | blind ,and exhatsive searches,

we cannot zay much aboUt them but an make <ome obseyvation.
.BFS i EFFCC{\V& I’thn th@ Se.ﬂr(:h ‘b’"ee_ hM a lOO\) bYanC,\('ng \e-ac-f—o.f
¢ BFS can wovk even Tn trees that are infinitely deep.

» BFs vequives a lot of memory ak number of nodex In level ot 4,
e
tee tncveases exponentially,

L] BPS ';S SU.FE’YI‘G{ men %& qoﬂ{. foustg Tn H‘e uPPer Trght Forbion
W_/_vw.Jntufastupdates.com 21

1% @

of a scarch tyee

* BFs gives opbmal solution

* DPS is ebpecbve when there are few sub frees in the search Aree that
have only one cohnection point % the vest of the States

¢+ DFs s the best when the GoAL exists n the lower lett portion of the
search tyee - |

* PFS con be dangerous when the path closer 4o the START and

~ farther trom the GoAL hab been chosen,

+ DFs is memory efhcent as the path fom start to current Sta! node
{S stored. ¢ach node should contain State and §#< parent

* DFs may not give optimal Solution.

= there 1S another gearch algovithm named o3 “Depth-Avst Ttevad
. ve

Peepening’ which yemoves the dyawbacke of pes and BFEs.

2:4.3 Depth- Rvst Tterative DcePEnmg .
pepth- Arst itevabve deepening (DFTD) takes advantages of both
DEs seavches on trees . The algdn‘ffwm for PFID s glven ax follows:

Algoxithm (DF 1 D)

Input © START and GoAL states
local vayiables: PounD

output: Yee oy Nlo

Method

* inttialite d = 1, FouND- falke

* while (FOUND =fale) do
¢

¢ Pevform a depth fivst search #vom start +o depfb d.

v i ﬂoa[state s obtained from RPUND=tue elie discard +he
nodec generated In the search of depth d.
e d=d +]

www.Jntufastupdates.com 22

¥ /¥end while #/

o 3 FounND=1rue then weturn Yes otherwise ¥eturn Np
. Sf.'O]D

—7 Since DFIP expands all nodes ata given depth befove expanding any
nodes at greater depth. 3t is quavanteed to tind a shortest path oy
optmal solution from start to goal state . he worKing of DFLp
algovithm i€ shown tn #g 2:6 ax given below:

TInital state O

13t stevation

;ghfl eteyabon

avd MHeration

A8 A

(g 2.6 - Search tree Qeneration ULing PEIp

e

www.J nttias_tupdates.com o 23

1 ®

At any giveo Hme. i+ s Pe‘(ieofming a PFS anrd pever cearvches

deepeY than de pth d’ Thus the space Tt uter s o(d)- Disadvantage of
DEID §s that tE performs pasted aomputab‘on be fore reachr'ng the

904[dePtf\-

244 Bidivecbonal gearch

Bidivectional cearch fs a graph search algovithm that vuns oo
sfmultaneous Searches. one Search moves forward #om the start state
oand other moves backward from the 9oal and Stops when —the oo
meet fn the middle . Tt Fs wreful for thote pvoblems which have a.
si’ng(e start state and sfngle goal State. The DEID cap be apphed to
pidisechonal ceasch 4o k=1,2,---The Kth itexation copsists of.
genwah‘ng all states in the fovward divecbon fom start <tate up
to depfﬁ K using BFs , and fom goal State using DEs one to depth k
and other todepth K+l not storing states but simply matching agalnst
the stoved states genevated fom fovward divection. Here the back-
wasd cearch +o Ag,pf:k K+l is necefSasy to hind odd-length solubions.
TE match 1s found ,then path can be taced fom staxt +o the ma tehed

stote ard from matched to the goal state. Tt should be nod'ced that
each node hat link o its successors as well ag to fts parent- These
links wofll hﬂelf’ genedating complete path fiom staxt 4o goal states
the ~weason Hor this approach is that each of the wwo seawches bae
bme comp lexity NA) and o O (b*2) and O(E)dfz._’_baliz) ’s
much less thap the yunning time of one Search fom the bﬁg;nn;ng
4o the goaL; which would be o(bd) . This search can be made fn
alveady exisbng gvaph [tree or seavch graph/ tree - be genexpted

a8 o paxt-of search - let as illuStrate the WOrKing of this method
wsing exieb’ng gvaph. considexs the fellowing g¥aph a2 shown in

£9 9. +. And a woute [path Hom node labeled 4 4o pode tabeled 6.

" www.Jntufastupdates.com 24

Goal @

A9+ Graph to be searched uiing Bivecbonal search

The tace of ﬁnding Path fom hode | to (¢ weing bivectiona l search
s givén In Ag 2.8. we can clearly see that the path obtained /s
(Jllé) ”) “‘h'é .

S5 Anahfsis of search me thods

ShPectiveness of any Search stsategy in problem solving is
measaved in texms of -

o« completeness:- completeness means that an algovithm gurantees
ew solution if [t exists
« Time complexity :. Time sequived by an algotithm 10 find a solubon.

« Space complexity'- Space veq. by an algorithm +o Hind a solubon.

e ppbma ity “The algovithm 13 opbmal it it finds the highest
quality solution when there are seveval dibferent Solutions for
the problem

www.J_n’gufast_l_J p_;jates.com 25

|
Ttesabon Bidivectional Tvee
K¥=0 staxt [Vo J/
K=l (y 15
K =0 4oal 16 i e
K=1 start ‘ \(/
24\? Y
k=2 [1z 13
K=l 1\ . \ /
ly 15
Goal N -~ T
k‘—‘*?’ 5ba1£- l \f/
T
- 9 3 L{
5 6 =+ g 9
=3 /’
K= !
K=| _ Y
Goal 16 /|\

Fq:2:8 Tace of Bidivecbonal Space

= we wfll Compare Searches discucsed above on those parameters,
let w2 agsume b’ 4o be the byanching factor and ‘d’ 4o be the

depth of the tree §n wovst case.

www.Jntufastupdates.com 26

i

DEs: TF the depth cut ofé Fs A, then the space vequive ment s of
old) The Hime complexity of DFs to depth d’ is o o(bd) in the
wosst cace. the DFs vequives Some cut-otf depth.Tf branches
ove not eut off and duph’ca tes are not checked for, the algovithm
may not even terminate -

BFs - the +otat numbey of nodes genevated n the (oorct caste ¢g
bty + b2 t- -+ b4 = g (pd) ‘

=
—
&

Table 4:F Pevformance com paxison

Seaych Techniqug Time Space Solution
DFs 0 (b4) 0(d) ~
BFS o(bd) o(b4) optimi L
PFID o(bd) 0(d) opb'mal
gi-dizvecbonal ol pdl2) o(b4/2) —

Above mentioned seaxches are blind and axe not 0of much use

in geal- lite appltations < Thexe are p¥oblems wheve combinatovial

gy plosion takes place as the Size of the Seaxch tvee incveases, such as
trowelling salesman problem « We need 1o have some intelligent seavches
which take Into account Some velavent pyoblem infovmation and

£inds solutions factex:

10 fllustate the need of Intelligent Seasches, let us consider a pvoblem
ot h’avelh‘ng salesman.

www.Jntufastupdates.com 27

7

.5 Heurisbe Seavch Tachn-‘qLuc,sé

L

®,

Heuvishe -fgchnitauz, is & cuterion for dcfe:s’m:'m'ng which among
sevexal altes nabves poi [be the most effechve to aCf’n‘e.Vc, Some goéll,.

This technigue improves the efficiency of a seaveh process possibly by
sacxifeing claims of Systemahc and completeness. ot is no longex
guavantees to find the best Solution but almost always findea very
guod solution. Using good he uristics, we cah hope to get good Solution to
haxd problems (such as travelling Salesman Probfam) in less than
exponential H'me. Theve ave two £ypes of heuvistics, namely,

n Cienefa[._Puz”PDSe, heuwrishcs tﬁat‘ are Useful in vaxious Px‘ob[em
domatne

¢ Special purpose heuristics that are domain specifye

5] General purpose Heuristics

A Geneval —purpose heuvishics for combinatovial Pyoblem s

neasest Neighb o algow'f:ﬁms that wo¥k by, Sff-‘ifﬁ"’f} the lOCﬁ"}/ supexioy
alternabve. for such algovithms, it is often possible 4o prove an upper
bound on the e¥vov. ot ienpre provides veassuvanCe that we are not paying
too high a price in accuwacy fosx speed. Tn many AL Problems, i+ (s of tey
ditheutt o measuse precisely the goodness of a pavticular Solution. Foy
weal-povld p*tob(em,c) Tt IS obten USetul 4o tntvoduce heurish'cs on the
basts of wvelatively unstructired knowledge - Tt is impossible 4o detine this
knowledge in sucha way that mathematical analysis can be performel.
In AT appyoaches, behaviour of algovithms of is analyzed by ¥unning
them on computer as Contrast o analyting algorithm ma'bﬂemah'ca!h{,

there are at least many reasons -fov suech ad hoc app¥oa ches tn AT

* T ig o fun 40 <ee a program do something

ntetligent than 4o prove it
* Since AT problem domaine are Usually Coraplex

y it 1s genexally no ¢
Possible 4o produce amalytical proot that o procedure (o V

Tl wovk .

_ www.Jntufastupdates.com 28

oY
« Tt1s noteven possible 4o decevible the vange of pyoblems well enough

+o make statictical analysis of program behavi oux meaningul.

— However ,it is impostant 40 Keep pexfovmance fn mind while designe‘ng
algovithms. One of the most important analysis o+ the search process is
40 £ind number of nodes In a complete Seaxch tree of depth d’ and
beanching factod), that is, fxd .7This simple analysi s motivates 1o
look v Tmpyovements on the exbaustive Seawxches and 4o find an UPppey
bound on the Search time which can be compared with exbaustive cpasch

Peocedures - The ceawches which uce some domain know ledge are called

fi‘n-Formcd Search strategies-

252 Branch and Bound Search (uniform Cost search)

‘¢ Aesigned that a,qgign_f ::umu lative expense o the path fom stayt
node to the cuvvent node X' by appliging he sequence ot opeyators,
While gencrah‘ng a seaxch Space, o least cost path obtained
so 4ar 1s expanded ateach tevation Hll we veach to goal State.<inge
branch and bound Seaxth expands the least-cost Prtial path, 1t i
sometmes also called a uniform oSt search’. Foy exam,ok; n 'trave!l.‘ng
salesman problem; §tx) may be the actual distance trave [loy +4rom
start 4o cuvvent node X . Puring search process, theve aan be many
tncomple te paths mnkndl‘ng for further Considevation.1he Shovtest
one 1S always extended pne level further, Creating as many ne w
tncomplete paths as there are branches. these hew paths along w44,
old ones are sorted on the Values of cost tunchion 9" and again the
shortest path ts exitnded . gtnce the chortest Path %< always chogser
for extension ythe path fivst '(eachmg to He goal f1s ce

but it 13 not guavanteed to find +he Solution Optimal

quickly - the %z/omrnﬁ

how ¢ worKe .
www.Jntufastupdates.com 29

algovithm is simple 40 give Yo an tdea about

9% 0,
Fuvther more , it can be modified by putting parent links along with

the node in the cloceD list
Algorithm (BXanch and Bound)

Tnput: START and §oAL States

tocal Variables: open, closED, NOPE, SUCCs , FOUND;
output : Yes oy No

method :
¥ int tally store the start node with g (yoot) =0 Tnh a op EM-[i'st
closep=¢ ;

fOUND: 'FQLSC)'

+ while (open #¢ and PUND =false) do
¢

¥ yemoVe the top element fom OPEN I'st and acall it NODE;
iF NODE ‘s the qoal node, then fouND -+rue elre
g .
« put NODE $n ClosSEp list;

