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Behavior of conductors in an electric field: 
Conductors: 

Materials in which it is easy for charges to move around. We will discuss conductors in some depth 

when we discuss currents; for now, we will just summarize a few of their properties. Among the best 

conductors are metals — silver, gold, copper, aluminum, etc. The atoms of these metals form a 

crystalline structure in which electrons can easily hop around from atom to atom. Although a chunk of 

metal is neutral overall, we can visualize it as being made of lots of positive charges that are nailed in 

place, paired up with lots of negative charges (electrons) that are free to move around. In isolation, the 

negative charges will sit close to the positive charges, so that the metal is not only neutral overall, but 

also largely neutral everywhere (no local excess of positive or negative charge). Under the influence of 

some external field, the electrons are free to move around. 
 
 

 

Electric fields and conductors For the rest of this lecture, we will assume that conductors are materials 

that have an infinite supply of charges that are free to move around. (This of course just an idealization; 

but, it turns out to be an extremely good one. Real conductors in fact behave very similar to this limit.) 

From this, we can deduce a few important facts about conductors and electrostatic fields 

• There is no electric field inside a conductor: Why? Suppose we bring a plus charge near a conductor. 

For a very short moment, there will be an electric field inside the conductor. However, this field will act 

on and move the electrons, which are free to move about. The electrons will move close to the plus 

charge, leaving net positive charge behind. The conductor’s charges will continue to move until the 

“external” E~ -field is cancelled out — at that point there is no longer an E~ -field to move them, so 

they stay still. 

• Net charge can only reside on the surface of a conductor:This is easily proved with Gauss’s law: 

make a little Gaussian surface that is totally contained inside the conductor. Since there is no E~ -field 

inside the conductor, H E~ · dA~ is clearly zero for your surface. Since that is equal to the charge the 

surface contains, there can be no charge. We will discuss the charge on the conductor’s surface in a 

moment. 



 

 

• Any external electric field lines are perpendicular to the surface: Another way to put this is that 

there is no component of electric field that is tangent to the surface. We prove this by contradiction: 

suppose that a component of the E~ -field were tangent to the surface. If that were the case, then charges 

would flow along the surface. They would continue to flow until there was no longer any tangential 

component to the E~ -field. Hence, this situation cannot exist: even if it exists momentarily, it will 

rapidly (within 10−17 seconds or so) correct itself. 

• The conductor’s surface is an equipotential: This follows from the fact that the E~ -field is 

perpendicular to the surface. We do a line integral of E~ on the surface; the path is perpendicular to the 

field; so the difference in potential between any two points on the surface is zero. 

 
Insulators: 

 
Insulators, on the other hand, are substances that have exactly the opposite effect on the flow of 

electrons. These substances impede the free flow of electrons, thereby inhibiting the flow of electrical 

current. Insulators contain atoms that hold on to their electrons tightly which restrict the flow of 

electrons from one atom to another. Because of the tightly bound electrons, they are not able to roam 

around freely. In simple terms, substances that prevent the flow of current are insulators. The materials 

have such low conductivity that the flow of current is almost negligible, thus they are commonly used to 

protect us from dangerous effects of electricity. 

Some common examples of insulators are glass, plastic, ceramics, paper, rubber, etc. The flow of 

current in electronic circuits is not static and voltage can be quite high at times, which makes it a little 

vulnerable. Sometimes the voltage is high enough to cause electric current to flow through materials that 

are not even considered as good conductors of electricity. This can cause electric shock because human 

body is also a good conductor of electricity. Therefore, electric wires are coated with rubber which acts 

as an insulator which in turn protects us from the conductor inside. 



Conductors vs. Insulators: Comparison Chart 
 
 
 
 
 



Electric field inside a dielectric material – polarization: 
 



 

 



 

 
 

Boundary Conditions: 
 

• The boundary conditions at an interface separating: 

– Dielectric and dielectric 

– Conductor and dielectric 

– Conductor and free space 

• To determine the boundary conditions, we need to use Maxwell’s equation: 
 
 

Boundary conditions is the condition that the field must satisfy at the interface separating the 

media 



 

And 
 

• Decomposing the electric field intensity E into orthogonal components 
 

where and are, respectively, the tangential and normal components of E to the interface of interest 

 

1. Dielectric – dielectric boundary conditions: 

E1 and E2 in media 1 and 2 can be decomposed as 
 

Applying Maxwell’s equation to the closed path ( abcda ) 

 
( 1 ) 



As ∆ℎ− > 0 , equation ( 1 ) becomes 
 

 

 

 
 

 

 
 

 

 

is said to be continuous across the boundary 

 

• Since D = = + , eq. (2) can be written as 
 
 

Or 
 

is said to be discontinuous across the interface 

Applying the Gauss’s law , we have 

Allowing ∆ℎ−> gives  

( 2 ) 

 
 
 
 

 



Or 
 

If no free charges exist at the interface , so 

 
(1) 

 

 

is continuous across the interface , since = ,eq. ( 1 ) can be written as 
 

 
 
 

The normal component of ( E ) is discontinuous at the boundary 
 

2. Conductor – dielectric boundary conditions: 

Applying Maxwell’s equation to the closed path ( abcda ) 



 

 
 

 

 

 
 

Similarly, by applying the Gauss’s law to the pillbox and letting ∆ℎ → 0,we have 
 
 

 

 
 

As ∆ℎ-> 0, 



because D = = 0 inside the conductor, so 
 

 

Or 
 

 
Thus under static conditions, the following conclusions can be made about a perfect conductor: 

1. No electric field may exist within a conductor 
 

2. Since E = - _ = 0, there can be no potential difference any two points in theconductor 

 
 

3. The electric field E can be external to the conductor and normal to its surface 

 



