
Unit-1

Topics to be covered

Introduction: Introduction to Python, Program Development Cycle, Input,
Processing, and Output, Displaying Output with the Print Function,
Comments, Variables, Reading Input from the Keyboard, Performing
Calculations, Operators. Type conversions, Expressions, More about Data
Output.
Data Types, and Expression: Strings Assignment, and Comment, Numeric
Data Types and Character Sets, Using functions and Modules.
Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements,

Nested Decision Structures, Comparing Strings, Logical Operators, Boolean
Variables.
Repetition Structures: Introduction, while loop, for loop, Calculating a
Running Total, Input Validation Loops, Nested Loops.

I. Introduction

Introduction to Python

Python was created by Guido Van Rossum, who was a Dutch person from

Netherlands in the Year 1991. Guido Van Rossum created it when he was

working in National Research Institute of Mathematics and Computer

Science in Netherlands. He thought to create a scripting language as a

“Hobby” in Christmas break in 1980. He studied all the languages like ABC

(All Basic Code), C, C++, Modula-3, Smalltalk, Algol-68 and Unix Shell and

collected best features. He stared implementing it from 1989 and released

first working version of Python in 1991. He named it as “Python”, being a

big fan of “Monty Python’s Flying Circus” comedy show broadcasted in

BBC from 1969 to 1974.

Python is a high-level, general-purpose programming language for

solving problems on modern computer systems. The language and many

supporting tools are free, and Python programs can run on any operating

system. You can download Python, its documentation, and related

materials from www.python.org.

Program Development Cycle

The Program Development Cycle (PDC) has various states as follow:

a. Problem Definition: Here the formal definition o the problem is

stated. This stage gives thorough understanding of the problem, and

www.Jntufastupdates.com 1

Python Programming (R19)

http://www.python.org/

all the related factors such as input, output, processing

requirements, and memory requirements etc.

b. Program Design: Once the problem and its requirements have been

identified, then the design of the program will be carried out with

tolls like algorithms and flowcharts. An Algorithm is a step-by-step

process to be followed to solve the problem. It is formally written

using the English language. The flowchart is a visual

representation of the steps mentioned in the algorithm. This

flowchart has some set of symbols that are connected to perform the

intended task. The symbols such as Square, Dimond, Lines, and

Circles etc. are used.

Adding two integer numbers

Algorithm Flowchart

i. Declare variables a,b,c
ii. Read a, and b from

keyboard

iii. Add a, b and store result

in c

iv. Display result

c. Coding: Once the design is completed, the program is written using

any programming language such as C, C++, Python, and Java etc.

The Coding usually takes very less time, and syntax rules of the

language are used to write the program.

adding two integers numbers in Python

a=int(input('Enter a'))

b=int(input('Enter b'))

c=a+b

print('The sum is',c)

www.Jntufastupdates.com 2

d. Debugging: At this stage the errors such as syntax errors in the

programs are detected and corrected. This stage of program

development is an important process. Debugging is also known as

program validation.

e. Testing: The program is tested on a number of suitable test cases.

The most insignificant and the most special cases should be

identified and tested.

f. Documentation: Documentation is a very essential step in the

program development. Documentation helps the users and the who

actually maintain the software.

g. Maintenance: Even after the software is completed, it needs to be

maintained and evaluated regularly. In software maintenance, the

programming team fixes program errors and updates the software

when new features are introduced.

Input, Processing, and Output

The data that is given to the programs is called input. This input is

accepted from some source, and it is processed inside the program, and

then finally output is sent to some destination. In terminal-based

interactive programs, the input source is the keyboard, and the output

destination is the terminal display. The Python shell itself is such a

program; its inputs are Python expressions or statements. This input is

processed and out is displayed in the shell itself.

The programmer can also force the output of a value by using the

print function. The simplest form for using this function looks like the

following:

print(values or expression, sep=‘ ’, end=‘ ’, file=sys.stdout, flush=true)

www.Jntufastupdates.com 3

Parameters:

value(s) or expression(s): Any value, or expression that gives a value.

This will be converted to string before printed.

sep=‘separator’: (Optional) Specify how to separate the objects, if there

is more than one. Default: ‘ ’

end=‘end’: (Optional) Specify what to print at the end. Default : ‘\n’

file: (Optional) An object with a write method. Default :sys.stdout

flush: (Optional) A Boolean, specifying if the output is flushed (True)

or buffered (False). Default: False

>>> print('Hello, CSE Students')

Hello, CSE Students

>>> print(12*3/4)

9.0

>>> print(1,2,3,4,sep='-',end='$')

1-2-3-4$

When we are really working with python programs, they often require

input from the user. The input can be received from the user using the

input function. When you are working with input () function it causes

the program to stop until the user enters the input and presses the

enter button. The program later uses the input given by the user and

processes it to display output using print () function directly to the

console or saves it to the specified file with file parameter. The syntax

of the input function will be as follow:

var_name=input(‘Enter value for the variable’)

The input function does the following:

www.Jntufastupdates.com 4

 Displays a prompt for the input. In this example, the prompt is

“Enter value for the variable”.

 Receives a string of keystrokes, called characters, entered at the

keyboard and returns the string to the shell.

Displaying Output with the Print Function

Even though there are different ways to print values in Python, we

discuss two major string formats which are used inside the print()

function to display the contents onto the console.

 str.format() method

 f-strings

str.format() –this function is used to insert value of a variable into

another string and display it as a single string.

Syntax: str.format(p0,p1,..k0=val1,k1=val1..), where p0,p1 are

called positional, and k0,k1 are called keyword arguments.