* Find sucee of NOPE | any > OMpute theiy vg') valuee and
store them In 0PEN Iisk,

" Store all the nodes 1n the OPEN ISt based on theix
Cost - funcehon Values:

Y
Y bfend whfle ¢

* if FoOND=true then veturn Yes otherwise veturn N
rn No

* S{:OID

— Ip bvanch and beund method , it 90X = for all opevators, then It

degenevates to simple breadth-fivst search . fom AT Point of View,

it 15 as bad as depth fivst and breadth fvst . 1h,s can be 1m pyoved|

www.Jntufastupdates.com 30

it we augument it by dynamic programming , that IS, delete thoce
Poths which ave wedundanht.ide notice that algowithm genexally vequives
genevate solution and test tfor jts goodness. solution can be genevated

wsing any method and testing might be bated on some heusistics.,
Skeleton of algo-r?f:hm for fgenexate, and test"stmf:egg s ac follows:

Algorithm (Generate and Tert Algorithm)

Start
+ Genevate a posstble solution

¥ test £ it 15 agoal
£ £ not goto start else quit

£nd

253 Hill Cleb?ng
Quality Measurement turns Pepth —Fivst cearch tnto Hill
climbing . Tt is an optmization technique that belong s to the tamfly
ot local Searches. Tt s a w.la-h‘vefg stmple technique +o i plemen &
ar o populay fivst choice 1S exploved. Although move advanced algovithms
may give better results, theve cre situations (ohere hill ¢him br‘r)g wovke
toell. Hil) clim bu‘r}g can be uted to solve problems that have manc/
colutsone but tohere Some Solutions are better than others'. 'Ffaveu,'ng
salecoan problem can be Solved totth hill climbing « Tt is easy 4o finy
o colubon that will WSt all the ¢itves) but this Solution wf{‘l. probably
be Very bod compared to the opbmal solution TF thére I‘S':s?)m\e"mef
bf otdering the cholces So that the moct promis ingt node.\ 1Cex ploved -ﬁ‘vs."f)
then search efficiency may be Tmpyoved ,moving through a tree 9f paths,
htll climbing proceeds depth~fivst order, but the choiges are ovdered
accovding to Some hewxishle value « for\examplel, 1 ra Vf"'r'ﬂﬁ’safﬁmm

problem, stéaightline distance between two cities' tan be'a heuristic

(R

measuye OF remaining distance -

y/_/_/__/v_.J_rytufagtu pdates.com 31

0
Algorithm (stmple Hill cltmbing)

Input: START and GoAl states

local variables: ppeN, NODE, SuCCs) FOUND;

putput : Yes or no

Me thod:

Store Tm‘h‘aHL/ the start node th a 0PEN ISt
FOUND = falre

whi le COPEN # empty and FouND= false) do
A

» vemove the top element fom OPEN list and call ? Nppg-
« 1£ NODE 15 goal node , then founp = true else .

« find Suces of NODE , ¥ any ;

* Sovt Suces by estimated cost fom NopE +o goal state and
odd them+to the front of oPEN list;

3/&& end 1WOA? le ¥/

* TF fOUND = true then vetunrn Yes otheywise yetuyn No’,
* stop

Problems wtth H1ll cltmbing,.

There are -few problems with hill ch‘mb:‘ng. The search procece m
| a
veach to o position that s not a solution but from there ne Move

V

improves the Situation. this wrll happen it we have wyeached 4 local
maximum , plateau,of a ¥idge .

(ocal maxfmum ;- Tt is a state

but not bettex than some othey States which are Tar QCOCU/ ﬁ‘m ‘H).g-

. (8] g

State all Moves looks to be wovse é” such Sffuc!i)‘ong' back Q l:
J tvac

to Some earlie¥ state and 4y goi'ng in ditferent divection 4o £nd
e solution. "

that ¢ be ttex than all tts ne;?hbours

Swww.J n_t_yfastupdates.com 32

2¢
platealk :- 7t ic a flat area 0f the Search Space toheve all

neighbouxing gtatec has the Same value. Tt is pot pocsible to determire
the best divechon. 7o cuch sttuabon make o !959 Jump ~to some
disection and try 0 get 1o new section of the seavch space-

Ridge - T+ is an avea of search space that is hl‘gﬁef +han Sun'Dand:'fy
aveas but that eannot be tvaversed by single moves Tn any one
divection. Tt 15 a special Kind of local maxfma . Here apply two or
move wule¢ before doing +the test, f.e, moving M Seveval divechons

at once -

& .54 Beam Search

Beam Search s a heuxistic Search afgoer)m 'n which W number
of best nodes at each level 18 always expanded. Tt progyesses leve|
by level and moves downwaxd only from the best 10 nodes at each
leve (- Beam gearch uses breadth - frvst - search +o butld 7ts seavch
tree. At each tevel of the tree, it genevates all successors of the states
at the cuvrent levely sovts them Tn erdey Of ?ncreqs‘ing heusisbc
value s . thuwever, iEonly donsiders o I numbex of States at each level .
Othes nodes ave ignoved - Best nodes ave decided ™nthe heuvistc cost
associated with the node.Heve W is called width 0f Beam seawch. Tf Bis
the bfanching factor, thexe will be only W8 hodes undex considevation at
any depth but only nodec will be Selected +TE beam width is smallex,
the more states are pruned. Tt w=1, then it becomes hill ch‘mbfng Seaxch
wheve always best hode ts chosen drom Succecsoy nodes. T2 beam wid th ic
infinite ,then no states are pyuned and beam seaxch is tdenti cal 4o
beead th - fixst seavch . The beam width bounds the memo¥y vequived +o
Pexform the Search, at the expense of w‘sking terminathion ox completenecs
and oph‘mah'éy.’l’he veason fox such visK fs that the goal state f’f?ﬁnﬁ'q{lg
might have pyuned.

www.Jntufastupdates.com 33

29 /
A'ﬁori thm (Beam Sﬂamﬁ) v

Thput * START and §oAl states
Local Vaxiables: oPEN, NO?E’SUfCS) W-open, FounD;
OUTPUT: Yes o¥ NO
METHOD:
*NODE =Root _node P‘;UND—" folse
¥ 1t NODE {s the goal node ,then FOUND=+rue elte And Succ: of
NopE , (F any with Tts estimated cast and stove n OPEN list;
¥+ while (FOUND = false and not able 4o proceed fusthey)do
3
* sost OPEN Ilist;
» Select top W elements #om oPEN list and put
list and empty openN list;
v fox each NODE fyom |J_opEN list
]
* if NODE = Goal state then FOUND otrue elce find Sucee

of NODE ,%¢ any with ts estimated coct and stove tn
OPEN [ist

it in W_opEN

Y
Y /*% end while */

* 18 FOUND =true then veturn Vec othevwise setuyn NoO

* stop

= The Sseavch tee genevated Using Beam Seawch

algoxithm, assume W=
and B=3 fe given below. Here black nodes are selected ba;ed on th -
eiy

heurist'c values for fuvther expansion.

www.Jntufastupdates.com _ 34

' o
' !
L4 A\

anbnue Hll goal state 1< found o¥
not able 40 Proceeol tovthex

.55 Best frst Search

Best - fivst search ts bated on expanding the bect pawtial path from
cusvent node 4o goal node: Heve forwavd motion is fom the bect open node
50 oy 1n the pastially developed tee The cost of pavtial faths Is

Ccklwlah’_d Mincj sone heurish'e-
Tt the state has been genem_i:td ea¥liey and new path i< bettey ey Ll

previous one, then dmnge the Parent and apdate the cost- Tt shoyld Lé
noted that in hill ch‘mbfng,Soﬂv‘ng is done on the successofs nodes, whereqe
in the best-fivst Seavch, Sorting Ts done on the entive list. Tt jc por
guamﬂﬁed 40 find an optimal solution, but genexally ¢t findc some
Solution faster than Solution Obtained from any othex method. the Pextorman
vaxies divectly with the accuracy of the heuniste evaluation funcyop .

Algosithm — (Best- fivst Search)

Tnput: START and GOAL States

local varxiables : OPEN, closED, NODE, FOUND;

output @ yex or no

method :

* Inttialitation dpeN he by voot node , CLOSEP = + FOUND =£alse -
% while COPEN 26 and Founp = £alse) 4o 5

www.Jntt_Jfastupdates.com) _ S

3)
L
e {8 the st element < the goal node ,then FOUND = 8- true
clre
vemove ft from OPEN list oand PU[f” fE& fn CLOSED |i<t »
)
« add its succesof, i any, In open list;

* Sovt the entive list by the value of some heuvist'e tunetion

that asigns to each node , the estimate 4o veach to the goal
node

Y

A& FOOND = tiue then veturn Yes Othevwise etyvn N
0
* stop

condibon oy Teymination

j‘nsfead of tevminabng ,when the path fs found, terming te
when the shovtest fncomplete path 1< longes than the shovtect Complete
Path- Tn most problems of practical interest, the entive seqych Space
graph will be too lavge to be explicetly vepresented n a Computes
memory -The problem Spectfications , however ,wtl] @NtAIN ylec that

Wil allow o computer program to genesate the graph (tree) fﬁcremenfaﬂy
$rom the Start node tn any dedived divechon

)) - www.Jntufastupdates.com 36

(=

o
A¥* Algmith@_:- O

A* mgoﬁthm (hgstm’ 7, Pfoposed by Haxt tn [a42) is a combination
0f Cbyanch and bound’ and S best seavch’ methods combined with the
hamic ngmmmmg principle. Tt uses a heuvistic o¥ evaluation

dy
Puncbon usually denoted by #(1) to determine the ovder Tn which

the seavch visiks nodes in the tree. The heusistic functon for a node

N is defined os Hfollows:

£(N) =g (N +h(N)

The funchon g 1S the measuve of the cost of getting from the start
node to the cuvvent node N i-e., ik i5 sum 0f Costs of the wules that weve
applied along the bect path to the cuvvent node. the funchion 'K s an
estmate of addibonal Cost of getbing cuvvent node N to the goal node.
this is the place wheve knowledge about the problem domain is exploited.

Geneyally, A% algovithm is called OR gvaph/[tree seavch algoxithm.

A* algovithm tncve mentally seawches all the voutes Starting

Lom the Stavt node until i€ finds the shortect path to a goal. S'i-arb'ng

with a given node, the algorithm expands the node with the lowest

Fa) value, T maintaine a set of Partial solutions. tnexpected (eaf
nodes of expanded nodes axe stored n a queue with @¥vesponding
£ valuec. hic queue with coresponding £ valuec. —thic quete can be

maintained a¢ a priovity quede .

