
Python Programming (R19)

Unit -2

Topics to be covered

Control Statements: Definite iteration for Loop, Formatting Text for output,

Selection if and if else Statement, Conditional Iteration the While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data

Encryption, Strings and Number Systems, String Methods Text Files.

--

Control Statements

Introduction: The control statements are the program statements that allow

the computer to select a part of the code or repeat an action for specified

number of times. These statements are categorized into categories: Selection

statements, Iterative/Loop statements and Jump statements. First, we will

learn for iterative statement, then we will learn selection statements if and

else, later we will learn conditional iteration statement while.

Definite Iteration: The for Loop

The repetition statements execute an action for specified number of times.

These statements are also known as ‘Loops’. Each repetition of an action is

called ‘Pass’, or ‘Iteration’. If a loop able to repeat an action for a predefined

number of times then it is said to be definite Iteration. The Python’s for loop

supports the definite iteration.

Executing a statement, a Given Number of Times

If we want to print the line “It’s Alive! It’s Alive! It’s Alive”. This can be easily

printed using the definite loop statement as follow:

Exp1.py Output

for i in range(3):

 print("It's Alive!",end=" ")

It's Alive! It's Alive! It's Alive!

This for loop repeatedly calls one function that print () function. The constant

3 for the range() function specifies the number of times to repeat action. If we

www.Jntufastupdates.com 1

Python Programming (R19)

want it 10 or 100 times then we can change 3 to 10 or to 100. The general

form of the for loop will be as follow:

for variable in sequence: # Loop Header

#Loop Body

statement1

statement2

…………

Statement N

The first line of code in a loop is sometimes called the loop header. The

sequence could be list, tuple, set, or string which contain finite number of

elements on which the loop iterates for each iteration. A sequence of elements

also can be created using range () function. The colon (:) ends the loop

header. The loop body comprises the statements in the remaining lines of

code, below the header. All the statements in the loop body must be indented

and aligned in the same column. These statements are executed in sequence

on each pass through the loop.

www.Jntufastupdates.com 2

Python Programming (R19)

Write a python program to demonstrate calculating the exponentiation

using for loop.

We need three variables to represent the number, the exponent, and the

product. We can calculate the product on each pass by repeating the loop for

exponent number of times.

Exp2.py Output

number=int(input('Enter number:'))

exponent=int(input('Enter Exponent
value:'))

product=1

for i in range(exponent):
 product=product*number

 print(product,end=" ")

Enter number:2

Enter Exponent value:3
2 4 8

Count-Controlled Loops

Loops that count through a range of numbers are also called count-controlled

loops. The value of the count on each pass is used in computations. When

Python executes the type of for loop just discussed above, it actually counts

from 0 to the value of the integer expression minus 1 placed inside range ()

function. On each pass through the loop, the loop variable is bound to the

current value of the count.

Fact.py Output

num=int(input('Enter the number:'))

product=1

for i in range(num):
 """i is loop variable,

 its value used inside body

 for computing product"""

 product=product*(i+1)

print(f'{num}! is {product}')

Enter the number:4

4! is 24

Augmented Assignment

Expressions such as x = x + 1 or x = x + 2 occur so frequently in loops. The

assignment symbol can be combined with the arithmetic and concatenation

operators to provide augmented assignment operations. The general form is

as follow:

<variable> <operator>=<expression>

Which is equal to

<variable> =<variable> <operator><expression>

Following are several examples: Num+=2; x*=5; y/=12;

www.Jntufastupdates.com 3

Python Programming (R19)

Traversing the Contents of a Data Sequence

The data sequence can be list, or tuple, string or set. The loop variable is

bound to the next value in the sequence. The sequence of numbers generated

using the range function can be converted into list or tuple. This tuple or list

can be later used in the place of the sequence.

Add.py Output

l=list(range(1,11))

print(l)
s=0

for x in l: #here x is loop variable and

l is list
s=s+x

print('Sum of Elements of list is',s)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Sum of Elements of list is 55

Loops That Count Down

All of our loops until now have counted up from a lower bound to an upper

bound. Once in a while, a problem calls for counting in the opposite direction,

from the upper bound down to the lower bound. When the step argument is

a negative number, the range function generates a sequence of numbers

from the first argument down to the second argument plus 1.

