
Functions- Introduction, Function Definition, the return statement, Required Arguments, Keyword

Arguments, Default Arguments, Variable length Arguments.

Object Oriented Programming: Features of OOP, Merits and Demerits of OOP, Defining

Classes, Creating Objects, Data Abstraction, and Hiding through classes, Class Method and Self

Argument, The init () method, Public and Private data members, Private Methods.

Functions

In Python, a function is a group of related statements that performs a specific task.

Functions help break our program into smaller and modular chunks. As our program grows larger and

larger, functions make it more organized and manageable.

Furthermore, it avoids repetition and makes the code reusable.

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing.

Syntax of Function

def function_name(parameters):

 """docstring"""

 statement(s)

Above shown is a function definition that consists of the following components.

1. Keyword def that marks the start of the function header.

2. A function name to uniquely identify the function. Function naming follows the same rules of writing

identifiers in Python.

3. Parameters (arguments) through which we pass values to a function. They are optional.

4. A colon (:) to mark the end of the function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements must have the same

indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

Example of a function

def greet(name):

 """

 This function greets to

 the person passed in as

 a parameter

 """

 print("Hello, " + name + ". Good morning!")

How to call a function in python?

Once we have defined a function, we can call it from another function, program or even the Python

prompt. To call a function we simply type the function name with appropriate parameters.

>>> greet('Students')

www.Jntufastupdates.com 1

https://www.programiz.com/python-programming/keywords-identifier#rules
https://www.programiz.com/python-programming/keywords-identifier#rules

Hello, Students. Good morning!

Note: Try running the above code in the Python program with the function definition to see the output.

def greet(name):

 """

 This function greets to

 the person passed in as

 a parameter

 """

 print("Hello, " + name + ". Good morning!")

greet('Students')

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

 print("Pragati Engineering College")

my_function()

How Function works in Python?

Arguments
Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You can add as many

arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the function is called,

we pass along a first name, which is used inside the function to print the full name:

def my_function(fname):

 print(fname+ "Students")

my_function("Pragati")

www.Jntufastupdates.com 2

my_function("CSE")

my_function("Section B")

Output:

 Pragati Students

 CSE Students

 Section B Students

Function Arguments
You can call a function by using the following types of formal arguments −

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the number

of arguments in the function call should match exactly with the function definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a syntax

error

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme()

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a function

call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is able to

use the keywords provided to match the values with parameters. You can also make keyword calls to

the printme() function in the following ways −

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result − My string

www.Jntufastupdates.com 3

The following example gives more clear picture. Note that the order of parameters does not matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the function

call for that argument. The following example gives an idea on default arguments, it prints default age if

it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Name: miki

Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the function.

These arguments are called variable-length arguments and are not named in the function definition,

unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable

arguments. This tuple remains empty if no additional arguments are specified during the function call.

Following is a simple example −

www.Jntufastupdates.com 4

#!/usr/bin/python

Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print "Output is: "

 print arg1

 for var in vartuple:

 print var

 return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:

10

Output is:

70

60

50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by using

the def keyword. You can use the lambda keyword to create small anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form of an

expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an expression

 Lambda functions have their own local namespace and cannot access variables other than those

in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not equivalent to

inline statements in C or C++, whose purpose is by passing function stack allocation during

invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works −

#!/usr/bin/python

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result −

Value of total : 30

Value of total : 40

www.Jntufastupdates.com 5

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to the caller. A

return statement with no arguments is the same as return None.

The return statement is used to exit a function and go back to the place from where it was called.

Syntax of return

return [expression_list]

This statement can contain an expression that gets evaluated and the value is returned. If there is

no expression in the statement or the return statement itself is not present inside a function, then the

function will return the None object.

All the above examples are not returning any value. You can return a value from a function as follows −

#!/usr/bin/python

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2

 print "Inside the function : ", total

 return total;

Now you can call sum function

total = sum(10, 20);

print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30

Outside the function : 30

Ex: def absolute_value(num):

 """This function returns the absolute

 value of the entered number"""

 if num >= 0:

 return num

 else:

 return -num

print(absolute_value(2))

print(absolute_value(-4))

Output: 2

 4

www.Jntufastupdates.com 6

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends on where

you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular

identifier. There are two basic scopes of variables in Python −

 Global variables

 Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined outside have a

global scope.

This means that local variables can be accessed only inside the function in which they are declared,

whereas global variables can be accessed throughout the program body by all functions. When you call a

function, the variables declared inside it are brought into scope. Following is a simple example −

#!/usr/bin/python

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2; # Here total is local variable.

 print "Inside the function local total : ", total

 return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30

Outside the function global total : 0

Types of Functions

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

2. User-defined functions - Functions defined by the users themselves.

Python Recursion
What is recursion?