Algorithm (A¥)

Thput: START and GoAL States
local variables, OPEN, ClLoSED, BEST_NODE , SUCCs, oLD, PODNDJ

output ¢ Yesorno

method :

4+ Inibalizaton open list with stast node 4 closep =4 59 =0
£=h) FOUND = falte;

www.Jntufastupdates.com 37

P

¥ while (opEN +¢ and FOUND =false)do

3
" Yemove the node woith the towest value of £ from OPEN Iist
and stove it 1p CoSED 1ist. call it ac o Best -Node-
e it (Best_Node = ’

qoat state) then munD —true else
i

* Jenevate the Suces of Best-Node-,
* fo¥ each suce do

3

* establish parent link ot sucey, /*This fink will help ¢4
velover path once the Solution ts found */

" dompute glsuce)= glBest-Node)+ coct of
Besf.._Node to suce,

* f svce e open

geEhng from,

then /x alveady being génevated byt
. not- pyocebSed % /

"Call the matched node ag olD and add 1t 1 e
successoy list of he Best-nNode,
* Ignove the suce Node and chan
1# vequived ax follows
¢ if g(suCcc)< goLlD) Hen ma e
the Best _Node and C.hange the
B for olD elze fgnore ;

ge the Parent og oLp,

Paren{r OF OLD to
Valuee of g and £

" 1 succ e closeD ey /x aléeady processed y/
g

* call the matched node as LD and

list of the Best_node suep
* Fgnove the suce node and ¢h
ange
if wvequiived ag follows - J¢ e parent ot oto,
* 1+ glsuce) <gtolD) then mate parent of oip 44
be Best-node and change the values of 9 and £

for olD and Propagate the chanae, to olD%s chi

add H: ?n fhe/
6%01’3')

ldren

www.Jntufastupdates.com . . 38

32

Using dePHf) Livst gearch elte ignore @
¥ |

. 3¢ succ & oPEN eor cloSED
5
- odd 1t 1o the list of Best - Nodes succescovs.
¢ compute f(suce) = g(svced+hlsuvce), ’
+ put SUCC on oPEN Wst and with its £ value
¥

¥
¥

1]’ /% end while %/

¢ ¥ POUND =true then veturn Ves othevwlise veturn No.
. -.S'EOP .)

2 (et US consider an example of eight pusile again and solve it by
using A% algovithm. rhe simple evaluation function £(x) 1s defined
ay follows ¢

06 = gl +h(x) , Wheve

hix) = the number of tiles not 1t theiy goal Position in a giver)

state X. -
9x) = depth of nede X In the seavch tree.
Given
stavt state | éfoal Sta te
r_g 7 6 {5 3 6
y U 8 LU

-the Search tree using A™ algovithm oy cight - puzzle problem 15
given in Fq2:l0. Tt should be noted that the quality of solution oy
depend on heuvistic funetion. This simple heuxistic may not be uced +o
SoWe hatdes efght_Pu%(e, problems. et US congidey Hhe FOUObofna

puzle and vy to solve U-&ing eavlieY heuxist'e funetion. You il find
that it annot be solved.

www.Jntufastupdates.com 39

start state

5
D
1

Bl E

(
1
6

Searchtree

Down
()

s 3 6
0% »
u re

ﬂl'gh t

stavt Sinte
£=0ty
3 3 6

3
0 2
e qoals‘&:t&&

fig. 3.iD search tree

A better estimate 0f h fun cthion might be as 4ollows. the funcdion

g may Yemain ame .

h(x) = the surm of the distances o4 the Htles (1o g) 4rom

theiv goal posibion in a givery state X.

P | Here start State has h(start_ state) - 3FLHIH 0L 42 &

e:)f the sake of bvewity, search tyee

.4 | = {2

hot been omitted.

www.Jntufastupdates.com 40

5
oph‘mal Solution by A¥ alqorithm @

A¥ algorithm finds optimal Solution & heurishc dunchon s

CZ!TE-FL{”L, das:‘gnecl and is undexestimated) we will support the

atgument using the following example (Rich and knight, 2003)

Undevesbmaton..

T# we can guayan tee that h never ovevesBimates actual value
Leom cuvvent to goal, then AY algovithm ensuves to find an optimal

path +o goal) i one exsts. let Ue tllustvate +his by the #olfow:‘ng

example shown n Ag 2 formal proot & omitted as it i< not velevant

heye . Here we artume that b value w‘-’m_r each node ¥ 1S unde e stmated,
He value s lese than actual value from node X o a goal

ie, heutsis
stavt node A is expanded to B,c and D with £ values

node - Th g, 211,
o u,5 and & ngpecﬁvglg . Heve we arve axsuming that the cost of g

srce 16 4 for the sake of simplicity. Note that node B has minimun

2 value, 30 expand this node to & which has tvalue as 5. since ¢

ualue ot cis also 5, we cecolve tn favour of £, +he path C‘&WenHy .

are expanding . Now nede € 1S X panded to node F with # value as ¢,

¢leatly expansion ot a node F is stopped as £ value of ¢ s now
the amallest thus, we See that by undevestimating heuwistic value, we
have wasted Some effort but eventually discoveved that B Laag

favtheraway than we thought. Now we go back and try another
path and wrll find the optimal path.

Unolevuﬁmah‘rq

R 3
(1t3)p 04_\{{)(: L1457 D

/3 moves
(343)E away Fom goal

/{3 Move ¢ a ,F{om L
(3t3)F i | goar

A9 2 ! QW%Wjﬁtlﬁggtﬁﬁga%%% for underestirmatian

Ovexestimation -

leb ts considey another Situation - Heve we ave bvevestimating

heuvishc value of each node in the g#aph/tree. He expand B to E, Et,(_:'
and Fio§ for o solution path of length.l. But assume that +heve i

a divect path fsom Dio a solubion giving a path of (engths as h value

of D is also ovetestimated. We will nevey find it because of Olfe,YeSb'r\;m{-,)?

h(0) We may End Some othe¥ wovse solubon without ¢vey expamdr‘ng p.

So by ovevestimatingh’, we cannot be guavanteed to find the Shortest
Peth .

OVerestimated

Y
(H2)B (j4)ec (45D

4

{a+a)E

4

(3+1)F

v
(Ut+0)§

Aga.- example, search Gl’raph for ovevestmabon

Lrevatve - De,cpen?ni A*

ﬂcxab‘ve—DecPem‘ng A* (Tpa®) is & ombinabon of the.
depth - Hvst itevative Aeepen;‘ng ond A%

o\lgoﬂt—hm .Heve the Successive
iteyahons ove cwvespom:h‘ng to incveasing values of the 4otal Cost

ot a path vather than increasing

JePH'l of the seavch . Alany:
- Al9ovith
as follows: 7 wotks

s For each ttevation

» Pevrform o pee prun]
total Coct (g+h)

g off o. branch ohep its
eXcCeed¢c a gven thveshpld. .-

www.Jntufastupdates.com

42

i }
« The inftal threshold stavts at the eStimate Cost of the stavi
state and incveases fov each (texation of the algovithm .
. the thveshold Used for the next itevation is the mintmum cost of
all values exceeded the cuvvent Hhyechold.
e thece Skeps are wepeated Hll we #find a goal state.

—7 let us considey an example 4o fllustrate the wo¥King of Tpa* algoxid,
as shown Tn Ag 213 Inhitially, the threshold value is the estimated
coct of the start node. Tn the fivst ttevabton, Threchold =5 . Now
we genevate all the succecsors of stavt rode and Gompute theiy
ectimated values as 63,4, 8 and ¢ - The successors having values
gveatey than § ave to be pruned. Now for next itevation, we considey

the +hveshold +o be the minimum of the pruned nodes value, that is,

threshold =¢ and the node with 6 value along wtth node with

volue U4 are vetained foy S they expantion.

gt (tevation (Tfm';s hold = 5)

43

www.Jntufastupdates.com

p,‘g 913 wOkang of TpA¥

- the ToA* Wil find a solution of least cost or ophmal <olution (if
one exists), it an admissible monotonic cost function is weed.
TDA* not only Hinds clweapesf path 4o a colution but uses fax
less space than A%, and tt e.xpands appioXimately the came pp,
of nodes as that of A¥* in atree seavch. AN addi-ional bene it
ot TDA* over A¥is that it is simpler to Wmplement , as thexe are np
open and closed lists to be maintatned. A simple yecussion Pesforme
pee tnside an outer loop to handle Ffunction itevations.

Constyaint sahstachon: .

Many AT pyoblems an be Viewed ag

| problems pf +ta)
satisfaction in which the goal onstaint

is to solve some problems stat. that

the soluton i VeQUivef
some of '&IC/ Srmple,

the n-Queep PYo blen,
2

0 satisky local consis-&encY conditione. oy eXample
2

constiaint satistaction problems ave Cry pto gva phy
‘ b
map cloving , ceossword pusele etr.

w?ﬁ?g’fﬂf’hq Problem: A number Pustle in

asthgmetical operations has some oy all of

which a 9¥ou
its ol '9its Teplaced P

by Jetter.
www.Jntufastupdates.com 49(4 =

q
ond the ofiginal digits must be found. In such a puzie, each @
letter wepresents a unigUe digit. let- ne consider Hhe following pyoblem)
tn which we have doveplace each letter by a distinct digit (0-2) so that

the vesulting sum 1S corvyect .

BAS E
+ BA L L
§AME s

_":B‘ n-Queen Pfob'em ¢~ The cond

ition is that on the Same 1o,
of diagonal nd two Queens attack each pthey.
A _map colouving problem:. Gven a map, wlox segions of map using th
. Ye e
colours) blue, ved, and bHack such that no oo neighboving county; ha
n
the same colouxr. e

or colump ,

4n genexal, we an define A dnstraint Satief
A

. A variabl wi th
set of tables i"n"z;“’fn}, ith each +; eps 0 ¢
values and T i

chon Pyoble o as 'Foﬂowp

&N Set of Cﬂnsh’afnts) :

as an undivected gvaph , called Constraint
the Vaxiabl

12%) as
Search pioblem. a S’L’ahdard

« Stavt state .
¢ Qoal state :

vasiables .

www.Jntufastupdates.com 45

cvery solubon must be complete asgignment and thevetore appears gt
depth n if theve are n Vaviables. Rusthevmore, the seavch tree extends

only to depth n and hence depth-fivst seaxch algotithms ave populax
fov CSPs

many detign tasks can also be Vicwed qse Onstvaint satisfaction probl
such problems do not veqUive new seavch methods byt they can I:’:f e
solved wsing any of the seavch gtrategies which can be Aug umented
with the list of Constvaints that change az pavts op 4, problem,

ave solved: the following afgoﬁHnm is appled for the P this Proceduse
can be tmplementedas o pp seavch (Rich and Knight, 2003)

Algorithm .
* until a complete solubion S found or all pathe have lead tp
dead end ¢
3 |
* Select ap unexpected node of the seavch of
* Apply the constraint infevence vules o ¢4,
genevate all possible new constyaints .
* TR the Set of Constvaints contain a contvadicton, then yeposL
that this PaHn IS a—dead @nc!:
.+ £ the <et of (onstraint describes a complete Solubion , thep
Y&Po«;t SUCCess.

ot gran .
<elected node +p

"1 neither o antadichon nor g omplete Solution hat been
found . then apply the problem Space vules togenevate nes
Pavbal solutlons —that ave consictent WHh the svent cet op
onstraints . Ihsext +these paytial Solutions tntp +he search
gvaph
Y

. 8—&0[2

www.J ntufastupdatggcom _ __46

{
15
let ws splve the #ollow?ng c«fgp{—-aﬁ{:ﬁmeﬁc puzzle U

Crypt Avithmetic Puzzle

problem Si'an:- s0lve the -ﬂollowfng Puzle by Athigning numericd

(0-a) In such a way that each lettex is assigned unigue digit
which satisfy the following - adlition,

BAS E
-+ BAL L
ﬁAmEsj

¢ constraints: No Hwo lettexs have the same value,

¢ Inital pyoblem state
=15 =7, M=1, E=755=7,827 17

* Apply constraint infevence wules g genexate the velevant new
constraints

* APPIY the letter ascigpment vUles to pestorm all aus;

9””’76?)755' Te?a.‘
by the cusvent set of Constaints.Then choose anpthe £

Y ydles ¢p
genevate an additional acsignment, which will, in wan, genevat,
e

new constiaints at the next Cycle.
© At each cycle, thexe may be sevexal chotcec of fdeJﬁOapply
e A Weful hewvistics can help 10 select e best sule fvafpf.g—ﬁa’ /
wef .