Countdown.py Output

l=list(range(10,0,-1))
print(l)

s=0

for x in l: #here x is loop variable and

l is list
s=s+x

print('Sum of Elements of list is',s)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
Sum of Elements of list is 55

Formatting Text for output

Many data-processing applications in our day to day life require output needs

to be display in a tabular format. In this format, numbers and other

information are aligned in columns that can be either left-justified or right-

justified. A column of data is left-justified if its values are vertically aligned

beginning with their leftmost characters. A column of data is right-justified if

its values are vertically aligned beginning with their rightmost characters.

The total number of data characters and additional spaces for a given

datum in a formatted string is called its field width. The print function

automatically begins printing an output datum in the first available column.

www.Jntufastupdates.com 4

Python Programming (R19)

Python includes a general formatting mechanism that allows the

programmer to specify field widths for different types of data. The simplest

form of this operation is:

<format_string>%<datum>

This version contains a format string, the format operator %, and a single

data value to be formatted. The format string is represented as: %<field

width>s. The format string begins with % operator, and positive number for

right-justification, and ‘s’ is used for string.

Format Information character

Integer d

String s

Float f

The format information for a data value of type float has the form:

%<fieldwidth>.<precision>f

where .<precision> is optional.

Examples:

>>> "%8s" % "PYT" # field width is 8, right justification, datum is string PYT.

' PYT'

>>> "%-8s" % "PYT" # field width is -8, left justification, datum is string PYT.

'PYT '

>>> "%8d" % 1234 # field width is 8, right justification, datum is int 1234.

' 1234'

>>> "%-8d" % 1234 # field width is -8, left justification, datum is int 1234.

'1234 '

>>> "%6.2f" % 1234.678 # field width is 6, 2 decimal points, right justification,

datum is int 1234.678

'1234.68'

Write a python program to display the following table format.

Read the number of years, starting balance, Interest, and Ending balance

from the keyboard.

Year Starting balance Interest Ending balance

1 10000.00 500.00 10500.00

2 10500.00 525.00 11025.00

3 11025.00 551.25 11576.25

www.Jntufastupdates.com 5

Python Programming (R19)

year=int(input('Enter Number of Years:'))

rate=float(input('Enter Rate of Interest:'))

balance=float(input('Enter initial investment:'))

print("%4s%18s%10s%16s" % ("Year", "Starting Balance", "Interest", "Ending

Balance"))

endbal=0.0

for i in range(1,year+1):

 inter=(balance*rate)/100

 endbal=balance+inter

 print("%4d%18.2f%10.2f%16.2f" % (i,balance,inter,endbal))

 balance=endbal

Selection: if and if-else Statements (Two-Way Selection)

Sometimes based on the condition some part of the code should be selected

for execution, otherwise other part of the should be selected for execution.

This kind of statements are called selection statements. If the condition is

true, the computer executes the first alternative action and skips the

second alternative. If the condition is false, the computer skips the first

alternative action and executes the second alternative.

In this section, we explore several types of selection statements, or

control statements, that allow a computer to make choices.

The if-else statement is the most common type of selection statement.

It is also called a two-way selection statement, because it directs the

computer to make a choice between two possible alternatives.

The if-else statement is often used to check inputs for errors and to

respond with error messages if necessary. The alternative is to go ahead and

www.Jntufastupdates.com 6

Python Programming (R19)

perform the computation if the inputs are valid. For example, suppose a

program takes area of a circle as input and need to compute its radius. The

input must always a positive number. But, by mistake, the user could still

enter a zero or a negative number. Because the program has no choice but to

use this value to compute the radius, it might produce a meaningless output

or error message.

If area<=0 then convey user to enter valid area as input

Otherwise compute the radius as sqrt(area/PI)

Here is the Python syntax for the if-else statement:

if <condition>:

<sequence of statements-1>

else:

<sequence of statements-2>

The condition in the if-else statement must be a Boolean expression—that

is, an expression that evaluates to either True or False. The two possible

actions each consist of a sequence of statements. The Flow diagram of the if -

else statement will be as follow as shown in the Figure and Dimond symbol

used for representing the condition.