Positional arguments are accessed using the index, and keyword

arguments are accessed using the name of the argument.

f-strings -Formatted strings or f-strings were introduced in Python

3.6. A f-string is a string literal that is prefixed with “f”.

Using str.format() with positional arguments

dataoutput.py Output

#more about data output

country=input('Enter your country')

print('I Love my { }'.format(country))

Enter your country india

I Love my india

Where { } are called placeholder. The value of the variable is placed

inside the placeholder according to the position. The arguments are

placed according to their position.

www.Jntufastupdates.com 5

dataout.py Output

branch=input('Enter branch name')

year=int(input('Enter the year of

study'))

print('The branch name is {0} and the
year is {1}'.format(branch,year))

Enter branch name CSE

Enter the year of study 2

The branch name is CSE
and the year is 2

Ex: print('The branch name is {1} and the year is

{0}'.format(year,branch))

Note: Position is important here. You need to remember the position,

otherwise wrong result is expected

Using str.format() with keyword arguments

It may be difficult for us to remember the order or positions of

arguments. Keyword arguments are suitable when you are not sure

of position, but know the names of the arguments.

dataout1.py

branch=input('Enter branch name')

year=int(input('Enter the year of study'))

print('The branch is {b} and year is {y}'.format(b=branch,y=year))

Output:

Enter branch name cse

Enter the year of study 2

The branch is cse and year is 2

Using f-string

Formatted strings or f-strings were introduced in Python 3.6. A f-

string is a string literal that is prefixed with “f”. These strings may

contain replacement fields, which are expressions enclosed within

www.Jntufastupdates.com 6

curly braces { }. The expressions are replaced with their values. An f

at the beginning of the string tells Python to allow any valid variable

names within the string.

Dataout2.py

branch=input('Enter branch name')

year=int(input('Enter the year of study'))

print(f 'The branch name is {branch} and the year is {year}’)

Output

Enter branch name cse

Enter the year of study 2

The branch name is cse and the year is 2

Comments

Comments are non-executable statements in Python. It means

neither the python interpreter nor the PVM will execute them.

Comments are intended for human understanding. Therefore, they

are called non-executable statements.

There are two types of commenting features available in Python:

These are single-line comments and multi-line comments.

A single-line comment – It begins with a hash (#) symbol, all the

characters until end of the line will be treated as part of comment.

Example: #read input from the keyboard

Multi-line comment – It is useful when we need to comment on

many lines. In Python Triple double quote (""") and triple single

quote (''') are used for Multi-line commenting. It is used at the

beginning and end of the block to comment on the entire block.

Hence it is also called block comments. Example:

www.Jntufastupdates.com 7

Triple double quotes Triple single quotes

“”” python supports multiple
comment using Triple double

quotes”””

‘‘‘python supports multiple
comment using Triple double

quotes’’’

Variables

Variable is the name given to the value that is stored in the memory

of the computer.

Ex: X=5, f=12.34, name=‘Python’, c=2+4j

Value is either string, numeric etc. Example: "Sara", 120, 25.36.

Variables are created when values are first assigned. Variables must

be assigned before being referenced. The value stored in a variable

can be accessed or updated later. No declaration required. The type

(string, int, float etc.) of the variable is determined based on value

assigned. The interpreter allocates memory on the basis of the data

type of a variable.

Naming rules of variable

 Must begin with a letter (a - z, A - B) or underscore (_)

 Other characters can be letters, numbers or _ (alphanumeric

Characters)

 Variables are Case Sensitive (‘age’ , ‘Age’, ‘AGE’ are three

different variables)

 Can be any (reasonable) length (var.bit_length() returns the

number of bits required)

 There are some reserved words which you cannot use as a

variable name because Python uses them for other things.

Assignment Operator

It is used to create a variable and make it reference to a value in the

memory. Variable name is written to the left of =, and value is written

to the right of =

Syntax

<variable> = <expr>

Examples

www.Jntufastupdates.com 8

x=5

Y=10.25

C=3+4J

Multiple Assignment

The basic assignment statement works for a single variable and a

single expression. You can also assign a single value to more than

one variable simultaneously.

Syntax

var1=var2=var3...varn= <expr>

Example :

x = y = z = 1

Example:

x, y, z = 1, 2, "abcd"

In the above example x, y and z simultaneously get the new values

1, 2 and "abcd".

Local and global variables in python

In Python, variables that are only referenced inside a function are

implicitly global. If a variable is assigned a value anywhere within

the function’s body, it’s assumed to be a local variable unless

explicitly declared as global. Variables that are created outside of a

function are known as global variables. Global variables can be used

by everyone, both inside of functions and outside.

var1=‘Python'

#function definition

def fun1():

 var1='Pyt'

www.Jntufastupdates.com 9

 print('Variable value is :',var1)

def fun2():

 global var1 #here global is the keyword that refers global

variable

 print('Variable value is:',var1)

#main function

#calling the functions

fun1()

fun2()

Reading Input from the Keyboard

When we are really working with python programs, they often

require input from the user. The input can be received from the user

using the input function. When you are working with input ()

function it causes the program to stop until the user enters the input

and presses the enter button. The program later uses the input given

by the user and processes it to display output using print () function

directly to the console or saves it to the specified file with file

parameter. The syntax of the input function will be as follow:

var_name=input(‘Enter value for the variable’)

The input function does the following:

• Displays a prompt for the input. In this example, the prompt is

“Enter value for the variable”.

