
DATA STRUCTURES

1
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V

SEARCHING

DEFINITION

It is a method of finding the given element in the given list of

elements.

or

It is technique to find the location where the element is available

or present.

or

It is an algorithm to check whether a particular element is

present in the given list or not.

Types of Searching

✓ Linear Search

✓ Binary Search

✓ Fibonacci Search

LINEAR SEARCH

✓ It is a very simple search algorithm when compared with the other

two search algorithms.

✓ It is also called as sequential search or indexed search.

✓ To perform linear search, the list of elements need not be sorted.

✓ An ordered or unordered list will be searched by comparing the search

element with one by one element from the beginning of the list until

the desired element is found or till the end of the list.

✓ If the desired element is found in the list then the search is successful

otherwise unsuccessful.

✓ The time complexity for linear search is O(n) where n is the number

of elements in the list.

✓ The time complexity increases with the increase of the input size n.

www.Jntufastupdates.com 1

DATA STRUCTURES

2
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Algorithm for Linear Search

LINEAR_SEARCH(A, N, KEY)

Step 1: SET POS = -1

Step 2: SET I = 1

Step 3: Repeat Step 4 while I<=N

Step 4: IF A[I] = KEY

SET POS = I

PRINT POS

Go to Step 6

SET I = I + 1

Step 5: IF POS = –1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

Step 6: EXIT

Example of Linear Search

www.Jntufastupdates.com 2

DATA STRUCTURES

3
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Linear Search

#include<stdio.h>

int main(void)

{

 int a[20], n, i, key;

 printf("Enter size of the list: ");

 scanf("%d", &n);

 printf("Enter the elements”);

 for(i = 0; i < n; i++)

 scanf("%d", &a[i]);

 printf("Enter the element to be Search: ");

 scanf("%d", &key);

www.Jntufastupdates.com 3

DATA STRUCTURES

4
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

for(i = 0; i < n; i++)

 {

 if(key == a[i])

 {

 printf("Element is found at %d index", i);

 break;

 }

 }

 if(i == n)

 printf("Given element is not found in the li st!!!");

 return 0;

}

BINARY SEARCH

✓ It is the fastest searching algorithm when compared with the other

two algorithms.

✓ It works on the principle divide – conquer strategy.

✓ To apply binary search algorithm the list of elements should be in

sorted order.

✓ The time complexity for binary search algorithm is O(log n).

✓ It is applied to very large set of elements

✓ The process carried by binary search algorithm is find the middle

element and compare it with search element it match return the index

of the element and say success otherwise see if the search element is

greater than or less than the middle element.

✓ If it is greater than the middle element then search the element in the

upper part of the list otherwise in the lower part of the list.

✓ Again find middle element and do the same process till the element is

found or not found.

✓ Using binary search algorithm we can reduce the number of

comparisons hence it is best.

www.Jntufastupdates.com 4

DATA STRUCTURES

5
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Algorithm forBinary Search

BINARY_SEARCH(A, lower_bound, upper_bound, KEY)

Step 1: SET BEG = lower_bound

 END = upper_bound, POS = - 1

Step 2: Repeat Steps 3 and 4 while BEG <= END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = KEY

SET POS = MID

PRINT POS

Go to Step 6

ELSE IF A[MID] > VAL

SET END = MID - 1

ELSE

SET BEG = MID + 1

Step 5: IF POS = -1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

Step 6: EXIT

Example of Binary Search

www.Jntufastupdates.com 5

DATA STRUCTURES

6
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

www.Jntufastupdates.com 6

DATA STRUCTURES

7
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Binary Search

#include <stdio.h>

int main(void)

{

 int i, low, high, middle, n, key, a[10];

 printf("Enter number of elements");

 scanf("%d", &n);

 printf("Enter the elements”);

 for (i = 0; i < n; i++)

 scanf("%d", &a[i]);

 printf("Enter value to find");

 scanf("%d", &key);

 low = 0;

 high = n - 1;

 middle = (low + high)/2;

while(low <= high)

{

 if(a[middle] < key)

 low = middle + 1;

 else if(a[middle] == key)

 {

 printf(“Element is found”);

break;

}

else

 high = middle - 1;

 middle = (low + high)/2;

 }

if(low > high)

 printf(“Element is not found”);

return 0;

}

www.Jntufastupdates.com 7

DATA STRUCTURES

8
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

FIBONACCI SEARCH

✓ It was developed by Kiefer in 1953.