Recursion is the process of defining something in terms of itself.

A physical world example would be to place two parallel mirrors facing each other. Any object in

between them would be reflected recursively.

Python Recursive Function

In Python, we know that a function can call other functions. It is even possible for the function to call

itself. These types of construct are termed as recursive functions.

The following image shows the working of a recursive function called recurse.

www.Jntufastupdates.com 7

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function
https://www.programiz.com/python-programming/function

Recursive Function in Python

Following is an example of a recursive function to find the factorial of an integer.

Factorial of a number is the product of all the integers from 1 to that number. For example, the factorial of

6 (denoted as 6!) is 1*2*3*4*5*6 = 720.

Example of a recursive function

def factorial(x):

 """This is a recursive function

 to find the factorial of an integer"""

 if x == 1:

 return 1

 else:

 return (x * factorial(x-1))

num = 3

print("The factorial of", num, "is", factorial(num))

Output

The factorial of 3 is 6

Advantages of Recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems using recursion.

3. Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion

1. Sometimes the logic behind recursion is hard to follow through.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

3. Recursive functions are hard to debug.

www.Jntufastupdates.com 8

Object Oriented Programming

Python has been an object-oriented language since it existed. Because of this, creating and using classes

and objects are downright easy. This chapter helps you become an expert in using Python's object-

oriented programming support.

If you do not have any previous experience with object-oriented (OO) programming, you may want to

consult an introductory course on it or at least a tutorial of some sort so that you have a grasp of the basic

concepts.

However, here is small introduction of Object-Oriented Programming (OOP) to bring you at speed −

Overview of OOP Terminology

 Class − A user-defined prototype for an object that defines a set of attributes that characterize

any object of the class. The attributes are data members (class variables and instance variables)

and methods, accessed via dot notation.

 Class variable − A variable that is shared by all instances of a class. Class variables are defined

within a class but outside any of the class's methods. Class variables are not used as frequently

as instance variables are.

 Data member − A class variable or instance variable that holds data associated with a class and

its objects.

 Function overloading − The assignment of more than one behavior to a particular function. The

operation performed varies by the types of objects or arguments involved.

 Instance variable − A variable that is defined inside a method and belongs only to the current

instance of a class.

 Inheritance − The transfer of the characteristics of a class to other classes that are derived from

it.

 Instance − An individual object of a certain class. An object obj that belongs to a class Circle,

for example, is an instance of the class Circle.

 Instantiation − The creation of an instance of a class.

 Method − A special kind of function that is defined in a class definition.

 Object − A unique instance of a data structure that's defined by its class. An object comprises

both data members (class variables and instance variables) and methods.

 Operator overloading − The assignment of more than one function to a particular operator.

Creating Classes

The class statement creates a new class definition. The name of the class immediately follows the

keyword class followed by a colon as follows −

class ClassName:

 'Optional class documentation string'

 class_suite

 The class has a documentation string, which can be accessed via ClassName.__doc__.

 The class_suite consists of all the component statements defining class members, data attributes

and functions.

Example

Following is the example of a simple Python class −

class Employee:

 'Common base class for all employees'

www.Jntufastupdates.com 9

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

 The variable empCount is a class variable whose value is shared among all instances of a this

class. This can be accessed as Employee.empCount from inside the class or outside the class.

 The first method __init__() is a special method, which is called class constructor or initialization

method that Python calls when you create a new instance of this class.

 You declare other class methods like normal functions with the exception that the first argument

to each method is self. Python adds the self argument to the list for you; you do not need to

include it when you call the methods.

Creating Instance Objects

To create instances of a class, you call the class using class name and pass in whatever arguments

its __init__ method accepts.

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class variable would be accessed

using class name as follows −

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together −

#!/usr/bin/python

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"

www.Jntufastupdates.com 10

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

When the above code is executed, it produces the following result −

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time −

emp1.age = 7 # Add an 'age' attribute.

emp1.age = 8 # Modify 'age' attribute.

del emp1.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use the following functions −

 The getattr(obj, name[, default]) − to access the attribute of object.

 The hasattr(obj,name) − to check if an attribute exists or not.

 The setattr(obj,name,value) − to set an attribute. If attribute does not exist, then it would be

created.

 The delattr(obj, name) − to delete an attribute.

hasattr(emp1, 'age') # Returns true if 'age' attribute exists

getattr(emp1, 'age') # Returns value of 'age' attribute

setattr(emp1, 'age', 8) # Set attribute 'age' at 8

delattr(empl, 'age') # Delete attribute 'age'

Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be accessed using dot operator like

any other attribute −

 __dict__ − Dictionary containing the class's namespace.

 __doc__ − Class documentation string or none, if undefined.

 __name__ − Class name.

 __module__ − Module name in which the class is defined. This attribute is "__main__" in

interactive mode.