• This function will automatically convert the input into string. If

we want the input in the integer format we need to convert it using

int() function which is known as type conversion. Similarly, we have

float(), complex(), hex(),oct(), ord(),chr(), and str() functions to convert

one type of data into another type.

www.Jntufastupdates.com 10

Write a python program to read your name and display it to

console.

readinput.py Output

name=input('Enter your name:')

print('My name is:',name)

Enter your name: guido vas

rossum

My name is: guido vas rossum

Performing Calculations

Performing calculations involving both integers and floating-point

numbers is called mixed-mode arithmetic. For instance, if a circle

has radius 3, we compute the area as follows:

>>> 3.14*3*3

28.259999999999998

In the binary operation the less general type (int) will be

automatically converted into more general type (float) before

operation is performed. For example:

>>> 9*5.0

45.0

Here, 9 is integer, and 5.0 is float, then the less general type that is

int will be converted into more general type that is float and the

entire expression will result in float value.

The eval () function

We can even use eval () function to perform calculation at the

interpreter. The expression is written inside the single quotes. For

example:

>>> eval('45/9*2')

10.0

www.Jntufastupdates.com 11

Operators

Operators are symbols, such as +, –, =, >, and <, that perform certain
mathematical or logical operation to manipulate data values and

produce a result based on some rules. An operator manipulates the

data values called operands.

Consider the expression,

>>> 4 + 6

where 4 and 6 are operands and + is the operator.

Python language supports a wide range of operators. They are

1. Arithmetic Operators

2. Bitwise Operators

3. Comparison Operators

4. Logical Operators

5. Assignment Operators

6. Membership Operators

7. Identity Operators

Arithmetic Operators

Arithmetic operators are used to execute arithmetic operations such

as addition, subtraction, division, multiplication etc. The following

table shows all the arithmetic operators.

Operator Meaning Example

+ Addition-Used to perform arithmetic addition x+y, results in 10

- Subtraction-Used to perform arithmetic

subtraction

x-y, results in 4

* Multiplication-Used to perform multiplication x*y, results in 21

/ Division-Used to perform division x/y , results in 2

% Modulus-Used to perform modulus operation

(remainder)

x%y, results in 1

// Used to perform floor division (floor value) x//y, results in 2

** Exponent- Used to raise operand on left to the

power of operand on right

x**y, 343

www.Jntufastupdates.com 12

Write a program that asks the user for a weight in kilograms and

converts it to pounds. There are 2.2 pounds in a kilogram.

Prg1.py Output

k=float (input ('Enter kilograms'))

#Convert kgs to pounds

p=k*2.2;

#Display result

print('The equivalent pounds is',p)

Enter kilograms100

The equivalent pounds is

220.00

Write a program that asks the user to enter three numbers (use

three separate input statements). Create variables called total

and average that hold the sum and average of the three numbers

and print out the values of total and average.

Prg2.py Output

x=float(input('Enter x value'))

y=float(input('Enter y value'))

z=float(input('Enter z value'))

#create total and avg variable

total=x+y+z

print('The total is:',total)

#average

average=total/3

print('The average is:',average)

Enter x value12

Enter y value13

Enter z value14

The total is: 39.0

The average is: 13.0

Bitwise Operators

Bitwise operators treat their operands as a sequence of bits (zeroes

and ones) and perform bit by bit operation. For example, the decimal

www.Jntufastupdates.com 13

number ten has a binary representation of 1010. Bitwise operators

perform their operations on such binary representations, but they

return standard Python numerical values. The Following table lists

all the Bitwise operators:

Operator Meaning Example

& Bitwise AND x&y=0

 x=010

 y=111

 x&y= 010 (2)

| Bitwise OR x|y=7

 x=010

 y=111

 x|y=111 (7)

~ Bitwise Not ~x is ,-3

^ Exclusive OR (XOR) X^y=5

 x=010

 y=111

 x|y=101 (5)

>> Shift Right (operand >>no. of bit

positions)

x>>1, results 1

<< Shift Left (operand <<no. of bit

positions)

X<<2, 1000 (8)

Write a python program to demonstrate all the bitwise

operators.

Exp1.py Out put

x=input("Enter value of x :")

y=input("Enter value of y :")

print("-----Bitwise Operations--------")

print (" AND (&) is:",(x&y))

print (" OR (|) is:",(x|y))

print (" XOR (^) is:",(x^y))

print (" Not (~) is:",(~x))

print (" Shift Right(>>) is:",(x>>1))

print (" Shift Left (<<)is:",(x<<2))

Enter value of x :2

Enter value of y :7

-----Bitwise Operations--------

 AND (&) is: 2

 OR (|) is: 7

 XOR (^) is: 5

 Not (~) is: -3

 Shift Right(>>) is: 1

 Shift Left (<<)is: 8

www.Jntufastupdates.com 14

Comparison Operators

When the values of two operands are to be compared then

comparison operators are used. The output of these comparison

operators is always a Boolean value, either True or False. The

operands can be Numbers or Strings or Boolean values. Strings are

compared letter by letter using their ASCII values; thus, “M” is less

than “N”, and “Guido” is greater than “Bob”. The following table

shows all the comparison operators.

Operator Meaning Example

> Greater Than-Returns True if the left operand

is greater than the right, otherwise returns

False

x>y, results in

True

< Less Than-Returns True if the left operand is

less than the right, otherwise returns False

X<y, results in

False

= = Equal to-Returns True if both are equal,

otherwise False

x==y, returns

False

!= Not Equal to- Returns True if both are not

equal, otherwise False

x!=y, return True

>= Greater than or Equal- Returns True if the left

operand is greater than or equal to the right,

otherwise returns False

x>y, returns True

<= Less than or Equal- Returns True if the left

operand is Less than or equal to the right,

otherwise returns False

X<y, returns False

Write a python program to determine the biggest number among

three numbers.