Write a program to find the radius from the area of the circle.

import math

area=float(input('Enter area:'))

if area<=0:

 print("Wrong Input!")

else:

 radius=math.sqrt(area/math.pi)

 print('The radius is:',radius)

www.Jntufastupdates.com 7

Python Programming (R19)

One-Way Selection Statements

The simplest form of selection is the if statement. This type of control

statement is also called a one-way selection statement, because it consists

of a condition and just a single sequence of statements. If the condition is

True, the sequence of statements will be executed. Otherwise, control

proceeds to the next statement following the entire selection statement.

The Syntax will be as follow:

If <Boolean_Expression>:

Sequence of statement to execute

Next ststement after if selection statement

Flow diagram of if

Multi-Way if Statements

The process of testing several conditions and responding accordingly can be

described in code by a multi-way selection statement. This multi-way

decision statement is preferred whenever we need to select one choice among

multiple alternatives. The keyword ‘elif’ is short for ‘else if’. The else statement

will be written at the end and will be executed when no if or elif blocks are

executed. The syntax of will be as follow:

if Boolean_expression1:

Statements

elif Boolean_expression2:

Statements

elif Boolean_exxpression3:

Statements

else:
Statements

www.Jntufastupdates.com 8

Python Programming (R19)

Flow diagram

Logical Operators and Compound Boolean Expressions

Often a course of action must be taken if either of two conditions is true. For

example, valid inputs to a program often lie within a given range of values.

Any input above this range should be rejected with an error message, and any

input below this range should be dealt with in a similar fashion. The two

conditions can be combined in a Boolean expression that uses the logical

operator or. The logical operator and also can be used to construct a

different compound Boolean expression to express this logic.

Example Program using the logical or

marks=int(input('Enter your marks'))

if marks>100 or marks < 0:

 print('Marks must be within the range 0 to 100')

else:

 print('Here you can write the code to process marks')

Example Program using the logical and

marks=int(input('Enter your marks'))

if marks>0 and marks < 100:

 print('Here you can write the code to process marks')

else:

 print('Marks must be within the range 0 to 100')

www.Jntufastupdates.com 9

Python Programming (R19)

Conditional Iteration The While Loop.

Conditional iteration requires that a condition be tested within the loop to

determine whether the loop should continue. Such a condition is called the

loop’s continuation condition. If the continuation condition is false, the loop

ends. If the continuation condition is true, the statements within the loop are

executed again.

The while loop is conditional iteration statement and is frequently used to

execute a block of statements repeatedly until some condition remains true.

The syntax will be as follow:

 while <condition>:

<sequence of statements>

Here while is the keyword, condition will be always a Boolean expression, and

the loop end with colon (:). The first line is called loop body. The sequence of

statement that we write inside the body is called loop body.

The flow diagram will be as follow:

Write a python program to find the sum of all the numbers entered

from the user.

Tot.py Output

data=input('Enter any number:')

tot=0

while data!="":
 data=int(data)

 tot=tot+data

 data=input('Enter any number:')

print('The sum of numbers is:',tot)

Enter any number:2

Enter any number:3

Enter any number:4
Enter any number:5

Enter any number:

The sum of numbers is: 14

Count Control with a while loop

You can also use a while loop for a count-controlled loops. This loop control

variable must be explicitly initialized before the loop header and

www.Jntufastupdates.com 10

Python Programming (R19)

incremented in the loop body. The count variable must also be examined in

the explicit continuation condition. The following are the some example for

count-controlled loops.

Write a python program to find sum of all the digits of a given number?

Total.py Output

num=int(input('Enter number :'))
rem=0

tot=0

while num>0:
 rem=num%10

 tot=tot+rem

 num=num//10
print('The sum of all digits is:',tot)

Enter number :234
The sum of all digits is: 9

Write a python program to determine whether a given number is

palindrome or not.