— fot example, it o lettex that has only 10 possible valyes and anpthey
with six possible values, then thexe ¢ a beiter chance ot Juess

n
sight on the fixst than on the second. 7

& < < Ccavviee
B A =Y E
+ B A L L
9 & ™M € 5

www.Jntufastupdates.com ar

cons talnts equa Hone oxe:

Et+l =5 —
Sti+e=F — G
SAtCy =M 7 (3
2B+c3 =A — Cy
G =0y

—» He can easlly see that § has +0 be non-zexp digit, sothe valu e
of caxyy ¢y <hould be 1 and hence G=1

The tentative Steps wequived o solve CHYPE - axith mebl aze gien
in A9 2.1y

€xample - et us solve anothes crypt—avithmetyc puzzle

,+
~

o
<
70

constraints equations:
20=rR —7 ¢
2wty =y —> Cy

RT+¢ =0 — C3
Fz c3
The seasch tree Uting DF seawch appyvoach for s0lVing the crypt-
avithmeb'c puzle s giveh in Ag Q15
we get two poscible solubtions au {F:I}T:
U=6§ and {F:!)T-‘"‘) 0=5,Rw=¢6, y- 3

get- move solubions. All poccible soluh

F,0=Y, R=8,w=3,
}. On backtya ck:‘ng e may

oS are given as -follows.

www.Jntufastupdates.com | 48

13

™ o ™,

3&;62

49

www.Jntufastupdates.com

Cxy pt—Avithmetic Solution Tvace

: on 5 ' h te
‘constraints equations Inibal sta
q= ¢y ‘ =7 5Az9 smM=2 5 E= 9.
2B+C3:H —?C(_’ S:?)B:ysL:?

stLl+e=€6 = o
. E+L = s - Cf

"ﬁ-"—cq ";7

2 25‘1‘C3:H - Cq

21 since Cy =1, thevefore RB+C3 >q

X2 TYY the Hollowfng steps o,
get o posstble value of B.

. T 8:5'() if B20= A0 5 m=0p, 2 =0 ov Ml oy gy

F Gl (As 6= ready)
© Y B=¢ we get similay bontradiction wih

* T¢ then -for ngo,ou\sgei-

Gontradichon later, so ¢h

=1 B can take walues tom Stog
each value of B pyom 5 t0 q) we

le genexating the search tyee.
P M=8 £ G <p that leads 4o

S Path is pruned. ¢ ¢ then[m=q)

E and £+, =S

. Usi’ng both equabions , we get Q4 =0 =)@ %nJ G =o

* USINg Lo5,we get sts5-f that s
¢ shown below - above .

" S0 s+53q o Posstble values oy £ 4y

* If E=2 then sSt5:=p PS¢ (as B-

3. tet us solve Stl+tep =

¢ fq’,é, ¢, 9} (with c’awyéh'-q,:{}
7 oth'eady)
* It E=3 then sy5:=3 = $=8

« thevefove and ave fixed up

Hence e get the final colubion ax given below on

bGCkf‘IRCkfr)g) We
may find move solutions. Tn -t

(s cate we get only one <olutio,.
Q=15 A=U;M=q; £23) 522 B4, Lc5.

www.Jntufastupdates.com__ - _50

4

The seasch tree veing DFS

F=1
*-—>C3 =]
2T+¢ =0
T= 7 8 ql
‘fz-f A °»,/l‘
Ayl !
o1]
x X X
_R on backtvacking
=%,G¢=
=0 =
qWte=U =>aw= k=05 a=l
: RWHC =V D Jw+]=p
W '
wW=10 & 3 5 ¢ ’
3
U= 4 6 o » 3 ! ‘
5 + 9 3
G = 0 O 0 (J O 0 (]
1% x § x >(] X X X v
F=1 [F=! |
T= % i
0=y C-5
R-8 "
IAJ::3 w=6
U=¢ ‘ _1

Fg 215 search Tree dor Cuypt- Axithmetic pussle

www._Jntufastupdates.co_r_n |

51

PP —

T 1 + v . l
. . = 5 n - -
- 24 | . e 5
= so - P LRI B SRR S SRSl ol SR SRR ST

- — i S e e —— ——— ek

Problem Reduction and Game Playing

3.1 Introduction

ﬂiﬂﬂﬂ:ﬂ?ﬁﬂi‘luuﬂﬁﬂi‘lUD{]'.‘.‘-BL‘JHN.‘:E.’JUFJI‘;I:L‘!’G:I!JEISEUEDSEEESH“BEE‘SH

So far, we have only considered the search strategies for OR graphs. In this graph, arcs indicate
the number of alternative ways in which a given problem may be solved. We may sometimes
encounter certain real-life problems which are extremely complicated. An effective way of solv-
ing a complex problem is to reduce it to simpler parts and solve each part separately. The problem
is automatically solved when we obtain solutions to all the smaller, simpler problems. This is the
basic intuition behind the method of problem reduction. This method enables us to obtain an
elegant solution to the problem. The structure called AND-OR graph (or tree) is useful for repre-
senting the solution of complicated problems. The decomposition of a complex problem generates
arcs which we call AND arcs. One AND arc may point to any number of successors, all of which
must be solved. The proposed structure is called AND-OR graph rather than simply AND graph.

In this chapter, we will discuss the concept of AND-OR graphs and its use in game playing. Game
playing is one of the most direct applications of state space-search problem-solving paradigm.
However, the search procedures employed in game playing are different from the ones used in
state search problems as these are based on the concept of generate and test philosophy. In this
method, the generator generates individual moves in the search space; each of these moves is then
?Valuated by the tester and the most promising one is chosen. The effectiveness of a search may be
improved by improving the generate-and-test procedures used. The generate procedure should be
such that it generates good moves (or paths), while the test procedure recognizes the best moves
out of these and explores them first. In case of game playing, a change in state in state search
Space is solely caused by the actions from the point of view of one player. However, the points of
View of other players having different goals also have to be taken into consideration. In this chap-
ter, we will devel op search procedures for two-player games as they are more common and easier

to design and execute.

www.Jntufastupdates.com 52

66 Artificlal Intelligence

3.2 Problem Reduction
nmnunuunnnnunuunuunuunuuununnﬂnﬂﬂlﬂﬂbﬂﬂﬂﬂﬂﬂﬂEﬂn:nh‘
In real-world applications, complicated problems can be divided into simpl.er sub-l?roblem‘
solution of each sub-problem may then be combined to obtain the final solution. A given py,
may be solved in a number of ways. For instance, if you wish to own a cellular phone they, i,
be possible that either someone gifts one to you or you carn money and b.uy one fqr yoursy;.
AND-OR graph which depicts these possibilities is shown in Fig. 3.1 (Rich & Knight, 200
AND-OR graph provides a simple representation of a complex problem and hence aids int,
understanding.

own cellular phone

ol oy

get a gift earn money buy it

Figure 3.1 A Simple AND-OR Graph

Thus, this structure may prove to be useful to us in a number of problems involving rez
situations. To find a solution using AND-OR graphs, we need an algorithm similar to t
algorithm (discussed in Chapter 2) with an ability to handle AND arcs.

Let us consider a problem known as the Tower of Hanoi to illustrate the need of problem-
tion concept. It consists of three rods and a number of disks of different sizes which can slide:
any rod [Paul Brna 1996]. The puzzle starts with the disks being stacked in descending ord
their sizes, with the largest at the bottom of the stack and the smallest at the top, thus mak
conical shape. The objective of the puzzle is to move the entire stack to another rod by usin;
following rules:

. _anl‘);_c;nc.disk may be m?wéd at atlme & : |
. » Each move consists of taking the uppermost disk from one of the rods and sliding it onto anct
. rod, on top of the other disks that may already be present on that rod.

s Nodisk may be placed on top of a smaller disk. .

Consider that there are n disks in one rod (rod_1). Now, our aim is to move these n disksf
rod_1 to rod_2 making use of rod_3. Let us develop an algorithm which shows that this pfﬂH
can be solved by reducing it to smaller problems, Basically the method of recursion will be U

so.ch this problem. The game tree that is generated will contain AND—OR arcs. The soluti®
this problem will involve the following steps: ‘

If n= 1, then simply move the disk from rod_1 to rod_2. If n > 1, then somehow move all (he'
smaller n — 1 disks in the same order from rod_1 to rod_3, and then move the largest disk

-

www.Jntufastupdates.com 53

e R

Problem Reduction and Game Playing 67

2. Final _ X
md’é\?nrgog—:—l dilsllzclslﬁ:rf z:]: rozl 'e:mallcr disks from rod_3 to rod_2. So, the problem is reduced
:—2 dmz- the same method can be emp];’y‘;‘;";gg,tﬁrst from rod_1 to rod_3 and then from rod_3 to

- _ 1mes by renaming the rods. The same strategy can
be used to reduce the problem of n — 1 disks ton—2, n— 3, and s<g) on until only one disk is lge);‘t.

.—a—-——-—‘-—-_—-_'_— -
Example 3.1 Let us consider the case of 3 disks. The start and goal states are shown in Fig. 3.2.

Start State
|
Goal State
&
rod_1 rod_2 rod_3

Figure 3.2 The Start and Goal States of a Three-disk Tower of Hanoi Problem

ly expanded) shown in Fig. 3.3 is an AND-OR graph. Here, we have
h is from root to state A and the other is from root to state A". The
A, B, and C to be achieved to solve the problem. In order to
achieve state A we need to expand itin a similar fashion, which will again require drawing of AND arcs.

The process continues till we achieve the goal state, that is, state C'is achived. It is important to note that
the subtasks in the process are not in ach other and therefore cannot be achieved in parallel.
State B will be obtained after state A e C will be obtained after state B has been

achieved. The second path is from ro B’, and then to state C’. This path is to be
continued till we reach the goal state. A is optimal whereas the path from root

to state A’ is longer.

The search space graph (not complete
shown two alternative paths. One pat
path through A requires all the three states

dependent of €
has been achieved, and stat
ot to state A’, then to state

The path from root to state

We will use the heuristic functibn ffor each node in the AND—OB graph similar to the one used in
the algorithm A* to compute the estimated value. A given node in the graph may be either an OR
node or an AND node. In an AND-OR graph, the estimated costs for all paths generated gro.m t}l1fe
start n . he heuristic function and placed at the start node itself.
ode to level one are calculated bY 0 d nodes on the chosen best path

The best i . the search further; unuse
path is then chosen to continue es ; Ul
are explored and their successors are generated. The heuristic values of the successor nodes are

calculated and the cost of parent nodes is revised accordingly: Thi§ revised cost is pr'cha.gated
back to the start node through the chosen path. Let us explain this concept by considering a

hypothetical example.

www.Jntufastupdates.com 54

68 Arificial Intelligence

Al

s |

rod_1 \\\ rod_2 rod_3
_ 5

\d 4

rod_1 rod_2 rod_3

Figure 3.3 An AND-OR Graph for a Three-disk Problem

Consider an AND-OR graph (Fig. 3.4) where each arc with a single successor has a cost of 1;i
assume that each AND arc with multiple successors has a cost of 1 for each of its components!
the sake of simplicity. In the tree shown in Fig. 3.4, let us assume that the numbers liste!
parenthesis, (), denote the estimated costs, while the numbers in the square brackets, [], repre¢
the revised costs of path, Thick lines in the figure indicate paths from a given node. We begin'
search from start node A and compute the heuristic values for each of its successors, say B! |
(C, D) as 19 and (8, 9) respectively. The estimated cost of paths from A to Bis 20 (19 + costof? |
arc from A to B) and that from A to (C, D) is 19 (8 + 9 + cost of two arcs, A to C and A toD).T
path from A to (C, D) seems to be better than that from A to B. So, we expand this AND palh" ;
extending Cto (G, H), and D to (I, J). Now, the heuristic values of G,H,I,and J are 3,4, 8, an |
respectively, which lead to revised costs of C and D as 9 and 17, respectively. These values' |
then propagated up and the revised costs of path from A to (C, D) is calculated as 28 9+17+ d

of arcs A to C and A to D). -

www.Jntufastupdates.com 55

Problem Reduction and Game Playing 69

Notc.that the revised cost of this path is now 28 instead of the earlier estimation of 19; thus, this
path is no longer the best path now. Therefore, choose the path from A to B for expansion. After
expansion we see thz_lt the heuristic value of node B is 17 thus makin g the cost of the path from A
to B equal to 18. This path is the best so far; therefore, we further explore the path from A to B.