Exp2.py Output

a=int(input('Enter a'))

b=int(input('Enter b'))

c=int(input('Enter c'))

if a>b and a>c:
 print(a, 'is biggest')

elif b>a and b>c:

 print(b,' is biggest')
else:

 print(c, 'is biggest')

Enter a5

Enter b3

Enter c7

7 is biggest

www.Jntufastupdates.com 15

logical operators

The logical operators are used for comparing the logical values of

their operands and to return the resulting logical value. The values

of the operands on which the logical operators operate evaluate to

either True or False. There are three logical operators: and, or, and

not.

Operator Meaning Example

and True if both the operands are

True

x and y

Or True, if either of the

operands is True

x or y

not True if operand false not x

Write a python program to demonstrate the Logical operators.

Exp3.py Out Put

x=True

y=False

print (" x and y is :",x and y)

print (" x or y is :",x or y)

print (" not x is:",not x)

x and y is : False

 x or y is : True

 not x is: False

Assignment Operator

Assignment operator is used to assign values to the variable. For

example, x=5 is simple assignment operator, that assigns value 5 to

the to the variable x. There are various compound operators in

python like a+=5, which adds value 5 to the variable and later

assigns it to variable a. This expression is equivalent to a=a+5. The

same assignment operator can be applied to all expressions that

contain arithmetic operators such as, *=, /=, -=, **=,%= etc.

x=4

x+=5

print (“The value of x is:”, x)

Output:

The value of x 9

www.Jntufastupdates.com 16

Membership Operators

These operators are used to test whether a value or operand is there

in the sequence such as list, string, set, or dictionary. There are two

membership operators in python: in and not in. In the dictionary we

can use to find the presence of the key, not the value. If x is a list

containing the elements [1,2,3,4] then following example

demonstrates the use of these operators.

Operator Meaning Example

in True if value or operand is

present in the sequence

5 in x

not in True if value or operand is

not present in the sequence

5 not in x

Write a program that asks the user to enter a word and prints

out whether that word contains any vowels. (Lab prg 8)

Prg8.py Output

word=input ('Enter any word:')

vowels=['a','e','i','o','u']

for i in vowels:

 if i in word:

 print (i,'is present')

Enter any word: python

o is present

Identity Operators

These are used to check if two values (variable) are located on the

same part of the memory. If the x is a variable contain some value,

it is assigned to variable y. Now both variables are pointing

(referring) to the same location on the memory as shown in the

example program.

Operator Meaning Example

is True if the operands are

identical (refer to the same

memory)

X=5

Y=X

X is Y , returns True

www.Jntufastupdates.com 17

is not True if the operands are not

identical (refer to the same

memory)

X=5 #int

Y=5.0 # float

X is not Y, returns True

Type conversions

You can explicitly cast, or convert, a variable from one type to

another type.

 To explicitly convert a float number or a string to an integer,

cast the number using int() function. Ex: f=3.2, i=int(f), then

variable i contains 3, decimal part is truncated.

 The float() function returns a floating point number

constructed from a number or string. Ex: a=3, f=float(a), then

f contains 3.0

 The str() function returns a string which is fairly human

readable. Ex: a=3, s=str(a), then s contains ‘3’

 Convert an integer to a string of one character whose ASCII

code is same as the integer using chr() function. The integer

value should be in the range of 0–255.

 char_A=chr(65), here char_A contains ascii character capital

A

 char_a=chr(97), here char_a contains ascii character small a

 Use complex() function to print a complex number with the

value real + imag*j or convert a string or number to a complex

number. c1=complex(3,4), then if we print the value of c1, it

gives out output as follow: (3+4j)

 The ord() function returns an integer representing Unicode

code point for the given Unicode character.

 alpha_Z=ord('Z’), where alpha contains ascii value 90.

 Convert an integer number (of any size) to a lowercase

hexadecimal string prefixed with “0x” using hex() function. For

example: i_to_h=hex(255), i_to_h contains ‘0xff’ and

i_to_h=hex(16), i_to_h contains ‘0x10’

www.Jntufastupdates.com 18

 Convert an integer number (of any size) to an octal string

prefixed with “0o” using oct() function. For example, o=oct(8),

where o contains ‘0o10’ and o=oct(16), where o contains ‘0o20’

 The type() function returns the data type of the given object.

If we pass 20 to the type() function as follow type(20) then its

type will be displayed as <class 'int'>

Note: Python is a dynamically typed, high level programming

language.

Expressions

An Expression is a combination of operators and operands that

computes a value when executed by the Python interpreter. In

python, an expression is formed using the mathematical operators

and operands (sometimes can be values also).

Precedence of operator determines the way in which operators

are parsed with respect to each other. Operators with higher

precedence will be considered first for execution than the operators

with lower precedence. Associativity determines the way in which

operators of the same precedence are parsed. Almost all the

operators have left-to-right associativity. The exponent and

assignment operators have right-to-left associativity. The acronym

PEMDAS is a useful way to remember the order of operations:

Parentheses have the highest precedence and can be used to

force an expression to evaluate in the order you want. Since

expressions in parentheses are evaluated first, 2*(3-1) is 4, and

(1+1)**(5-2) is 8.