Palindrome.py Output

num=int(input('Enter number :'))

rem=0

x=num
rev=0

while num>0:

 rem=num%10

 rev=rev*10+rem
 num=num//10

print('The reversed number is:',rev)

if x==rev:
 print(x,'is palindrome')

else:

 print(x,'is not palindrome')

Enter number :121

The reversed number is: 121

121 is palindrome

Enter number :123

The reversed number is: 321

123 is not palindrome

Write a python program to determine whether a given number is

Armstrong number or not.

A number is an Armstrong Number if it is equal to the sum of its own digits

raised to the power of the number of digits.

Armstrong.py Output

d=input('Enter number :')
num=int(d)

tot=0

x=num
rev=0

Enter number :153
The sum of cubes is: 153

153 is Armstrong

Enter number :435

www.Jntufastupdates.com 11

Python Programming (R19)

while num>0:

 rem=num%10

 tot=tot+(rem**int(len(d)))

 num=num//10
print('The sum of cubes is:',tot)

if x==tot:

 print(x,'is Armstrong')
else:

 print(x,'is not Armstrong')

The sum of cubes is: 216
435 is not Armstrong

Enter number :1634

The sum of cubes is: 1634
1634 is Armstrong

Jump statements with while loop

We can use the jump statements inside the while loop

we have three jump statements: break, continue and pass.

 When break is used inside the while loop it terminates the current loop

and resumes execution at the next statement, just like the traditional

break statement in C.

 The continue statement skips all the remaining statements in the

current iteration of the loop and moves the control back to the top of

the loop.

 The pass statement does nothing, but it simply transfers control to

the next statement.

Else with while loop

It is executed when the condition becomes false (with while loop), but not

when the loop is terminated by a break statement.

Syntax:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print ("i is no longer less than 6")

Strings and Text Files: (Part -2 of Unit 2)

Accessing Character and Substring in Strings

So far, we have learned how to use strings for input and output. We have learned how

to combined two strings which is called concatenation. We also have learned how to fetch each

www.Jntufastupdates.com 12

Python Programming (R19)

character from the string using the for loop. In this section we will learn how to fetch the desired

portions of the string called substrings.

The Structure of Strings

A string is a sequence of zero or more characters. It is treated as a data structure. A data

structure is a compound unit that consists of several smaller pieces of data. When working with

strings, the programmer sometimes must be aware of a string’s length and the positions of the

individual characters within the string. A string’s length is the number of characters it contains.

The length can be obtained using the len() function by passing the string as an argument to it.

The positions of a string’s characters are numbered from 0, on the left, to the length of the

string minus 1, on the right.

In the above string ‘Python’, the number of characters is 6, the position of the starting character

is o, and last character is length of the string minus 1 (i.e 6-1).

The Subscript Operator

Though the for loop helps to fetch individual characters from the given string. Sometimes it

may be need to extract the character at specified position. This can be done using the subscript

operator. The form of a subscript operator is the following:

<a string> [<an integer expression>]

The first part of the subscript operator is the string that you want to inspect, the integer

expression in square brackets is the position of the character that we want to inspect in that

string. This integer expression is also called ‘Index’. Example:

S= “Python”

S[0] -> gives ‘P’

S[1] -> gives ‘y’

S[5] -> gives ‘n’

Slicing for Substrings

The portions of the strings or parts of the strings are called “Substrings”. we can use Python’s

subscript operator to obtain a substring through a process called slicing. To extract a substring,

the programmer places a colon (:) in the subscript. An integer value can appear on either side

of the colon. The form of the slicing will be as follow: <a string> [start_position :

End_position], here the substring is obtained from the start_position but not including the

End_position.

www.Jntufastupdates.com 13

Python Programming (R19)

Example:

S[0:3] -> gives a substring ‘Pyt’

S[2:5] -> gives the substring ‘tho’

Testing for a Substring with the in Operator

Sometimes we want to fetch the strings from the list of strings that contain a substring. This

can be done using the membership operator ‘in’. If the substring is part of the strings in a list

then we want to put all such strings into separate list or can be displayed.

Example program:

Write a python program that display all the strings that match with the given substring.

l=['prg1.py','sort.txt','substring.py','add.c','mul.cpp','eventest.py']

l2=[]

sub=input('Enter the substring:')

for x in l:

 if sub in x:

 l2.append(x)

 print(x)

#display final list2

print(l2,end=" ")

Data Encryption

The information travelling through the network is vulnerable(exposed) to the spies and

potential thieves. By using the right sniffing software, a person can get the information passing

between any two computers. Many applications use Data Encryption to protect the information

transmitted on the network.