The process conkinues until either a solution is found or all paths lead to dead ends, indicating that
there is no solution. ‘

A
(20) (19) ~— initially estimated values
[18] /%;]=\ oy revised values
B C D
(19 (8) (9) |«—— estimated values
[17] 9] [17] revised values
E F G H l J
(5) (10) (3) (4) 8) ' (7) ~—— estimated values

Figure 3.4 An Example of AND-OR Graph

It should be noted that the propagation of the estimated cost of the path is not relevant in A*
algorithm as it is used for an OR graph where there is a clear path from the start to the current node
and the best node is expanded. In case of an AND-OR graph, there need not be a direct path from
the start node to the current node because of the presence of AND arcs. Therefore, the cost of the
path is recalculated by propagating the revised costs. For handling such graphs, a modified
version of the algorithm A* called AO* algorithm is used. Before discussing AO* algorithm, let us

study the status labelling procedure of a node.

Node Status Labelling Procedure _

At any point in time, a node in an AND-OR graph may be either a terminal node or a non-terminal
AND/OR node. The labels used to represent these nodes in a graph (or tree) are described as follows:

' Terminal node: A terminal node in a search tree is a node that cannot be expanded further. If this
. _node is the goal node, then it is labelled as solved; otherwise, it is labelled as unsolved. It should be |
" noted that this node might represent a sub-problem.)

s Non-terminal AND node: A non-terminal AND node is 1abe]_led as unsolved as soon as one of its
‘ | be unsolvable; it is labelled as solved if all of its successors are solved.

A non-terminal OR node is labelled as solved as soon as one of
as unsolved if all its successors are found to be

* . successors is found to

- .® Non-terminal OR node: :
‘its successors is labelled solved, it is labelled
Ve unsolvable.)

—e

www.Jntufastupdates.com 56

70 Artificial Intelligence

Let us explain the labelling procedure with the help of an example. The AND-OR treg
generated levelwise as shown in Figs 3.5 to 3.7. The first two cycles are shown in Fig, 3 5

In the first cycle, we expand the start node A to node B and nodes (C, D) (Fig. 3.5). The pg,
values at node B and nodes (C, D) are computed as 4 and (2, 3), respectively. The eatlm.md
of paths from A to B and from A to (C, D) are deter mined as 5 and 7, respectively assuming lh
cost of each arc is one. Here dotted lines show propagation of heuristic value Lo the root, Thu
find that the path from A to B is better. In the second cycle, node B is expanded to nodes Ey
(Fig. 3.5). The estimated cost of the path on this route is revised to 8 at the start node A. Thus
best path is found to be that from A to (C, D) instead of A to B.

After one cycle After two cycles |

(i)/ Aw)

o

4
®
=

D - (7) 1
(4) (2) (3) ,f’ (2) (3)

(5) (8)

Figure 3.5 Labelling Procedure: First Two Cycles

In the third cycle, node C is expanded to {G, (H, I)} (Fig. 3.6). Here we notice that the heur
value at nodes H and / is 0 indicating that these are terminal solution nodes; H and / aret
labelled as solved. Node C also gets labelled as solved using the status labelling procedure.

After three cycles

(fg/ \m
ll .

Figure 3.6 Labelling Procedure: Third Cycle

www.Jntufastupdates.com 57

Problem Reduction and Game Playing 71

After four cycles

A~——Solved
D =—— Solved

(iy\i)
’{
C*‘Solved
@ / \ () 9 o
L]
(6) (a) /
@ ©

J
0) (0)
Solved

Figure 3.7 Labelling Procedure: Fourth Cycle

In the fourth cycle, node D is expanded to J (Fig. 3.7). This node is also labelled as solved, and
subsequently node D attains the solved label. The start node A also gets labelled as solved as C and
D both are labelled as solved. Along with the labelling status, the cost of the path is also propa-
gated. In this example, the solution graph with minimal cost equal to 5 is obtained by tracing down

through the marked arrows as A —» (C — (H,I), D =]).
V W

C*——Solved D -'—Unsolved

”/\ AN
/ f\

s G
/‘6’ Yo © o 0
A l
(5)\\\ : - Solved Unsolved
Q
Y,
R
@

 Figure 3.8 Non-Optimal Solution

www.Jntufastupdates.com 58

72 Arificial Intelligence |
d to a solution. Sometimes, the longer

d above. Assume that node J is labelled_'

ry that the shorter path will lea
belled as unsolved. Asaresult 4,

Consider the example discusse

ig. 3 en D i la

le (Fig. 3.7), then D is also R4y

ursallnveigggd t:sc:ﬁ:orlttljezim;gf this path. Therefore, another path, even though having k; g
also be

; to R. and finally, R t0 C (Fig 3,

: - de E is expanded to P, PtoQ, < : !
e, WI'“ bitt:te:oflng Oize;?rgady solved and then in accordance with thffr }lgbilﬁg gzl?ceclﬂr_
e o . . B, and A gt labelled as solved vith the t0121 &35 i shortsePathon]
?:n gc:r tl;an’tht; p;ev;DuS onc coming directly from A to C. However, since the S orter path wil,

lead to a solution (as D is unsolvable), the longer path through R is better.

It is not always necessa
may prove to be better.

Algorithmic Steps for AND-OR Graphs

The following steps are followed while preparing the algorithm for handling AND-OR grapf,

o Initialize graph with start node.
e While (start node is not labelled as SO

paths)) .
{

lved or (unsolved through ay

e Traverse the graph along the best path and expand all unexpandg -
nodes on it; © .’ ' '

e [f node is terminal and the heuristic value of the node is |
label it as solved else label .it as unsolved and propagate tk
status up to the start node;:

e If node is non terminal, add its successors with the heuristi
values in the graph; -

e Revise the cost of the .expanded node and ' ;
along the path till the stgrt node: RTOMIRES S, ot

e Choose the current best path

}

e If (start node = solved), the leaf nodes of th |
, ' e be
g£9 the solution nodes. else no solution exists: St Patliabon. Tt
e op _ : s)

Cyclic Graphs

If the graph is cyclic (containi i
ng cyclic : :
properly unless modified. If the fuczessop;-nhs) then the algorithm outlined above will not W

we must check that the node in th is n
: ¢ graph is not an :
then the newly discovered path to the node may be ;Iizfzgoirn‘ﬁteh;:oﬁc being expanded. If#
pa.

www.Jntufastupdates.com 59

Problem Reduction and Game Playing 73

in the graph wi i T ‘

no;i;cissor’i n cll) wi\rlllllal\)::;lt down to Its immediate successors as well as up to its immediate
prect d , t value (an estimate of the cost of a path from current node to a set of
solution 113 es) a'ssocmted with it. The value of g (cost from start to current node) is not computed
at each node, unlike the case of A* algorithm, as it is not possible to compute a single such value
since there may be many paths to the same state. Moreover, such a value is not necessary because
of the t‘3'13"‘10‘9‘”_1 trﬂVefSlﬂg of the best-known path which guarantees that only nodes that are on
the best path will be considered for expansion. So, h will be a good estimate for an AND-OR
graph search instead of f. While propagating the cost upward to the parent node, the value of g will
be added ttf) h in order to obtain the revised cost of the parent. Further, we have to use the
node-labelling (solved or unsolved) procedure described earlier for determining the status of the
ancestor nodes on the best path. The detailed algorithm for AO* is given below. The threshold
value is chosen to take care of unsolved nodes.

— Algorithm 3.1 AO* Algorithm

e Initially graph G consists of the start node. Call it START:
e Compute h(START);
e While (START is not labelled as either solved OR h(START) > threshold)

DO
{ - .
e Traverse the graph through the current best path starting from
START;
e Accumulate the nodes on the best path which have not yet been
i expanded;
e Select one of those unexpanded .nodes. Call it NODE and expand it;
e Generate successors of-the NODE. [f there are none, then assign
threshold as the value of this NODE (to take care of nodes which
are unsolvable) else for each SUCC which is not an ancestor of
~NODE do the_fo110w1ng:
e Add SUCC to the graph G and compute h value for each SUCC;

. e If h(SUCC) g 0 theh it is a solution node and label it as
_solved; o . |
-"ﬂPropégate the new]y_discovered'1ﬂf0rmat10ﬂ up the graph (def

.% «oscribed: below) ‘

i l,_ : | -
1

{2 R B P AL R S S (Contd)

www.Jntufastupdates.com 60

74 Arificial Intelligence

(Contd)

then path containing all the solved nodes (g

= lved
AUER(STARTER G0 Fred) e 1t h(START) >

tained from the graph) is the solution path els
threshold. then solution cannot be found:

e Stop

—

The algorithm for propagation of the newly discovered information up to the graph is given bl

— Algorithm 3.2 Propagation of Information Up the Graph —

e Initialize 'L with NODE:
e While (L #¢) DO

{

« Select a node from L, such that the selected node has no ances
tor in G occurring in L /* this is to avoid cycle */ and call
it CURRENT;

¢ Remove the selected node from L:

o Compute the cost of each arcs emerging from CURRENT
e Cost of AND arc = sum of [h of each of the nodes at the em

of the arc] + cost of arc itself: ‘

e Assign the minimum of the costs as revised value of CURRENT;

e Mark the best path out of CURRENT (with minimum cost). Mark
CURRENT node as solved if all of the nodes connected to it on
the selected path have been labelled as solved;

e If CURRENT has been marked solved or if the cost of CURRENT wa
just changed, then new status is propagated back up the root 0of
the graph.

e Add all the ancestors of CURRENT to L:

}

Interaction between Sub-Goals

Th&? AO¥* algorithm discussed above fails to take into account an interaction between sub-g*
which may lead to non-optimal solution. Let us explain the need of interaction between sub-¢*

In the graph shown in Fig. 3.9, we assume that both C and D ultimately lead to a solution. In of
to solve A (AND node), both B and D have to be solved. The AO* algorithm considers the sl
of B as a completely separate process from the solution of D. Node B is expanded to C and D
of which eventually lead to solution. Using the AO* algorithm, node C is solved in order to %
B as the path B — C seems to be better than path B — D. We note that it is necessary to solve/
order to solve A. But we realize that node D will also solve B and hence there would be no net!
solve C. We can clearly see that the cost of solving A through the path A - B — D is 9, whet
in case of solving B through C, the cost of A comes out to be 12. Since AO* does not consider ¢
interactions, we may fail to find the optimal path for this problem.

www.Jntufastupdates.com 61

e W T

Problem Reduction and Game Playing 75

|

Solution Solution

Figure 3.9 Interaction between Sub-Goals

3.3 Game Playing

EI B EER AR ER RO G R NEREONREANERNEYOENRODEREANOYRYRNETNEEARIRER

Since the beginning of the Al paradigm, game playing has been considered to be a major topic of Al
as it requires intelligence and has certain well-defined states and rules. A game is defined as a
sequence of choices where each choice is made from a number of discrete alternatives. Each
sequence ends in a certain outcome and every outcome has a definite value for the opening player.
Playing games by human experts against computers has always been a great fascination. We will
consider only two-player games in which both the players have exactly opposite goals. Games can
be classified into two types: perfect information games and imperfect information games. Perfect
information games are those in which both the players have access to the same information about the
game in progress; for example, Checker, Tic-Tac—Toe, Chess, Go,lctc. On t‘he other hand, in imper-
fect information games, players do not have access to complete 1.nformat10n about the game; for
example, games involving the use of cards (such as Bridge) and dlC(?. We wil! restrict- our study to
discrete and perfect information games. A game is said to be discrete if it contains a finite number of

states or configurations.