3. Conductor – free space boundary conditions: 
 
 

This is a special case of the conductor – dielectric condition. Free space is a special dielectric 

for which 

 

 
Thus the boundary conditions are 

 

 

 

 

 
 

Capacitance and Capacitors: 

We have already stated that a conductor in an electrostatic field is an Equipotential body and any 

charge given to such conductor will distribute themselves in such a manner that electric field 

inside the conductor vanishes. If an additional amount of charge is supplied to an isolated 

conductor at a given potential, this additional charge will increase the surface charge density 

 

 
. Since the potential of the conductor is given by , the potential of the 



 

conductor will also increase maintaining the ratio same     . Thus we can write where the 

constant of proportionality C is called the capacitance of the isolated conductor. SI unit of 

capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be seen that if V=1, C 

= Q. Thus capacity of an isolated conductor can also be defined as the amount of charge in 

Coulomb required to raise the potential of the conductor by 1 Volt. 

Of considerable interest in practice is a capacitor that consists of two (or more) conductors 

carrying equal and opposite charges and separated by some dielectric media or free space. The 

conductors may have arbitrary shapes. A two-conductor capacitor is shown in figure below. 

 

 

Fig : Capacitance and Capacitors 

 
 

When a d-c voltage source is connected between the conductors, a charge transfer occurs which 

results into a positive charge on one conductor and negative charge on the other conductor. The 

conductors are equipotential surfaces and the field lines are perpendicular to the conductor 

surface. If V is the mean potential difference between the conductors, the capacitance is given by 

 
. Capacitance of a capacitor depends on the geometry of the conductor and the 

permittivity of the medium between them and does not depend on the charge or potential 

difference between conductors. The capacitance can be computed by assuming Q(at the same 

time -Q on the other conductor), first determining using Gauss’s theorem and then 

determining . We illustrate this procedure by taking the example of a parallel plate 

capacitor. 

Example: Parallel plate capacitor 



 
 

Fig : Parallel Plate Capacitor 

For the parallel plate capacitor shown in the figure about, let each plate has area A and a distance 

h separates the plates. A dielectric of permittivity fills the region between the plates. The 

electric field lines are confined between the plates. We ignore the flux fringing at the edges of 

the plates and charges are assumed to be uniformly distributed over the conducting plates with 

 
densities and - , . 

 

By Gauss’s theorem we can write, ............................................. (1) 

 

As we have assumed to be uniform and fringing of field is neglected, we see that E is 

 

constant in the region between the plates and therefore, we can write . Thus, for a 

parallel plate capacitor we have, 

 
........................(2) 

Series and parallel Connection of capacitors 

Capacitors are connected in various manners in electrical circuits; series and parallel connections 

are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such 

connections. 

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can 

write, 



 

 

 

 

.......................(1) 
 

 

 

 

Fig 1.: Series Connection of Capacitors 
 

 

 

Fig 2: Parallel Connection of Capacitors 

The same approach may be extended to more than two capacitors connected in series. 

Parallel Case: For the parallel case, the voltages across the capacitors are the same. 

The total charge 

 

Therefore, ......................................................................................................... (2) 



Energy Stored in Capacitor: 
 

While capacitor is connected across a battery, charges come from the battery and get stored in 
the capacitor plates. But this process of energy storing is step by step only.At the very beginning, 

capacitor does not have any charge or potential. i.e. V = 0 volts and q = 0 C. 
 
 

Now at the time of switching, full battery voltage will fall across the capacitor. A positive charge 

(q) will come to the positive plate of the capacitor, but there is no work done for this first charge 

(q) to come to the positive plate of the capacitor from the battery. It is because of the capacitor 

does not have own voltage across its plates, rather the initial voltage is due to the battery. First 

charge grows little amount of voltage across the capacitor plates, and then second positive charge 

will come to the positive plate of the capacitor, but gets repealed by the first charge. As the 

battery voltage is more than the capacitor voltage then this second charge will be stored in the 

positive plate. 

At that condition a little amount of work is to be done to store second charge in the 

capacitor. Again for the third charge, same phenomenon will appear. Gradually charges will 

come to be stored in the capacitor against pre-stored charges and their little amount of work done 

grows up. 

 



 

 
 

 
 

 

 

This half energy from total amount of energy goes to the capacitor and rest half of energy 

automatically gets lost from the battery and it should be kept in mind always. 

 
Continuity Equation and Kirchhoff’s Current Law 

Let us consider a volume V bounded by a surface S. A net charge Q exists within this region. If a 

net current I flows across the surface out of this region, from the principle of conservation of 

charge this current can be equated to the time rate of decrease of charge within this volume. 

Similarly, if a net current flows into the region, the charge in the volume must increase at a rate 

equal to the current. Thus we can write, 

 
.....................................(3) 

 

 
or, ......................................................(4) 

Applying divergence theorem we can write, 

 

 
.....................(5) 

It may be noted that, since   in general may be a function of space and time, partial derivatives 

are used. Further, the equation holds regardless of the choice of volume V , the integrands must 

be equal. 

Therefore we can write, 

 

................(6) 



The equation (6) is called the continuity equation, which relates the divergence of current density 

vector to the rate of change of charge density at a point. 

For steady current flowing in a region, we have 
 

......................(7) 

Considering a region bounded by a closed surface, 

 

..................(8) 

which can be written as, 

 

......................(9) 

when we consider the close surface essentially encloses a junction of an electrical circuit. 

The above equation is the Kirchhoff’s current law of circuit theory, which states that 

algebraicsum of all the currents flowing out of a junction in an electric circuit, is zero. 



Convention and conduction current: 
 

 



 

 



Ohm’s law in point form: 
 
 