General scenario of security attacks

Security attack: Any action that compromises the security of information owned by an

organization is called security attack.

Security attacks are classified into two: Passive and Active

Passive Attacks - Passive attacks are in the nature of eavesdropping (secretly listening private

conversation) on transmissions. There are two types as follow:

 Release of message contents –unauthorized person listens to the message from sender

to the receiver

 Traffic analysis - unauthorized person observes the patterns of messages.

www.Jntufastupdates.com 14

Python Programming (R19)

Active Attacks

Active attacks involve some modification of data stream or the creation of a false stream. These

are sub divided into four categories :

 Masquerade-one entity pretends to be a different entity

 Replay- involves the passive capture of a data until its subsequent retransmission to

produce an unauthorized effect.

 modification of messages - some portion of a legitimate message is altered

 denial of service -Another form of service denial is the disruption of an entire network

Need of data encryption

The process of converting the information in such way that it cannot be understood by the

unauthorized user is called data encryption. The reverse process is called decryption. Some

application protocols such as FTPS, and HTTPS are used to provide security to the information

transmitted over the network.

Basics of Data Encryption

 The information that is to be transmitted is called ‘Plain Text’

 The sender encrypts the message by translating it into a secret code, which is known as

‘Cipher Text’

 The receiver at the other end decrypts the cipher text into original message or plain text.

 Both parties use keys to encrypt and decrypt messages which are known as secret keys.

 A very simple encryption method that has been in use for thousands of years is called a

Caesar cipher.

Caesar cipher

 This encryption strategy replaces each character in the plain text with the character that

occurs at given distance away in the sequence.

 For positive distances, the method wraps around to the beginning of the sequence to

locate the replacement characters for those characters near its end.

 For example, if the distance value of a Caesar cipher equals five characters, the string

“invaders” would be encrypted as “nsafijwx.”

 Here, ‘invaders’ is called plain text and ‘nsafijwx’ is called cipher text.

www.Jntufastupdates.com 15

Python Programming (R19)

Implementing Caesar cipher method for encryption

pt=input('Enter your text:')

dist=int(input('Enter distance:'))

ct=""

for ch in pt:

 ordvalue=ord(ch)

 ciphervalue=ordvalue+dist

 if ciphervalue>ord('z'):

 ciphervalue=ord('a')+dist-(ord('z')-ordvalue+1)

 ct=ct+chr(ciphervalue)

print(ct)

Implementing Caesar cipher method for decryption

code=input('Enter your text:')

dist=int(input('Enter distance:'))

plaintext=""

for ch in code:

 ordvalue=ord(ch)

 ciphervalue=ordvalue-dist

 if ciphervalue<ord('a'):

 ciphervalue=ord('z')-(dist-(ord('a')-ordvalue+1))

 plaintext=plaintext+chr(ciphervalue)

print(plaintext)

Strings and Number Systems

When you perform arithmetic operations, you use the decimal number system. This system,

also called the base ten number system, uses the ten characters 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as

digits. The binary number system is used to represent all information in a digital computer.

The two digits in this base two number system are 0 and 1. To identify the system being used,

you attach the base as a subscript to the number. For example, the following numbers represent

the quantity 41510

www.Jntufastupdates.com 16

Python Programming (R19)

The digits used in each system are counted from 0 to n - 1, where n is the system’s base.

• Binary system base is 2, hence it includes digits from 0 to 2-1 [0,1]

• Octal system base is 8, hence it includes digits from 0 to 8-1 [0,1,2,3,4,5,6,7]

• Decimal system base is 10, hence it includes digits from 0 to 10-1 [0,1,2,3,4,5,6,7,8,9]

• Hexadecimal system base is 16, hence it includes digits from 0 to 16-

1[0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]

The Positional System for Representing Numbers

 The value of each digit in a number is determined by the digit’s position in the

number.

 In other words, each digit has a positional value.