In the following sections, we will develop search procedures for two-player games as they are
common and easier to design. A typical characteristic of a game is to look ahead at future
Positions in order to succeed. Usually, the optimal solution can be obtained by exhaustive search
if there are no constraints on time and space, but for most of the interesting games, such a solution

is usually too inefficient to be practically used (Rich & Knight, 2003).

www.Jntufastupdates.com 62

Problem Reduction and Game Playing 75

c
(3)

|

Solution Solution

Figure 3.9 Interaction between Sub-Goals

3.3 Game Playing

.ZQQ‘QR‘KHE!ET}'f.!‘.‘!:l'slall;;.'.l{.‘;i i E R RERNREDOEDND DU YR EETYNR O NETaSDEN
Since the beginning of the Al paradigm, game playing has been considered to be a major topic of Al
as it requires intelligence and has certain well-defined states and rules. A game is defined as a
sequence of choices where each choice is made from a number of discrete alternatives. Each
sequence ends in a certain outcome and every outcome has a definite value for the opening player.
Playing games by human experts against computers has always been a great fascination. We will
consider only two-player games in which both the players have exactly opposite goals. Games can
be classified into two types: perfect information games and imperfect information games. Perfect
information games are those in which both the players have access to the same information about the
game in progress: for example, Checker, Tic-Tac-Toe, Chess, Go, etc. On the other hand, in imper-
fect information games, players do not have access to complete information about the game; for
example, games involving the use of cards (such as Bridge) and dice. We will restrict our study to
discrete and perfect information games. A game is said to be discrete if it contains a finite number of

states or configurations.

In the following sections, we will develop search procedures for two-player games as they are
common and easier to design. A typical characteristic of a game is to look ahead at future
Positions in order to succeed. Usually, the optimal solution can be obtained by exhaustive search
if there are no constraints on time and space, but for most of the interesting games, such a solution
is usually too inefficient to be practically used (Rich & Knight, 2003).

www.Jntufastupdates.com Scanned by Ca8Scanner

76 Artificial Intelligence
e Space Problem

versus Stat
blem nes and state SPace prop)

A

between gal
te, intermediate states, rules or Opery,

ate, legal moOves, and winning pog;
he two problcms the cumpurig.Uns

3.3.1 Game Pro

It should be noted that there is
For example, in state space proble
same problem

and a goal state. [n game xge. &
T. To further clarify the corte

a natural correspondcnce
1s, we have d gtart sta
1ave a start st
en t

n
s also we'l
spondence betwe

(goals "
shown in Table 5.1 |
Table 3.1 Comparisons between State Space Problems and Game Problems
J xms
State Space Problems j Game Problu.
States - Legal board posit_l.ons |
il "_._rﬁ':l-]e;s o == - H-Legal moves o
T Goal | Winning positions

ends in a position that can be declared a win for,
a loss for the other, or possibly a draw. A gametree is an explicit representation of all qusible P
of the game. The root node is an initial position of the game. [ts successors are .the positions thy,
first player can reach in one move; their Successors are the positions resulting from the se
player’s moves and so on. Terminal or leaf nodes are represented by WIN, LOSS, or DRAW,
path from the root to a terminal node represents a different complete play of the game.
There is an obvious correspondence between a game Ire€ and an AND-OR tree. The movesa
able to one player from a given position can be represented by the OR nodes, whereas the mu
AND nodes. Therefore, in the game tree, one level 1s treat

available to his opponent are the
an OR node level and other as AND node level from one player’s point of view. On the otherh

in a general AND-OR tree, both types of nodes may be on the same level.

A game begins from a specified initial state and

F}amc thegry is baseq on the philosopl}y of minirpizing the maximum possible loss and maxic

ing the minimum gain. Iq game playing involving computers, one player is assumed to b

computer, while the other is a human. During a game, two types of nodes are encountered, nam

nMAXm, a;; MIN. The M_ AX node will try to maximize its own game, while minimizing the of

a.:siqrsl (the I:g rﬁaﬂ’te‘]f“l;er Ef t;’: two players, MAX and MIN, can play as the first player. We'

g puter to be the MAX player and the opponent to be aimi

; the MIN player. Our aim*

lr;iietglfo?kmfhfz; :: lzil[lh;f ar'[l;? by always making the best possible move atp itsyturn For this

ssible moves i : ' ;

then decide which move is the best fo‘;el\s/lﬁ}t(hi%%ame 7 ERE AL the Sangpiee Bec.” w;
. a :

MAX level and MIN level are generated zaxltcrn::ltleypElrt ¥ ok o laymg, game trees labell®

3.3.2 Status Labelling Procedure in Game Tree

We label each level in the
game tree according to the plas i
i;j::::.aTﬁnle;lf nodes are labelled as WIN, LOSpS sgirgg%@alées d‘]e 'move " tha[hi?l:?
assigned their \;VI(I)\TSEL((;ISC;TI‘)V position from MAX’s point of .viewep(f;ﬁg::ntghonl wl?flt‘)des'
RAW status, each non-terminal node. in the g:mzatree 4t

www.Jntufastupdates.com 64

k

Problem Reduction and Game Playing 77

P process; this process is similar to the

. OR graph, Status labelling procedure for a
In case of game tree is given as follows:

o If; is a non-terminal MAX node, thep

WIN, if any of J’s successor is a WIN
STATUS (j)=<LOSS, ifal J's successor are LOSS -
DRAW, if any of j's successor is a DRAW and none is WIN
e If; is a non-terminal MIN node, they
WIN, if all s successor are WIN
STATUS (/)= {LOSS, if any of J's successor is a LOSS
, DRAW,

if any of ;s successor is a DRAW and none is LOSS

The function STATUS(J) assigns the best status that MAX can achieve from position j if it plays
optimally against a perfect opponent. The status of the le

: . _ af nodes is assigned by the rules of the
game from MAX’s point of view. Status of non-terminal nodes is determined by the labelling
procedure discussed above.

Solving a game tree implies labelliig the root node with one of labels, namely: WIN (W), LOSS
(L), or DRAW (D). There is an optimal playing strategy associated with each root label, which
tells how that label can be guaranteed regardless of the way MIN plays. An optimal strategy for
MAX is a sub-tree in which all nodes, starting from first MAX, are WIN,

a. v —
Level Complete Game Tree with MAX Playing First |
“MAX MAX —=W |
| ! ~ |
MIN ‘[
- |
MAX MAX —L MAX —W MAX —W MAX —W MAX —-D |
| ' g b |
‘ | : |

|) !
H | i |
i | | j

MIN I w W LW

Figure 3.10 A Game Tree in which MAX Plays First

www.Jntufastupdates.com 65

78 Artificial Intelligence

The hypothetical game tree shown in Fig. 3.10 is generated when the MAX player play
As mentioned earlier, the status of the leaf nodes is calculated in accordance with the ny) e-:‘
game as W, L, or D from MAXs point of view. The status labelling procedure is useq t, ' %
the status to non-terminal nodes till root and is shown by attaching the status to the Node b i
lines in the game tree show the winning paths for MAX, while dotted lines show the statyg . |
gation to the root node. It should be noted that all the nodes on the winning path are labe]], q ;
4

The game tree shown in Fig. 3.11 is generated with the MIN player playing first. Here, A ¢
. lose the game if MIN chooses the first path. 1
i]

: N s
Level Complete Game Tree with MIN Playing First
MIN MIN —L ~
MAX MAX —=L MAX '—‘-w N
MIN MIN—L MIN—L MN—L MN—W. MIN—L MIN = |

A 4

[}
f
1

A

———

i
|
|
I
1
!
|
I

MAX

,...
=
<
S
S

w

Figure 3.1 A Game Tree in which MIN Plays First

Let us now consider a real-life, two-player game called Nim.

3.3.3 Nim Game Problem

The Nim game is believed to have originated in China, but the exact location of its orig_i“'E
certain. Charles L. Bouton of Harvard University developed the complete theory of the Nim
in the year 1901. Although it has many versions, we will consider the simplest case.

- The Game There is a single pile of matchsticks (> 1) and two p_lvayers. Moves are madé!
players alternately. In a move, each player can pick up a maximum of half the number of* !
sticks in the pile. Whoever takes the last matchstick loses. :
Let us consider the game for explaining the concept with single pile of 7 matchsticks for tl:f‘]

of simplicity. Each player in a particular move can pick up a maximum of half the nv”

matchsticks from the pile at a given point in time. We will develop complete game tree W

MAX or MIN playing as first player.

www.Jntufastupdates.com 66

Problem Reduction and Game Playing 79

e ance yvith the status labelling procedure. The
of the game, MAX node is assigned the staty a single stick is left at the MAX level then as a rule

pfopagaﬁo\l;lv of astatus.fThe cc?mplcte game tree for Nim with MAX playing first is shown in
Fig. 3.12. We can see from this figure that the MIN player always wins irrespective of the move

made by the first player.
LLev&l __Complete Game Tree for Nim with MAX Playing First
MAX e ——— ——
/2‘ \
MIN 6—=|L 5—=| 4—l
MAX
! ;
2 1 11
MIN 4—L 3—Ww 2—=L 1—W
A . \
1 2 11 ik
i 4 !
‘ e
1 E 101
Y yi
MIN 22— 1—W
A
|
10
Y
MAX {—

Figure-3.12 Game Tree for Nim in which MAX Plays First

Now, let us consider a game tree with MIN as the first playc‘r ar}d see the results. The game tree for
this situation is shown in Fig. 3.13. Thick lines shc?w the winning path for MAX. From the s;?fcﬂ
tree given in the figure, we notice that MAX wins irrespective of the moves of MIN player. Thic

lines show the winning paths where all nodes have been labelled as W.

www.Jntufastupdates.com 67

80 Antificial Intelligence

From the trees given in Figs 3.12 and 3.13, we can infer that the second player aly,,
regardless of the moves of the first player in this particular case.

Since the game is played between computer and a human heing, we will now be discussing G
game-playing strategies with respect to a computer. [n this case, MAX player is considereq
computer program. Let us form ulate some strategy for MAX player so that MAX can win th, B

Strategy If at the time of MAX player’s turn there are N matchsticks in a pile, then May

force a win by leaving M matchsticks for the MIN player to play, where M € {1,3,7, 15 3

...} using the rule of game (that is, MAX can pick up a maximum of half th.c number of g,

sticks in the pile). The sequence {1, 3, 7.15, 31, 63, ...} can be generated using the formyj,,
,2X;)y +1, where X = | fori> 0.

Level | Complete Game Tree for Nim with MIN Playing First

MIN |

- -

e e

MIN PRI T S R —

Figure 3.13 Game Tree for Nim in which MIN Plays First

Now we will formulate a method which will determine the number of matchsticks that have o
picked up by MAX player. There are two ways of finding this number: |

I

www.Jntufastupdates.com _ 68

Problem Reduction and Game Playing 81

o The first method is to look up from the sequence {1, 3,7, 15, 31, 63, ...} and figure out the closest
number IC.SS than the given number N of matchsticks in the pile. The difference between N and that
number gives the desired number of sticks that have to be picked up. For example, if N = 45, the
closest number to 45 in the sequence is 31, so we obtain the desired number of matchsticks to be
picked up as 14 on subtracting 31 from 45. In this case we have to maintain a sequence {1, 3,7, 15,
31, 63, ...).

o The second method is a simple one, in which the desired number is obtained by removing the

most significant digit from the binary representation of N and adding it to the least significant digit
position.