 __bases__ − A possibly empty tuple containing the base classes, in the order of their occurrence

in the base class list.

For the above class let us try to access all these attributes −

#!/usr/bin/python

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

www.Jntufastupdates.com 11

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

print "Employee.__doc__:", Employee.__doc__

print "Employee.__name__:", Employee.__name__

print "Employee.__module__:", Employee.__module__

print "Employee.__bases__:", Employee.__bases__

print "Employee.__dict__:", Employee.__dict__

When the above code is executed, it produces the following result −

Employee.__doc__: Common base class for all employees

Employee.__name__: Employee

Employee.__module__: __main__

Employee.__bases__: ()

Employee.__dict__: {'__module__': '__main__', 'displayCount':

<function displayCount at 0xb7c84994>, 'empCount': 2,

'displayEmployee': <function displayEmployee at 0xb7c8441c>,

'__doc__': 'Common base class for all employees',

'__init__': <function __init__ at 0xb7c846bc>}

Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances) automatically to free the memory

space. The process by which Python periodically reclaims blocks of memory that no longer are in use is

termed Garbage Collection.

Python's garbage collector runs during program execution and is triggered when an object's reference

count reaches zero. An object's reference count changes as the number of aliases that point to it changes.

An object's reference count increases when it is assigned a new name or placed in a container (list, tuple,

or dictionary). The object's reference count decreases when it's deleted with del, its reference is

reassigned, or its reference goes out of scope. When an object's reference count reaches zero, Python

collects it automatically.

a = 40 # Create object <40>

b = a # Increase ref. count of <40>

c = [b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>

b = 100 # Decrease ref. count of <40>

c[0] = -1 # Decrease ref. count of <40>

You normally will not notice when the garbage collector destroys an orphaned instance and reclaims its

space. But a class can implement the special method __del__(), called a destructor, that is invoked when

the instance is about to be destroyed. This method might be used to clean up any non memory resources

used by an instance.

Example

This __del__() destructor prints the class name of an instance that is about to be destroyed −

#!/usr/bin/python

class Point:

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

www.Jntufastupdates.com 12

 def __del__(self):

 class_name = self.__class__.__name__

 print class_name, "destroyed"

pt1 = Point()

pt2 = pt1

pt3 = pt1

print id(pt1), id(pt2), id(pt3) # prints the ids of the obejcts

del pt1

del pt2

del pt3

When the above code is executed, it produces following result −

3083401324 3083401324 3083401324

Point destroyed

Note − Ideally, you should define your classes in separate file, then you should import them in your

main program file using import statement.

Class Inheritance

Instead of starting from scratch, you can create a class by deriving it from a preexisting class by listing

the parent class in parentheses after the new class name.

The child class inherits the attributes of its parent class, and you can use those attributes as if they were

defined in the child class. A child class can also override data members and methods from the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of base classes to inherit from

is given after the class name −

class SubClassName (ParentClass1[, ParentClass2, ...]):

 'Optional class documentation string'

 class_suite

Example

#!/usr/bin/python

class Parent: # define parent class

 parentAttr = 100

 def __init__(self):

 print "Calling parent constructor"

 def parentMethod(self):

 print 'Calling parent method'

 def setAttr(self, attr):

 Parent.parentAttr = attr

 def getAttr(self):

 print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class

 def __init__(self):

 print "Calling child constructor"

www.Jntufastupdates.com 13

 def childMethod(self):

 print 'Calling child method'

c = Child() # instance of child

c.childMethod() # child calls its method

c.parentMethod() # calls parent's method

c.setAttr(200) # again call parent's method

c.getAttr() # again call parent's method

When the above code is executed, it produces the following result −

Calling child constructor

Calling child method

Calling parent method

Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows −

class A: # define your class A

.....

class B: # define your class B

.....

class C(A, B): # subclass of A and B

.....

You can use issubclass() or isinstance() functions to check a relationships of two classes and instances.

 The issubclass(sub, sup) boolean function returns true if the given subclass sub is indeed a

subclass of the superclass sup.

 The isinstance(obj, Class) boolean function returns true if obj is an instance of class Class or is

an instance of a subclass of Class

Overriding Methods

You can always override your parent class methods. One reason for overriding parent's methods is

because you may want special or different functionality in your subclass.