 The positional value of a digit is determined by raising the base of the system to

the power specified by the position (baseposition).

 For an n-digit number, the positions (and exponents) are numbered from n - 1

down to 0, starting with the leftmost digit and moving to the right.

 the positional values of the three-digit number 41510 are 100 (102), 10 (101), and 1

(100) { where n is 3, hence positions are 3-1 to 0}

 To determine the quantity represented by a number in any system from base 2

through base 10, you multiply each digit (as a decimal number) by its positional

value and add the results.

 The following example shows how this is done for a three-digit number in base

10:

Converting Binary to Decimal

 Like the decimal system, the binary system also uses positional notation.

 However, each digit or bit in a binary number has a positional value that is a

power of 2.

 The binary number can be referred as a string of bits or a bit string.

 To get the decimal number, multiply the value of each bit (0 or 1) by its positional

value and add the results. Let’s do that for the number 11001112:

www.Jntufastupdates.com 17

Python Programming (R19)

Implementing Binary number to Decimal number in Python

Implementing Decimal to Binary in Python

bstring=input('Enter the bit string :')

decimal=0

exponent=len(bstring)-1

for digit in bstring:

 decimal=decimal+int(digit)*2**exponent

 exponent=exponent-1

#printing the equivalnet decimal value

print('The decimal value is :',decimal)

Enter the bit string :101

The decimal value is : 5

Enter the bit string :1100111

The decimal value is : 103

www.Jntufastupdates.com 18

Python Programming (R19)

Octal and Hexadecimal

Numbers

 We have function

like oct() and hex() to

convert the numbers into

decimal to octal, and

decimal to hexadecimal

numbers.

 To convert from

octal to binary, you start

by assuming that each

digit in the octal number

represents three digits in

the corresponding binary

number.

 You then start with the leftmost octal digit and write down the corresponding binary

digits, padding these to the left with 0s to the count of 3, if needed.

 Each digit in the hexadecimal number is equivalent to four digits in the binary

number.

Enter number:10

 5 0 0

 2 1 10

 1 0 010

 0 1 1010

The binary representation is: 1010

decimal=int(input('Enter number:'))

bstring=""

if decimal ==0:

 print(0)

else:

 while decimal >0:

 rem=decimal%2

 bstring=str(rem)+bstring

 decimal=decimal//2

 print("%5d%8d%12s" % (decimal, rem, bstring))

 print('The binary representation is :',bstring)

www.Jntufastupdates.com 19

Python Programming (R19)

 Thus, to convert from hexadecimal to binary, you replace each hexadecimal digit with

the corresponding 4-bit binary number.

 To convert from binary to hexadecimal, you factor the bits into groups of four and

look up the corresponding hex digits.

String Methods

Text processing involves many different operations on strings. Python

includes a set of string operations called methods. A method behaves like

a function, but has a slightly different syntax. Unlike a function, a Method

is always called with a given data value called an object, which is placed

before the method name in the call. The syntax of a method call is the

following:

<object>.method_name(arg1,arg2,….argn)

Example:

txt=“apple is good for health than mango, one apple a day keeps a doctor

away”.

print(txt.count(‘apple’))

Methods can also expect arguments and return values. A method knows

about the internal state of the object with which it is called. The methods

are as useful as functions, but we need to use the dot notation which we

have already discussed with module concept. Every data type includes a

set of methods to use with objects of that type.

We will see some useful methods of string object.

Method Description Example

s.center(width) Returns a copy of s

centered within the

given number of

spaces.

s='apple’

s.center(20)

' apple '

www.Jntufastupdates.com 20

Python Programming (R19)

s.count(substring,

start,end)

Returns the number

of non-overlapping

occurrences of

substring in s. start

and end are used to

verify in a slice

txt=“apple is good for health

than mango, one apple a day

keeps a doctor away”

txt.count(‘apple’)

s.endswith(substring) Returns True if s

ends with substring

or False

otherwise

 s='program1.py'

s.endswith('.py')

True

s.find(substring) Returns the index of

first occurrence of

substring if found,

otherwise return -1

 s='My kids like apple than

orange'

s.find('apple')

13

>>> s.find('papaya')

-1

s.isalpha() Returns True if s

contains only letters
or

False otherwise.

s='My kids like apple than

orange'
>>> s.isalpha()

False

>>> s="apples"

>>> s.isalpha()

True

s.isdigit() Returns True if s

contains only digits
or

False otherwise

>>> s='123456'

>>> s.isdigit()

True

s.join(sequence) Takes all the items in

the sequence, and

joins them into one

string using the

separator as string.