Consider the same example discussed above, where N = 45. The binary representation of 45 is
(101101),. Remove 1 from most significant digit position from (101101), and add it to least
significant position, that is, 001101 + 000001 = 001110 = 14. Thus, 14 matchsticks must be
withdrawn to leave a safe position and to enable the MAX player to force a win. Table 3.2 illus-
trates the working of the second method for some values of N to get the number of matchsticks
that have to be removed.

Table 3.2 Number of Matchsticks to be Removed for MAX to Win

N Binary Sum of 1 with MSD removed | Number of sticks | Number of
Representation from N .~ to be removed 1 sticks to be
of N ; . leftin pile

13 1101 0101+0001 0110=6 | 7

27 11011 | 01011400001 01100=12 | 15

36 100100 | 0001004000001 | 000101=5 | 31

70 |. 1000110 | 0000110+0000001 | 0000111=7 | 63

It should be noted that the complete game tree is never generated in order to guess the best path;
instead, depending on the move made by the MIN player, MAX has to apply the above-mentioned
strategy and play the game accordingly. We can clearly formulate two cases where MAX player
will always win if the above strategy is applied. These cases are as follows:

» CASE1 MAX is the first player and initially there are N & (3,7, 15, 31, 63, ...} matchsticks.
* CASE2 MAX is the second player and initially there are N € {3, 7, 15, 31, 63, ...} matchsticks.

Validity of Cases for Winning of MAX Player
Let us show the validity of the cases mentioned above by considering suitable examples.

www.Jntufastupdates.com 69

B2 Attificial Intelligence

CASE 1 If MAX is the first player and N ¢ {3, 7, 15, 31, 63, ...}, then MAX will alWay

Consider a pile of 29 sticks and let MAX be the first player. The complete game tree for thi,
is shown in Fig. 3.14. From the figure, it can be seen that MAX always wins. This case
validated for any number of sticks ¢ {3, 7, 15, 31, .. .}. Thus, in this case, we can COHCIU
observing the figure that MAX is bound to win irrespective of how MIN plays.

—
If MAX is the first player and N ¢ {3, 7, 15, 31, 63, ...}, then MAX will always win.
T == ‘ =g el
Level Game Tree for Nim with MAX Playing First
MAX ! 29—w o

Picks up 14 sticks
14

MIN
Can pick up
1 to 7 sticks

MAX

Picks up sticks in
such a manner that
7 sticks are left

~MIN
Can pick up
1 to 3 sticks
MAX _ 6—=W 5—W 4—=W
Picks up n sticks
so that 3 sticks are
left g _ 3 2 /
MIN ’ : 3—Ww
Has to pick up '
1 stick ; 1
Y - B
MAX - : | % 2—=W

Picks up 1 stick

MIN | Redaiohdaid n-r1

Figure 3.14 Validity of Case 1 (Example for N = 29)

WWW.J ntufastupdates.com 70

CASE2 IfMAX is the Second player and N <

Consider a pile of 15 sticks ap
case is shown in Fig. 3,15, Frq
can be validated for any nump

——

Level

MIN
Can pick up
1to 7 sticks

\

If MAX is the second pPlayerand N {3, 7.1

Problem Reduction and Game Playing 83

er. The complete game tree for this

. dth Iy 1 2
er of sticks € (3,7, 15, 31, 63, .) WL Ak s T ot

e

5,31, 63, ...}, then MAX will always win.

——
—

Game Tree for Nim with MAX Playing Second
—

MAX

Picks up in
such a way
that 7 sticks
are left

MIN
Can pick 1 to
3 sticks

MAX

Picks up in
such a way
that 3 sticks
are left

6—WwW 5—Ww 4—W

MIN
Can only pick
1 stick

MAX

Picks up 1 stick
so that 1 stick
is left for MIN

} i}

MIN

1—W

There are other two cases wher .
cases have been discussed below with ex
except that whenever possible MAX shoul

3,7,15,31,63,...}.

Figure 3.15 Validity of Case 2 (Example for N = 15)

¢ MAX can force a win if MIN is not playing optimally. These
amples. We do not have any clear strategy for these cases
d leave M matchsticks for MIN to play, where M e {1,

www.Jntufastupdates.com 71

|
Let us consider an €Xxample where
MAX wins in all cases exce
it getting 15.

Problem Reduction and Game Playing 87

N'=29 and let MIN e

_ the fi ;
Pt when it g€ts 15 matchstick o P ayer. Figure 3.18 shows Fhat

S atits turn. MAX might lose in case of

3.4 Bounded Look-Aheaq
Evaluation Functions Strategy and Use of

S = Sl
BEaAasEaoRRq

games, trees of possibilities are too large to be generated
1nal nodes to root in order to determine the optimal first

¢ » 1 heckers, there are 1040 non-terminal nodes and we will
require 1021 centuries if 3 billion nodes are generated every second. Similarly, in Chess, 10,120

non‘-tcrfnmal nodes are genergted and will require 10,101 centuries (Rich & Knight, 2003). There-
tfore, this agproach of generating complete game trees and then deciding on the optimal first move
is not practical. One may think of looking ahead up to a few levels before deciding the move.

and evaluated backward from the term
move. For example, in the game of C

If a player can develop the game tree to a limited extent before deciding on the move, then this
shows that the player is looking ahead; this is called look-ahead strategy. If a player is looking
ahead n number of levels before making a move, then the strategy is called n-move look-ahead.
For example, a look-ahead of 2 levels from the current state of the game means that the game tree
is to be developed up to 2 levels from the current state. The game may be one -ply (depth one), two
-ply (depth two), and so on. In this strategy, the actual value of a terminal state is unknown since
we are not doing an exhaustive search. Hence, we need to make use of an evaluation function.

3.4.1 Using Evaluation Functions

The process of evaluation of a game is determined by the structural features of the current state.

The steps involved in the evaluation procedure are as follows:

atures are of value in a particular game.

ature with a range of possible values.
hts in order to combine all the feature values into a single

* The first step is to decide which fe
o The next step is to provide each fe
s The last step is to devise a set of weig
- .value.

status of successor game states, we have
derstand that certain features n a game
ken it. A proper static evaluation fur}c—
tions into a single overall qual.xty
st judgement regarding

In the absence of a practical way of eva'l u;.atmg t? Zf)t{gi:n
to resort to heuristic approximation. I.t is importa o
position contribute to its strength, while Oth"ersbz?t board situa
tion (heuristic) can convert all judgemenFS af tion is to provide the be
number' Therefore, the purpose of evaluatlon. unc .

-

www.Jntufastupdates.com 72

88 Attificial Intelligence

a position in the game in terms of the probability that the MAX player has a greater o
winning from this position relative to other similar positions. The best evaluation fngyj, ':
based on the experience of experts who are well-versed with the game.

t estimates of a given situation in the game rather thy; &

umerical assessment of how favourable the game g, :k
hich a positive number indicates a good position fo, \,
position. The general strategy for MAX is to play ln

a manner that it maximizes its winning chances, while simultaneously minimizing the Chag,
the opponent. The heuristic values of the nodes are determined at some level and then the g,
accordingly propagated up to the root. The node which offers the best path is then chosey \
a move. For the sake of convenience, let us assume the root node to be a MAX node. Congjy
one-ply and two-ply games shown in Fig. 3.19; the score of leaf nodes is assumed tq be calyy
using cvaluation functions. The values at the nodes are backed up to the starting positiop,

Evaluation functions represcn
calculations. This function provides n

MAX. We can use a convention in w
while a negative number indicates a bad

—

1
Level | - One-Ply Game

B P :

M_Ax A (8)

e !
. B(8) Cc@3) D (-2) g
Y. T]
I
Lavel i Two-Ply Game ;
MAX A(2) i
I 4
| |
| |
MIN i. B (6)

MAX
E(-6) F©) G(0) H (3) 1@) J3) K

Figure3.19 Using Evaluation Functions in One-Ply and Two-Ply Games

The procedu - _)
P re through which the scoring information travels up the game tree is calf

MINIMAX s
) procedure, This proced . o Y
move in two-player game. In p Ure represents a recursive algorithm for choosing ‘hﬁ

value is computed using an eacl. value s associated with each position or state of e
favourable for a ol ation function and it denotes the extent to which it “»e“

ach that position. The player is then required to make 2 mo¥™,
|

www.Jntufastupdates.com 73

Problom Roduction and Gamo Playing 89
maximizes the minimum valye of the

moves. The MINIMAX procedure o
heuristic evaluation function and ol
this algorithm, the moves whicl le
while the moves that lead to o v
procedure i1s a depth-first, deptl

Position resulting from the opponent’s possible following
aluates o

: weh leaf node (up to some fixed depth) using a
ains lh‘c values corresponding to the state, By convention of
' :1(1‘ (o a win of the MAX player are assigned a positive number,
m.ol.lhc MIN player are assigned a negative number, MINIMAX
wlimited scarch procedure,
For a two-player, pcrfcc?t—inl‘brmntion game, the MINIMAX procedure can solve the problem
provided there are sufficient computational resources for the same. This procedure assumes that
each pla_ny takes .thc best option in cach step. MINIMAX procedure starts from the leaves of the
tree (which contain the final scores with respeet to the MAX player) and then proceeds upwards
towards the root. In the following section, we will describe MINIMAX procedure in detail,

3.4.2 MINIMAX Procedure

Lack of sufficient computational resources prevent the gencration of a complete game tree; hence,

the search depth is restricted to a constant. The estimated scores generated by a heuristic
evaluation function for leaf nodes are propagated to the root using MINIMAX procedure,
which is a recursive algorithm where a player tries to maximize its chances of a win while
simultaneously minimizing that of the opponent. The player hoping to achicve a positive number
is called the maximizing player, while the opponent is called the minimizing player. At cach
move, the MAX player will try to take a path that lcads to a large positive number; on the other
hand, the opponent will try to force the game towards situations with strongly ncgative static
evaluations. A game tree shown in Fig. 3.20 is a hypothetical game tree where lcaf nodes show
heuristic values, whereas internal nodes show the backed-up values. This game tree is generated

Level . Game Tree

MIN

MAX

_—————
O pp——--
P

—

-3 3 2

[+}]
]

MIN 2 5 7

Figure 3.20 A Game Tree Generated using MINIMAX Procedure

www.Jntufastupdates.com 74

90 Adificial Intelligence | -
of three. AtMAX level, maximum value of its sy,

th < assion
uiindep f its succesor nodes 1S assigneq

: up!
using MINIMAX procedure up [N level, minimum valiie &

: : as at M
nodes is assigned, whereas & ;
. . sidered above,

de moves to a state that has a score of 5 in the example C(::nto play, it will oy

The Mf-\ﬁ{ I:I) 2 chance to play a move. Whenever MAX gets a chanf;‘ e il i'ts - r‘%‘enere
¥’ n . 4] . »

el +oth 3 from the state generated by MIN player in order (o de€iC Th Ove,

game tree of dept MAX player winning. 1he 3180%

=] y

MINIMAX Procedure

The aleorithmic steps of this procedure may be written as follows:

e Keep on generating the search tree till the limit, say depth d of the tree, has been reached fromﬁ

current position.
o Compute the static value of the leaf nodes at depth d from the current p

evaluation function. -
» Propagate the values till the current position on the basis of the MINIMAX strategy.