✓ In Fibonacci search we consider the indices as numbers from

fibonacci series.

✓ To apply fibonacci search algorithm the list that contains elements

should be in sorted order.

✓ The time complexity of fibonacci search algorithm is O(log n)

✓ It works on the principle divide - conquer strategy.

Example of Fibonacci Search

www.Jntufastupdates.com 8

DATA STRUCTURES

9
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Fibonacci Search

#include<stdio.h>

int main(void)

{

 int n, key, i, ar[20];

 void search(int ar[], int n, int key, int f, int a, int b);

 int fib(int n);

 clrscr();

 printf("\n Enter the number of elements in array");

 scanf("%d", &n);

 printf("\n Enter the elements");

 for(i=0;i<n;i++)

www.Jntufastupdates.com 9

DATA STRUCTURES

10
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 scanf("%d", &ar[i]);

 printf("Enter the element to be searched");

 scanf("%d", &key);

 search(ar, n, key, n, fib(n), fib(fib(n)));

 return 0;

}

int fib(int n)

{

 int a, b, f;

 if(n<1)

 return n;

 a=0;

 b=1;

 while(b<n)

 {

 f=a+b;

 a=b;

 b=f;

 }

 return a;

}

void search(int ar[], int n, int key, int f, int b, int a)

{

 if(f<1 || f>n)

 printf("the number is not present");

 else if(key<ar[f])

 {

 if(a<=0)

 printf("The element is not present in the list");

 else

 search(ar, n, key, f-a, a, b-a);

 }

www.Jntufastupdates.com 10

DATA STRUCTURES

11
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 else if(key>ar[f])

 {

 if(b<=1)

 printf("The element is not present in the list");

 else

 search(ar, n, key, f+a, b-a, a-b);

 }

 else

 printf("Element is present %d", f);

}

www.Jntufastupdates.com 11

DATA STRUCTURES

12
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SORTING

DEFINITION

Sorting is a technique to rearrange the list of elements either in

ascending or descending order, which can be numerical, alphabetical or

any user-defined order.

Types of Sorting

Internal Sorting

✓ If the data to be sorted remains in main memory and also the sorting

is carried out in main memory then it is called internal sorting.

✓ Internal sorting takes place in the main memory of a computer.

✓ The internal sorting methods are applied to small collection of data.

✓ The following are some internal sorting techniques:

✓ Insertion sort

✓ Merge Sort

✓ Quick Sort

✓ Heap Sort

External Sorting

✓ If the data resides in secondary memory and is brought into main

memory in blocks for sorting and then result is returned back to

secondary memory is called external sorting.

✓ External sorting is required when the data being sorted do not fit into

the main memory.

✓ The following are some external sorting techniques:

✓ Two-Way External Merge Sort

✓ K-way External Merge Sort

INSERTION SORT

 In this method, the elements are inserted at their appropriate place.

Hence the name insertion sort.

✓ This sorting is very simple to implement.

www.Jntufastupdates.com 12

DATA STRUCTURES

13
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ This method is very efficient when we want to sort small number of

elements.

✓ This method has excellent performance when almost the elements are

sorted.

✓ It is more efficient than bubble and selection sorts.

✓ This sorting is stable.

✓ This is an in-place sorting technique.

✓ The time complexity of insertion sort for best case is O(n), average

case and worst case is O(n2).

Algorithm for Insertion Sort

INSERTION-SORT (A, N)

Step 1: Repeat Steps 2 to 5 for I = 1 to N – 1

Step 2: SET TEMP = A[I]

Step 3: SET J = I - 1

Step 4: Repeat while TEMP <= A[J]

SET A[J + 1] = A[J]

SET J = J - 1

Step 5: SET A[J + 1] = TEMP

Step 6: EXIT

Example for insertion sort

Let us consider the array of elements to sort them using insertion sort

technique

30, 20, 10, 40, 50

The control moves to while loop as j>=0 and a[j] > temp is true, the

while is executed.

www.Jntufastupdates.com 13

DATA STRUCTURES

14
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now since j >= 0 is false, control comes out of while loop

then the list becomes

The control moves to while loop as j>=0 and a[j] > temp is true, the

while is executed.

www.Jntufastupdates.com 14

DATA STRUCTURES

15
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now since j >= 0 is false, control comes out of while loop

Then the list becomes

The control moves to while loop as j>=0 and a[j] > temp is false, the

while is not executed.

www.Jntufastupdates.com 15

DATA STRUCTURES

16
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Then the list becomes

The control moves to while loop as j>=0 and a[j] > temp is false, the

while is not executed.