>>>

l=['twitter','facebook','whatsapp']
>>> '#'.join(l)

'twitter#facebook#whatsapp'

s.lower() Returns a copy of s

converted to

lowercase

>>> s='APPLE'

>>> s.lower()

'apple'

www.Jntufastupdates.com 21

Python Programming (R19)

s.replace(old, new) Returns a copy of s
with all occurrences
of substring old

replaced by new.

>>> s='i like ice cream. it is very
tasty'

>>> s.replace('i','I')

'I lIke Ice cream. It Is very tasty'

s.split([sep]) Splits the string into

list of words using

the separator. The

default separator is

space. We can use

comma, or any other

character as

separator.

>>> s='hello, i am KSR, i teach

python programming'

>>> s.split(',')
['hello', ' i am KSR', ' i teach

python programming']

s.startswith(substring) Returns True if the

string starts with the

specified substring,

otherwise False

>>> s='Python is powerful

language among all oop'

>>> s.startswith('Pyt')
True

>>> s.startswith('pyt’)

False

s.strip([aString]) Removes the white

spaces in the

beginning and

ending of a string

>>> s=' APPLE '
>>> s

' APPLE '

>>> s.strip()

'APPLE'

s.upper() Returns a copy of s

converted to

uppercase.

>>> s='apple'

>>> s.upper()

'APPLE'

s.isalnum() Returns if the string

contains

alphanumeric

characters, otherwise

False

>>> s='apple’
>>> s.isalnum()

True

s.isalpha() Returns True if the

string contains only

alphabets otherwise

False.

>>> s='Python Programming'
>>> s.isalpha()

False

s.title() Converts the given

string into title

format, where first

>>> s='python programming'

>>> s.title()

'Python Programming'

www.Jntufastupdates.com 22

Python Programming (R19)

character of each

word is capitalized

Some other methods of string class

Lstrip() - Used to remove leading spaces

Rstrip() - Used to remove spaces after the string or trailing spaces

Istitle() -used to test whether it is a title or not. If it is title returns True,

otherwise returns False.

Casefold() - The casefold() method is an aggressive lower() method which

converts strings to case folded strings for caseless matching.

Format() –Format Type

:<, left assign

:> , Right assign

:, Inserts comma as thousand separator

:b, converts string into binary

:o, converts string into octal

:x, converts string into hexadecimal

Example:

‘{:,}’.format(12345678)

Output:

12,345,678

Isidentifier() -used to test whether it is an identifier.

Maketrans(‘s1’,’s2’) – Creates a translate table.

Translate(table) - This translate the string using the translate table.

Partition(substring) -The partition() method searches for a specified string,

and splits the string into a tuple containing three elements.

Text Files

Using a text editor such as Notepad or TextEdit, you can create, view, and

save data in a text file. The data in a text file can be viewed as characters,

www.Jntufastupdates.com 23

Python Programming (R19)

words, numbers, or lines of text. When the data are treated as numbers (either

integers or floating-points), they must be separated by whitespace

characters—spaces, tabs, and newlines. For example, a text file containing

six floating-point numbers might look like:

34.6 22.33 66.75 77.12 21.44 99.01

All data output to or input from a text file must be strings. Thus, numbers

must be converted to strings before output, and these strings must be

converted back to numbers after input.

Writing Text to a File

 Data can be output to a text file using a file object.

 Python’s open function, which expects a file pathname and a mode string

as arguments, opens a connection to the file on disk and returns a file

object.

 The mode string is 'r' for input files and 'w' for output files.

 Thus, the following code opens a file object on a file named myfile.txt for

output:

 f=open(“myfile.txt”,'w')

 If the file does not exist, it is created with the given pathname.