Exponentiation has the next highest precedence, so 2 **1+1 is

3 and not 4, and 3*1** 3 is 3 and not 27.

www.Jntufastupdates.com 19

Multiplication and Division have the same precedence, which

is higher than Addition and Subtraction, which also have the

same precedence. So 2 *3-1 yields 5 rather than 4, and 2/3-1 is -1,

not 1 (re-member that in integer division, 2/3=0).

Precedence of the Operators

More about Data Output

There are several ways to present the output of a program, data can

be printed to the console.

The print function will print everything as strings.

Syntax: print(value(s), sep= ‘ ’, end = ‘\n’, file=file, flush=flush)

Parameters:

value(s): Any value, and as many as you like. Will be converted to

string before printed.

sep=’separator’: (Optional) Specify how to separate the objects, if

there is more than one.Default :’ ‘

www.Jntufastupdates.com 20

end=’end’: (Optional) Specify what to print at the end. Default : ‘\n’

file: (Optional) An object with a write method. Default :sys.stdout

flush: (Optional) A Boolean, specifying if the output is flushed

(True) or buffered (False). Default: False

Example:

>>>print(10,20,30,40,sep='-',end='&’)

Output:

10-20-30-40&

>>>print('apple',1,'mango',2,'orange',3,sep='@',end='#’)

Output:

apple@1@mango@2@orange@3#

Even though there are different ways to print values in Python, we

discuss two major string formats which are used inside the print()

function to display the contents onto the console.

 str.format() method

 f-strings

str.format() –this function is used to insert value of a variable into

another string and display it as a single string.

Syntax: str.format(p0,p1,..k0=val1,k1=val1..), where p0,p1 are

called positional, and k0,k1 are called keyword arguments.

Positional arguments are accessed using the index, and keyword

arguments are accessed using the name of the argument.

f-strings -Formatted strings or f-strings were introduced in Python

3.6. A f-string is a string literal that is prefixed with “f”.

www.Jntufastupdates.com 21

Using str.format() with positional arguments

dataoutput.py Output

#more about data output

country=input('Enter your country')

print('I Love my { }'.format(country))

Enter your country india

I Love my india

Where { } are called placeholder. The value of the variable is placed

inside the placeholder according to the position. The arguments are

placed according to their position.

dataout.py Output

branch=input('Enter branch name')

year=int(input('Enter the year of

study'))

print('The branch name is {0} and the

year is {1}'.format(branch,year))

Enter branch name CSE

Enter the year of study 2

The branch name is CSE
and the year is 2

Ex: print('The branch name is {1} and the year is

{0}'.format(year,branch))

Note: Position is important here. You need to remember the position,

otherwise wrong result is expected

Using str.format() with keyword arguments

It may be difficult for us to remember the order or positions of

arguments. Keyword arguments are suitable when you are not sure

of position, but know the names of the arguments.

dataout1.py

branch=input('Enter branch name')

year=int(input('Enter the year of study'))

print('The branch is {b} and year is {y}'.format(b=branch,y=year))

www.Jntufastupdates.com 22

Output:

Enter branch name cse

Enter the year of study 2

The branch is cse and year is 2

Using f-string

Formatted strings or f-strings were introduced in Python 3.6. A f-

string is a string literal that is prefixed with “f”. These strings may

contain replacement fields, which are expressions enclosed within

curly braces { }. The expressions are replaced with their values. An f

at the beginning of the string tells Python to allow any valid variable

names within the string.

Dataout2.py

branch=input('Enter branch name')

year=int(input('Enter the year of study'))

print(f 'The branch name is {branch} and the year is {year}’)

Output

Enter branch name cse

Enter the year of study 2

The branch name is cse and the year is 2

II. Data types, and expressions

Strings, Assignment, and Comment

In Python, a string literal is a sequence of characters enclosed in single

or double quotation marks. The following program statements with the

Python shell shows some example strings:

www.Jntufastupdates.com 23

Double-quoted strings are suitable for composing strings that contain

single quotation marks or apostrophes. Here is a self-justifying

example:

Escape Sequence

The newline character \n is called an escape sequence. Escape

sequences are the way Python expresses special characters, such as the

tab, the newline, and the backspace (delete key), as literals.

ESCAPE SEQUENCE MEANING

\b Backspace

\n Newline

\t Horizontals tab

\\ The \ Character

\’ Single Quotation mark

\” Double quotation mark

Example:

www.Jntufastupdates.com 24

String Concatenation

We can join two or more strings to form a new string using the

concatenation operator +. Here is an example:

>>> 'My name is' + 'Guido'

'My name isGuido'

Assignment Statement

Programmers use all uppercase letters for the names of variables that

contain values that the program never changes. Such variables are

known as symbolic constants. Examples of symbolic constants in

the tax calculator case study are: TAX_RATE and STANDARD_DEDUCTION.

Variables receive their initial values and can be reset to new values

with an assignment statement. The form of an assignment statement

is the following:

<variable_name> = <expression>

The Python interpreter first evaluates the expression on the right

side of the assignment symbol and then binds the variable name on the

left side to this value.

When this happens to the variable name for the first time, it is called

defining or initializing the variable. Note that the = symbol means

assignment, not equality. After you initialize a variable, subsequent

uses of the variable name in expressions are known as variable

references.

There are two important purposes of variables: First, it helps to

keep track of the variable changing inside the program. Second, it helps

to refer the complex information with simple name, which is also called

abstraction.