-

osition of the game tree U

MINIMAX Strategy

The steps in the MINIMAX strategy are written as follows:

* If the level is minimizing level (level reached during the minimizer’s turn), then
* Generate the successors of the current position
» Apply MINIMAX to each of the successors
¢ Return the minimum of the results

e Ifthe level is a maximizing level (level reached during the maximizer’s turn), then
* Generate the successors of current position
* Apply MINIMAX to each of these successors
e Return the maximum of the results |

Now, using the steps mentioned above, we ¢

: an develo ' . ;
rithm 3.3). Let us represent player MAX by 0 = tarawe MININAK. algndih

I and player MIN by 0 for the sake of convenit’

Algorithm 3.3 makes use of the following functions:

® GEN (Pos): This function generatésa is

, list of § e 2 ‘
variable corresponding to position. L (successors) of the P 0s, where Pos represt?

www.Jntufastupdates.com 75

Problem Reduction and Game Playing 91

— Algorithm 3.3 - MINIMAX Algorithm

MINIMAX(Pos, Depth, Player)

o If DEPTH(Pos, Depth)
Nil})
Else

then return ({Val = EVAL(Pos, Player). Path

e SUCC List = GEN(Pos) -

. gjf]})SUCC_List = Nil then return ({Val = EVAL(Pos, Player), Path =
j
Else
{
o Best_Val = Minimum value returned by EVAL function:
e For each SUCC e SUCC List DO
i
- e SUCC Result = MINIMAX(SUCC. Depth + 1. ~Player);
o NEW Value = - Val of SUCC Result ;
e If NEW Value > Best Val then
{‘
e Best Val = NEW Value;
e Best Path = Add(SUCC, Path of SUCC Result);
)
| }:
e - Return ({Val = Best_Val, Path = Best_Path}):
| ‘ :

}

The MINIMAX function returns a structure consisting of Val field containing heuristic value of
the current state obtained by EVAL function and Path field containing the entire path from the
current state. This path is constructed backwards starting from the last element to the first element
because of recursion.

i i i the use of static evaluation
'Let us consider the followmg. Tic-Tac-Toe example to illustrate the use
function and MINIMAX algorithm.

www.Jntufastupdates.com 76

3.5 Alpha—-Beta Pruning

e mE 3G

g ED R & -G ae

The strategy used to reduce the number of tree branches explored and the number of static evalu-
ation applied is known as alpha-beta pruning. This procedure is also called backward pruning,
which is a modified depth-first generation procedure. The purpose of applying this procedure is to
reduce the amount of work done in generating useless nodes (nodes that do not affect the out-
come) and is based on common sense or basic logic.

The alpha-beta pruning procedure requires the maintenance of two threshold values: one repre-
senting a lower bound (@) on the value that a maximizing node may ultimately be assigned (we
call this alpha) and another representing upper bound (B) on the value that a minimizing node
may be assigned (we call it beta). Each MAX node has an alpha value, which never decreases and
each MIN node has a beta value, which never increases. These values are set and updated when
the value of a successor node is obtained. The search is depth-first and stops at any MIN node
whose beta value is smaller than or equal to the alpha value of its parent, as well as at any MAX
node whose alpha value is greater than or equal to the beta value of its parent.

Levels First step
| MAX A
MIN (s2)B
4
| i
| '
MAX | (2)D
O O =~

Figure 3.22 a-f Pruning Algorithm: Step |

Let us consider the systematic development of a game tree and pru_pagmion of o and J
values using alpha-beta (o—f) pruning algorithm up to second level stepwise in depth-first order.
In Fig. 3.22, the MAX player expands root node A to B and suppose MIN player expands B to D.

www.Jntufastupdates.com 77

B

94 Artificial Intelligence -
i = D. At this point, the uppe
pation function generales 0= 2 for state P Pper l'k,]

Assume that the eval
and is shown as <2.

value =2 at state B |
rom B in
we have to backtrack and generale another state E f the

3.23. The state E gets @ =7 and since there is no further S“CCCSSQ,;‘
23. ie B becomes equal to 2. Once the B value is fixed at MIN leve,

gated to state A as 2 2.

C, and then expand C’s successor to F with

After the first step,
step as shown in Fig.
(assumed), the p value at sta
lower bound o = 2 gels propa

ird step, expand A to another successor
:3::;: ll:}il;r.d;;lpwe rI:ole that the value at state Cis < 1 and the value.of a rfogt.A car::;::ctl b; s,
2: the path from A through C is not useful and thus further expansion 0 is p ! l, herg
there is no need to explore the right side of the tree fully as that result 1s not going to ; ter the,,
decision. Since there are no further successors of A (assumed), the value of root 1s fixed as 2

is, =2
| . __-“"'\
o Tl . ws | W TewEm
MAX (22) ;‘\ MAX | (;2)A
MIN (=2)B MIN | (=2)B (£1)C
A ‘ b/
/‘.' . : ’I‘ |
\ \

Figure 3.23 o~ Pruning Algorithm: Step2 Figure 3.24 o-f3 Pruning Algorithm: Step 3

The complete diagram of game tree generation using (¢—f3) pruning algorithm is show:
Fig. 3.25 as follows:

ﬁ__l._g_:g_lfs_ 4 Game Tree up to Second Level Using o —f Pruning Algorithm

| (=2) ' =
MAX | a(LB) (22) A

| L
|

MN | pus (=2) B
| €2),7 o
| \

i D (7)E () F G x

Figure 3.25 Game Tree Generation using o3 Pruning Algorithm

www.Jntufastupdates.com 78

Problem Reduction and Game Playing 95

1’ \\\ ’.’” ’I'
MAX ; IR p
_ =4 =5
=8 0O >90 >40 >30 >90 o

V IV Il

- py W

|
@)
8 73 9 162 4 1 1353 926572 12 397216 6 4

Y il

x P % X

Figure 3.26 A Game Tree of Depth 3 and Branching Factor 3

Let us write the MINIMAX algorithm using o~f3 pruning concept (Algorithm 3.4). We notice that
at the maximizing level, we use S to determine whether the search is cut-off, while at the minimiz-
ing level, we use o to prune the search. Therefore, the values of ¢ and p must be known at
maximizing or minimizing levels so that they can be passed to the next levels in the tree. Thus,
each level should have both values: one to use and the other to pass to the next level. This

procedure will therefore simply negate these values at each level.

The effectiveness of o — 3 pruning procedure depends greatly on the order in which the paths are
examined. If the worst paths are examined first, then there will be no cut-offs at all. So, the best

possible paths should be examined first, in case they are known in advance.

It has been shown by researchers that if the nodes are perfectly ordered, t.hen the number of te‘nninl?l
nodes considered by search to depth d using ¢ —f pruning 1 apprc?xlmately equal to twice t ;
number of nodes ‘at depth ¢/2 without ¢~ pruning. Thus, the doubling of depth by some searc

Procedure is a significant gain.

www.Jntufastupdates.com 79

e

96 Arificial Intelligence

A|go;ithm 3.4 MINIMAX algorithm using a—p pruning concept
MfNIHAX:dﬁ (Pos. Depth, Player. Alpha. Beta)

{ A
o 1f DEPTH (PoOS. Depth) then return ({Val = EVAL (Pos. pepth) . Path t\

NiT})

Else

{

e SUCC_List = GEN (Pos) .

e IT SUCC_List = Ni1 then return ({Val = EVAL (Pos, pepth) . Patpf
=Nil1}) , ;
Else
{

e For each SUCC ¥ sycc_List 00
{ f
e SUCC_Result = MINIMAX aB (SUCC. Depth + 1. = Player. -Betg,
-Alpha);
o NEW Value = - Val of SUCC_Result
o If NEW Value > Beta then
{
e Beta = NEW_Value;
e Best Path = Add(SUCC, Path of SUCC_Result):
k
o If Beta ’ Alpha then Return ({Val = Beta. Path = Best_Pathl:
e Return ({Val = Beta, Path = Best_Path}):
} L
} . |
2 , g : "

www.Jntufastupdates.com 80

Problem Reduction and Game Playing 99

"B EREESEEE-N-

3.6 Two-Player Perfect Information Games

- =z
danenenogsn

Even though a number of approaches and
difficult to develop programs that can en
game requires thorough analysis and care

ful combination of search and k d e
ers have developed programs for various and knowledge. Al research

games. Some of them are described as follows:

Chess

The first two chess programs were
(1972). Chess is basically a compet
squares arranged in an 8 x 8 square.
or white). These include one king,
pawns. Each of these pieces moves i

proposed by Greenblatt, et al. (1967) and Newell & Simon
itive two-player game played on a chequered board with 64
Each player is given sixteen pieces of the same colour (black
One queen, two rooks, two knights, two bishops, and eight

n a unique manner. The player who chooses the white pieces
gets the first turn. The objective of this game is to remove the opponent’s king from the game. The
player who fulfils this objective first is declared the winner. The players get alternate chances in
which they can move one piece at a time. Pieces may be moved to either an unoccupied square or
a square occupied by an opponent’s piece; the opponent’s piece is then captured and removed
from the game. The opponent’s king has to be placed in such a situation where the king is under
immediate attack and there is no way to save it from the attack. This is known as checkmate. The
players should avoid making moves that may place their king under direct threat (or check).

Checkers

Checkers program was first developed by Arthur Samuel (1959, 1967); it had a learning component
to improve the performance of players by experience. Checkers (or draughts) is a two-player game
played on a chequered 8 x 8 square board. Each player gets 12 pieces of the same colour (dark or
light) which are placed on the dark squares of the board in three rows. The row closest to a player is
called the king row. The pieces in the king row are called kings, while others are called men. Iﬁlings
can move diagonally forward as well as backward. On the other hand, men may move only diago-
nally forward. A player can remove opponent’s pieces from the game by d1agonally jumping over
them. When men pieces jump over king pieces of the opponent, they transform into kmgs. The
objective of the game is to remove all pieces of the opponent from the board or by leading the
opponent to such a situation where the opposing player is left with no legal moves.

Othello

Othello (also known as Reversi) is a two-player bo?rd game vf/hich is Played onan 8 x8 square
grid with pieces that have two distinct bi-coloured sides. The pieces typically are sha'ped. as C?’ltr}l]s’
but each possesses a light and a dark face, each face representing one player. The Ot()jjei"n]\;e oamee
game is to make your pieces constitute a majority of the pieces on the board at the end of t r;is e
by turning over as many of your opponent’s pieces as possible. Advanced c;;;nhpqtcr %rclmggo e
Othello were developed by Rosenbloom in 1982 and subseguently Lee & ajan i

ing to it becoming a world championship level game.

www.Jntufastupdates.com 81

100 Artificial Intelligence

Go

It is a strategic two-player board game in which the players play alternately by placing blag,

white stones on the vacant intersections of a 19 X 19 boz}rd. The object of 1the gtzlrique is to can‘
larger part of the board than the opponent. To achiev.e this, players tr-y to place 1e1r stones in,
aaffam?er that they cannot be captured by .the opposing player. Plac?g Ztonf:cflznos;tg eachQ
helps them support -one another and avoid capture. 01'1 the other tzn ; Pables gla m fara;
creates an influence across d larger part of the board. It 1s a strate_gy at en ;c)l Vers t(? il
defensive as well as an offensive game and choose betweenotaj:tlcal urgency and- strateglc '
ning. A stone or a group of stones is captured and removed if 1t‘ has no empty a Jacer.n intg,
tions, that is, it is completely surrounded by stones of the OppoSINg colour. The game is dec,
over and the score is counted when both players consecutively pass on a turn, mdlcating1

neither side can increase its territory or reduce that of its opponent's.

Backgammon

It is also a two-player board game in which the playing pieces are moved using dice. A player;

by removing all of his pieces from the board. Although luck plays an important role, ther
large scope for strategy. With each roll of the dice a player must choose from numerous opj
for moving his checkers and anticipate the possible counter-moves by the opponent. Player;
raise the stakes during the game. Backgammon has been studied with great interest by comp
scientists. Similar to chess, advanced backgammon software has been developed which is cap:
of beating world-class human players. Backgammon programs with high level of compek
were developed by Berliner in 1980 and by Tesauro & Sejnowski in 1989.

www.Jntufastupdates.com 82