 If the file already exists, Python opens it. When data are written to the file

and the file is closed, any the data that is already existing in the file will be

erased.

 String data are written (or output) to a file using the method write method

with the file object. The write method expects a single string argument.

 If you want the output text to end with a newline, you must include the

escape character \n in the string.

 f.write(“First line.\nSecond line.\n”)

 When all of the outputs are finished, the file should be closed using the

method close, as follows:

 f.close()

f=open('firstfile.txt','w')

f.write('Python is the number 1 language among the existing languages.\

 \n It is an object oriented programming language.\

 \n It is high-level and easy language\n')

f.close()

Output

www.Jntufastupdates.com 24

Python Programming (R19)

Writing Numbers to a File

 The file method write expects a string as an argument. Therefore, other

types of data, such as integers or floating-point numbers, must be

converted to strings before being written to an output file.

 These data types can be easily converted into string using the str()

function.

 The resulting strings are then written to a file with a space or a newline

as a separator character.

 We can generate random numbers and put them in a file using the

write() function by converting them to string using str() function.

Source Code

import random

f=open('nums.txt','w')

for n in range(20):

 number=random.randint(1,100)

f.write(str(number)+"\n")

f.close()

Reading Text from a File

www.Jntufastupdates.com 25

Python Programming (R19)

 You open a file for input in a manner similar to opening a file for output.

 The only thing that changes is the mode string, which, in the case of

opening a file for input, is 'r’.

 However, if the pathname is not accessible from the current working

directory, Python raises an error.

 Here is the code for opening myfile.txt for input:

 F=open(‘myfile.txt’, ‘r’)

 There are several ways to read data from an input file.

o We can use read() function which reads the entire content of a

file as single string.

o We can use for() loop which considers the file object as a lines of

text.

o We can use the readline() method of file object which is used to

read specific line from the file (say first line).

using the readline() method to read a line

#using the read() function

f=open('firstfile.txt','r')

s=f.read()

print(s)

#using the for() loop

f=open('firstfile.txt','r')

for line in f:

 print(line, end="")

www.Jntufastupdates.com 26

Python Programming (R19)

using the readline() method to read all the lines

Reading Numbers from a File

 All of the file input operations return data to the program as strings.

 If these strings represent other types of data, such as integers or

floating-point numbers, the programmer must convert them to the

appropriate types before processing them further.

 Each line in the file may contain spaces. These spaces can be removed

using the strip() method of the string class.

Example Program to add all the integers in a text file

f=open('nums.txt','r')

sum=0

for line in f:

 n=line.strip()

 sum=sum+int(n)

print('The sum of all the numbers is:',sum)

Accessing and Manipulating Files and Directories on Disk

#using the readline() method to read a line

of file object

f=open('firstfile.txt','r')

print(f.readline())

#reading all the lines

f=open('firstfile.txt','r')

while True:

 line =f.readline()

 if line=="":

 break

print(line)

www.Jntufastupdates.com 27

Python Programming (R19)

 Sometimes it is better to test the current working directory for a file

whether it is existing or not.

 We can know the current working directory

 We can list all the files in the current working directory

 We can create new directory

 os module functions

os module function Description

chdir(path) Changes the current working directory to path

getcwd() Returns the path of the current working
directory.

listdir(path) Returns a list of the names in directory named

path.

mkdir(path) Creates a new directory named path and places
it in the current working directory.

remove(path) Removes the file named path from the current

working directory.

rename(old, new) Renames the file or directory named old to new

os.path functions

os.path functions Description

exists(path) Returns True if path exists and False otherwise.

isdir(path) Returns True if path names a directory and False

otherwise.

isfile(path) Returns True if path names a file and False
otherwise.

getsize(path) Returns the size of the object names by path in

bytes.

Example:

• os.path.exists(‘nums.txt’)  True
• Os.path.isdir(os.getcwd())  True
• os.path.isfile('nums.txt’)  True
• os.path.getsize(os.getcwd())  12288 bytes

www.Jntufastupdates.com 28

Python Programming (R19)

*******End of Unit 2*******

www.Jntufastupdates.com 29

	Casefold() - The casefold() method is an aggressive lower() method which converts strings to case folded strings for caseless matching.