Comment

www.Jntufastupdates.com 25

A comment is a piece of program text that the interpreter ignores but

that provides useful documentation to programmers. At the very

least, the author of a program can include his or her name and a

brief statement about the purpose of the program at the beginning

of the program file. This type of comment, called a docstring, is a

multi-line string. This can be written inside Triple double quotes or

Triple single quotes. In addition to docstrings, end-of-line comments

can document a program. These comments begin with the # symbol

and extend to the end of a line.

Docstring
End-of-line

"""

Program: VowelTest.py

Author : KSR

Purpose: Testing whether a

given word contains

any vowels or not

"""

read word from keyboard

Numeric Data Types

Figure 1 Numerical Data types

Under the numeric data types python has three different types:

integers, floating-point, complex numbers. These are defined as int,

float, complex in python. Integers can be of any length; it is only

limited by the memory available. Python uses floating-point

Numeric Data

types

Integers Floating-point Complex

www.Jntufastupdates.com 26

numbers to represent real numbers. A floating-point number is

accurate up to 15 decimal places. Integer and floating points are

separated by decimal points. 1 is an integer, 1.0 is floating point

number. A floating-point number can be written using either

ordinary decimal notation or scientific notation. Example, 37.8 can

be represented in scientific notation as 3.78e1. Complex numbers

are written in the form, x + yj, where x is the real part and y is the

imaginary part. Example, (3+4j).

Character Sets

Some programming languages use different data types for strings

and individual characters. In Python, character literals look just like

string literals and are of the string type. But they also belong to

several different character sets, among them the ASCII set and the

Unicode set.

Using functions and Modules

A function is a chunk of code that can be called by name to perform

a task. Functions often require arguments, that is, specific data

values, to perform their tasks. Arguments are also known as

www.Jntufastupdates.com 27

parameters. When a function completes its task, the function may

send a result back to the part of the program that called that

function, which is also known as caller. The process of sending a

result back to another part of a program is known as returning a

value.

For example, the argument in the function call round(6.6) is the

value 6.6, and the value returned is 7. When an argument is an

expression, it is first evaluated, and then its value is passed to the

function for further processing. For instance, the function call abs(4

– 5) first evaluates the expression 4 - 5 and then passes the result,

-1, to abs. Finally, abs returns 1.

The values returned by function calls can be used in expressions

and statements. For example, the function call print (abs(4 - 5) + 3)

prints the value 4. Some functions have only optional arguments,

some have required arguments, and some have both required and

optional arguments. For example, round (4.34234,2), returns 4.34

with 2 decimal points. In this function call second argument 2 is

optional argument, first argument is required argument.

The math module

Functions and other resources are placed in components called

modules. Functions like abs() and round() from the __builtin__
module are always available for use, whereas the programmer must

explicitly import other functions from the modules where they are

defined. The math module includes several functions that perform

basic mathematical operations. If we want to know all the function
present inside the math module, first we have import it, and then

use the dir() function to list all the functions at the prompt.

 >>> import math

>>> dir(math)

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos',
'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos',

'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor',

'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite',

'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf',

www.Jntufastupdates.com 28

'nan', 'pi', 'pow', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh',

'tau', 'trunc']

To use a resource from a module, you write the name of a module as

a qualifier, followed by a dot (.) and the name of the resource. For

example, to use the function sqrt(), we have to write it as

math.sqrt(25).

III. Decision Structures and Boolean Logic

In all most all programming languages the control flow statements

have been classified as Selection/Decision Statements,

Loop/Repetition/Iterative Statements, and Jump Statements.

Under the Decision statements in Python we have if, elif and else

statement. Under the Repetition statements we have for and while

statements. Under the Jump statements we have break, continue

and pass statements.

The if Decision statement:

The simplest form of decision/selection is the if statement. This type

of control statement is also called a one-way selection statement,

because it consists of a condition and just a single sequence of

statements. If the condition is True, the sequence of statements is

run. Otherwise, control proceeds to the next statement following the

entire selection statement.

The Syntax of the of if statement will be as follow:

The if decision control flow statement starts with if keyword and

ends with a colon. The expression in an if statement should be a

Boolean expression which will be evaluated to True or False. The

Boolean_Expression is evaluated to True, then if block will be

if Boolean_ Expression:
Statement 1
Statement 2
:

Statement N

www.Jntufastupdates.com 29

executed, otherwise the first statement after the if block will be

executed. The statements inside the if block must be properly

indented with spaces or tab.

Write python program to test whether a given number is Even

or not using if decision statement.

#Even or Odd

n=int(input("Enter the number"))

if n%2==0:

 print(n,'is even number')

 print('End of if block')

print('End of the program')

print('Execution is completed')

The if-else decision statement

An if statement can also be followed by an else statement which is

optional. An else statement does not have any condition. The

statements in the if block are executed if the Boolean_Expression

is True, otherwise the else block will be executed. The if…else

statement used for two-way decision, that means when we have only

two alternatives. The syntax of if-else will be as follow:

Here, Statements 1 and Statement 2 can be single statement or

multiple statements. The statements inside if block and else block

must be properly indented. Both the indentation need not be same.

Above program with if-else decision statements.

#Even or Odd

n=int(input("Enter the number"))

if Boolean_Expression:

statements 1

else:

 statements 2

www.Jntufastupdates.com 30

if n%2==0:

 print(n,'is even number')

 print('End of if block')

else:

 print(n,'is odd')

 print('else block')

 print('End of the program')

print('Execution is completed')

Note: if you observe above if and else blocks. The else block

indentation is single space, whereas the if bloc has used tab for

indentation. Hence both Block can use different indentation, but all

the statements within the block should have same indentation.