Example

#!/usr/bin/python

class Parent: # define parent class

 def myMethod(self):

 print 'Calling parent method'

class Child(Parent): # define child class

 def myMethod(self):

 print 'Calling child method'

c = Child() # instance of child

c.myMethod() # child calls overridden method

When the above code is executed, it produces the following result −

Calling child method

www.Jntufastupdates.com 14

Base Overloading Methods

Following table lists some generic functionality that you can override in your own classes −

Sr.No. Method, Description & Sample Call

1
__init__ (self [,args...])

Constructor (with any optional arguments)

Sample Call : obj = className(args)

2
__del__(self)

Destructor, deletes an object

Sample Call : del obj

3
__repr__(self)

Evaluable string representation

Sample Call : repr(obj)

4
__str__(self)

Printable string representation

Sample Call : str(obj)

5
__cmp__ (self, x)

Object comparison

Sample Call : cmp(obj, x)

Overloading Operators

Suppose you have created a Vector class to represent two-dimensional vectors, what happens when you

use the plus operator to add them? Most likely Python will yell at you.

You could, however, define the __add__ method in your class to perform vector addition and then the

plus operator would behave as per expectation −

Example

#!/usr/bin/python

class Vector:

 def __init__(self, a, b):

 self.a = a

 self.b = b

 def __str__(self):

 return 'Vector (%d, %d)' % (self.a, self.b)

www.Jntufastupdates.com 15

 def __add__(self,other):

 return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)

v2 = Vector(5,-2)

print v1 + v2

When the above code is executed, it produces the following result −

Vector(7,8)

Data Hiding

An object's attributes may or may not be visible outside the class definition. You need to name attributes

with a double underscore prefix, and those attributes then are not be directly visible to outsiders.

Example

#!/usr/bin/python

class JustCounter:

 __secretCount = 0

 def count(self):

 self.__secretCount += 1

 print self.__secretCount

counter = JustCounter()

counter.count()

counter.count()

print counter.__secretCount

When the above code is executed, it produces the following result −

1

2

Traceback (most recent call last):

 File "test.py", line 12, in <module>

 print counter.__secretCount

AttributeError: JustCounter instance has no attribute '__secretCount'

Python protects those members by internally changing the name to include the class name. You can

access such attributes as object._className__attrName. If you would replace your last line as following,

then it works for you −

.........................

print counter._JustCounter__secretCount

When the above code is executed, it produces the following result −

1

2

2

www.Jntufastupdates.com 16

Advantages and Disadvantages of Object-Oriented Programming (OOP)
This reading discusses advantages and disadvantages of object-oriented programming, which is a

well-adopted programming style that uses interacting objects to model and solve complex programming

tasks. Two examples of popular object-oriented programming languages are Java and C++. Some other

well-known object-oriented programming languages include Objective C, Perl, Python, Javascript,

Simula, Modula, Ada, Smalltalk, and the Common Lisp Object Standard.

Some of the advantages of object-oriented programming include:

1. Improved software-development productivity: Object-oriented programming is modular, as it

provides separation of duties in object-based program development. It is also extensible, as objects can be

extended to include new attributes and behaviors. Objects can also be reused within an across

applications. Because of these three factors – modularity, extensibility, and reusability – object-oriented

programming provides improved software-development productivity over traditional procedure-based

programming techniques.

2. Improved software maintainability: For the reasons mentioned above, objectoriented software is also

easier to maintain. Since the design is modular, part of the system can be updated in case of issues

without a need to make large-scale changes.

3. Faster development: Reuse enables faster development. Object-oriented programming languages

come with rich libraries of objects, and code developed during projects is also reusable in future projects.

4. Lower cost of development: The reuse of software also lowers the cost of development. Typically,

more effort is put into the object-oriented analysis and design, which lowers the overall cost of

development.

5. Higher-quality software: Faster development of software and lower cost of development allows more

time and resources to be used in the verification of the software. Although quality is dependent upon the

experience of the teams, objectoriented programming tends to result in higher-quality software.

 Some of the disadvantages of object-oriented programming include:

1. Steep learning curve: The thought process involved in object-oriented programming may not be

natural for some people, and it can take time to get used to it. It is complex to create programs based on

interaction of objects. Some of the key programming techniques, such as inheritance and polymorphism,

can be challenging to comprehend initially.

2. Larger program size: Object-oriented programs typically involve more lines of code than procedural

programs.

3. Slower programs: Object-oriented programs are typically slower than procedurebased programs, as

they typically require more instructions to be executed.

4. Not suitable for all types of problems: There are problems that lend themselves well to functional-

programming style, logic-programming style, or procedure-based programming style, and applying

object-oriented programming in those situations will not result in efficient programs.

www.Jntufastupdates.com 17