Generate a random number between 1 and 10. Ask the user to

guess the number and print a message based on whether they

get it right or not. (Lab prg 6)

import random

while True:

 n=int(input('Enter any number between 1 and 10'))

 print(f' You are trying to guess number {n}')

 rn=random.randint(1,10)

 print('The random number generated is:',rn)

 if rn==n:

 print('Your guessing is right')

 else:

 print('Badluck your guessing is wrong')

Output:

Enter any number between 1 and 108

 You are trying to guess number 8

The random number generated is: 1

Bad luck your guessing is wrong

Enter any number between 1 and 105

www.Jntufastupdates.com 31

 You are trying to guess number 5

The random number generated is: 5

Your guessing is right

The if-elif-else decision statement

The if…elif…else is also called multi-way decision statement. This

multi-way decision statement is preferred whenever we need to

select one choice among multiple alternatives. The keyword ‘elif’ is

short for ‘else if’. The else statement will be written at the end and

will be executed when no if or elif blocks are executed. The syntax of

will be as follow:

Write a Program to Prompt for a Score between 0.0 and 1.0. If the Score Is Out

of Range, Print an Error. If the Score Is between 0.0 and 1.0, Print a Grade Using

the Following Table.

Score >=0.9 >=0.8 >=0.7 >=0.6 <0.6

Grade A B C D F

score=float(input('Enter your score:'))

if score<0 or score > 1:

 print('Wrong input is given')

elif score>=0.9:

 print('Your Grade is A')

elif score>=0.8:

 print('Your Grade is B')

If Boolean_expression1:

Statements

elif Boolean_expression2:

Statements

elif Boolean_exxpression3:

Statements
else:

Statements

www.Jntufastupdates.com 32

elif score>=0.7:

 print('Your Grade is C')

elif score>=0.6:

 print('Your Grade is D')

else:

 print('Your Grade is F')

Nested if statements

Sometimes it may be need to write an if statement inside another if

block then such if statements are called nested if statements. The

syntax would be as follow:

Program to Check If a Given Year Is a Leap Year

year=int(input('Enter year:'))

if year%4==0:

 if year%100==0:

 if year%400==0: #nested if statements

print(f'{year} is a leap year')

 else:

print(f'{year} is not leap year')

 else:

 print(f'{year} is a leap year')

else:

 print(f'{year} is not a leap year')

Comparing Strings

Output:

Enter your score 0.75

Your Grade is C

if Boolean_expression1:

if Boolean_expression2:

if Boolean_expression3:

Statements

else:

Statements

www.Jntufastupdates.com 33

We can use comparison operators such as >, <, <=, >=, ==, and != to compare two

strings. This expression can return a Boolean value either True or False. Python

compares strings using ASCII value of the characters. For example,

>>> "january" == "jane"

False

String equality is compared using == (double equal sign). This comparison process

is carried out as follow:

 First two characters (j and j) from the both the strings are compared using

the ASCII values.

 Since both ASCII values are same then next characters (a and a) are

compared. Here they are also equal, and hence next characters (n and n)

from both strings are compared.

 This comparison also returns True, and comparison is continued with next

characters (u and e). Since the ASCII value of the ‘u’ is greater than the

ASCII value of ‘e’ this time it returns False. Finally, the comparison

operation returns False.

Boolean Variables

The variables that store Boolean value either True or False called Boolean variables.

If the expression is returning a Boolean value then it is called Boolean expression.

Example:

>>>X=True

>>>Y=False

>>> a>5 and a<10 #Boolean expression

IV. Repetition Structures

Introduction

Whenever if we want to execute a block of statements repeatedly for

some finite number of times or until some condition is satisfied then

repetition structures are used. The repetition structures also known

www.Jntufastupdates.com 34

as loops, which repeat an action. Each repetition of the action is

known as a pass or an iteration. There are two types of loops—

those that repeat an action a predefined number of times (definite

iteration) and those that perform the action until the program

determines that it needs to stop (indefinite iteration). There are

two loop statements in Python, for and while.

The while loop

In many situations, however, the number of times that the block

should execute is not known in advance. The program’s loop

continues to execute as long as valid input is entered and terminates

at special input. This type of process is called conditional iteration.

In this section, we explore the use of the while loop to describe

conditional iteration

While loop repeats as long as a certain Boolean condition is met.

The block of statements is repeatedly executed as long as the

condition is evaluated to True. The general form of while will be as

follow:

The first line is called loop header which contains a keyword while,

and condition which return a Boolean value and colon at the end.

The body of the loop contains statement1, statements2 , and so on.

Thus is repeated until the condition is evaluated to True otherwise

loop will be terminated.

Write a python program to demonstrate wile loop for computing

the sum of numbers entered by the user. Terminates when user

enters special character ‘space’.

while condition: #Loop Header

statement 1

statement 2

………….

Statement N

www.Jntufastupdates.com 35

data=input('Enter any number')

sum=0

while data!=" ":

 sum=sum+int(data)

 data=input('Enter any number or space to quit')

print('The sum is :',sum)

The count control with while loop

We can also use while loop for count-controlled loops. The body of the while is

repeatedly executed until the condition which returns a Boolean value True.

Otherwise body of the loop is terminated and the first statement after the while loop

will be executed.

Write a program that asks the user for their name and how many times to

print it. The program should print out the user’s name the specified number

of times. (Lab Prg 4)

n=int(input('Enter the number that you want to display your name:'))

name=input('Enter name:')

while n>=0:

 print(name)

 n=n-1

print('End of the program')

Output:

Enter the number that you want to display your name:3

Enter name: Guido

Guido

Guido

Guido

End of the program

The for loop

For loop iterates over a given sequence or list. It is helpful in running

a loop on each item in the list. The general form of “for” loop in Python

will be as follow:

www.Jntufastupdates.com 36

for variable in [value1, value2, etc.]: # Loop Header

statement1

statement2

…………

Statement N

Here variable is the name of the variable. And for and in are the

keywords. Inside the square brackets a sequence of values is

separated by comma. In Python, a comma-separated sequence of

data items that are enclosed in a set of square brackets is called a

list. The list is created with help of [] square brackets. The list also

can be created with help of tuple. We can also use range() function

to create the list. The general form of the range() function will be as

follow:

• range(number) –ex: range (10) –It takes all the values from 0 to 9

• range (start,stop, interval_size) –ex: range(2,10,2)-It lists all the

numbers such as 2,4,6,8.

• range(start,stop)-ex: range(1,6), lists all the numbers from 1to 5,

but not 6. Here, by default the interval size is 1.

Write a Python Program to find the sum of all the items in the list using for

loop.

fortest.py Output

#sum of all items in the list

s=0

for x in [1,2,3,4,5]: # list

 s=s+x

print ("The sum of all items in the list is:",s)

The sum of all items in the list is:

15

Write a program that uses a for loop to print the numbers 8, 11, 14, 17, 20, . . . ,

83, 86, 89. (Lab Prg 3)

for i in range(8,90,3):

print(i)

www.Jntufastupdates.com 37

Use a for loop to print a triangle like the one below. Allow the user to specify

how high the triangle should be. (lab Prg 5)

for i in range(0,4):

 for j in range(0,i+1):

 print('*',end=" ")

 print("\r")

Calculating a Running Total

We can calculate the sum of input numbers while entering from the keyboard as

demonstrated in the following example.

n=int(input('Enter n:'))

sum=0

for i in range(n):

 data=float(input('Enter value'))

 sum=sum+data

#display sum

print('Sum is:',sum)

Output:

 Enter n:4

Enter value12

Enter value13

Enter value21

Enter value22

Sum is: 68.0

Input Validation Loops

Loops can be used to validate user input. For instance, a program may

require the user to enter a positive integer. Many of us have seen a

“yes/no” prompt at some point, although probably in the form of a

dialog box with buttons rather than text.

www.Jntufastupdates.com 38

Nested loops

Writing a loop statement inside another is called Nested

loops. The "inner loop" will be executed one time for each iteration

of the "outer loop". We can put any type of loop inside any other type

of loop. For example, a for loop can be inside a while loop or vice

versa.

Syntax of nested loops:

#Nested for loops

for iterating_var in sequence: #outer for loop

 for iterating_var in sequence: #inner for loop

 statements(s)

 statements(s)

Nested loop with for & while

for iterating_var in sequence: #outer for loop

 while expression: #inner for loop

statement(s)

 Statements

 Use a for loop to print a triangle like the one below. Allow the

user to specify how high the triangle should be. (Lab Prg 5)

import random

action = "Y"

while action == "Y":

 print("Generating random number...")

 randomNumber = random.randint(1,10)

 print("Random number is", randomNumber)

 action = input("Another (Y/N)? ")

 while action != "Y" and action != "N":

 action = input("Invalid input! Enter Y or N: ")

print("All done!")

www.Jntufastupdates.com 39

Using for nested loops Using for and while nested loops

for i in range(4):
 for j in range(0,i+1):

 print('*',end=' ')

 print('\r')

for i in range(4):
 j=0

 while j < (i+1):

 print('*',end=' ')
 j=j+1

 print('\r')

*
* *
* * *
* * * *

Else with loops

Loop statements may have an else clause

 It is executed when the loop terminates through exhaustion of

the list (with for loop).

 It is executed when the condition becomes false (with while

loop), but not when the loop is terminated by a break statement.

Example: Printing all primes numbers up to 100

print('2')

for i in range(3,101,2):

 for j in range(2,i):

 if i%j==0:

break

 else:

 print(i)

Using the while inner loop

print('2')
for i in range(3,101,2):
 j=2
 while j<i:

 if i%j==0:
 break

 j=j+1
 else:

 print(i)

www.Jntufastupdates.com 40

Jump Statements

 we have three jump statements: break, continue and pass.

 Break statement:

 It terminates the current loop and resumes execution
at the next statement, just like the traditional break

statement in C.

 The break statement can be used in both while and for

loops.

Write a python program to search for a given number whether it

is present in the list or not.

n=int(input('Enter number to search :'))

for x in range(1,11):#[1,2,3,4,5,6,7,8,9,10]

 if x==n:

 print(n,' is found')

 break #terminates the loop

print('end of program')

Output:

 The continue statement

 It returns the control to the beginning of the loop.

 The continue statement skips all the remaining statements in the
current iteration of the loop and moves the control back to the

top of the loop.

 The continue statement can be used in both while and for loops.

www.Jntufastupdates.com 41

 The pass statement
 The pass statement does nothing

 It can be used when a statement is required syntactically but the

program requires no action
 Example: creating an infinite loop that does nothing

while True:

pass

Example program to demonstrate the pass statement

f=True

while f:

 pass

 print('This line will be printed')

 f=False

print('End of the program')

Output:

This line will be printed

End of the program

******* End of the Unit 1******

www.Jntufastupdates.com 42