Then the list becomes

Program to illustrate insertion sort technique.

#include<stdio.h>

void insert_sort(int [], int);

int main(void)

{

 int n, a[10], i;

 clrscr();

 printf(" Enter the size of the array ");

 scanf("%d", &n);

www.Jntufastupdates.com 16

DATA STRUCTURES

17
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf(" Enter the elements of the array ");

 for(i=0; i<n; i++)

 scanf("%d", &a[i]);

 insert_sort(a, n);

 return 0;

}

void insert_sort(int a[], int n)

{

 int i,j,temp;

 for(i=1; i<n; i++)

 {

 temp = a[i];

 j = i - 1;

 while(j >= 0 && a[j] > temp)

 {

 a[j+1] = a[j];

 j = j - 1;

 }

 a[j+1]=temp;

 }

 printf(" \n The sorted list of elements are ");

 for(i=0; i<n; i++)

 printf("%d\t", a[i]);

}

SELECTION SORT

✓ It is easy and simple to implement

✓ It is used for small list of elements

✓ It uses less memory

✓ It is efficient than bubble sort technique

✓ It is not efficient when used with large list of elements

www.Jntufastupdates.com 17

DATA STRUCTURES

18
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ It is not efficient than insertion sort technique when used with

large list

✓ The time complexity of selection sort is O(n2)

✓ Consider an array A with N elements. First find the smallest element

in the array and place it in the first position. Then, find the second

smallest element in the array and place it in the second position.

Repeat this procedure until the entire array is sorted.

✓ In Pass 1, find the position POS of the smallest element in the array

and then swap A[POS] and A[0]. Thus, A[0] is sorted.

✓ In Pass 2, find the position POS of the smallest element in sub-array

of N–1 elements. Swap A[POS] with A[1]. Now, A[0] and A[1] is

sorted.

✓ In Pass N–1, find the position POS of the smaller of the elements A[N–

2] and A[N–1]. Swap A[POS] and A[N–2] so that A[0], A[1], ..., A[N–1]

is sorted.

Algorithm for Selection Sort

Algorithm for Selection Sort

SELECTION SORT(A, N)

Step 1: Start

Step 2: Repeat Steps 3 and 4 for I = 1 to N

Step 3: Call SMALLEST(A, I, N, pos)

Step 4: Swap A[I] with A[pos]

Step 5: Stop

SMALLEST (A, I, N, pos)

Step 1: Start

Step 2: SET small = A[I]

Step 3: SET POS = I

Step 4: Repeat for J = I+1 to N

 If small> A[J]

 SET small = A[J]

www.Jntufastupdates.com 18

DATA STRUCTURES

19
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 SET pos = J

Step 4: Return pos

Step 5: Stop

Example for Selection Sort

www.Jntufastupdates.com 19

DATA STRUCTURES

20
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Selection Sort

include<stdio.h>

void selection_sort(int low, int high);

int a[25];

int main(void)

{

 int n, i= 0;

 printf("Enter the number of elements: ");

 scanf("%d", &n);

 printf("\nEnter the elements:\n");

 for(i=0; i < n; i++)

 scanf("%d", &a[i]);

 selection_sort(0, n-1);

 printf("\nThe elements after sorting are: ");

 for(i=0; i< n; i++)

 printf("%d\t ", a[i]);

 return 0;

}

void selection_sort(int low, int high)

{

 int i=0, j=0, temp=0, minindex;

 for(i=low; i <= high; i++)

 {

 minindex = i;

 for(j=i+1; j <= high; j++)

 {

 if(a[j] < a[minindex])

 minindex = j;

 }

 temp = a[i];

 a[i] = a[minindex];

 a[minindex] = temp;

www.Jntufastupdates.com 20

DATA STRUCTURES

21
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 }

}

BUBBLE SORT

✓ It is known as exchange sort

✓ It is also known as comparison sort

✓ It is easiest and simple sort technique but inefficient.

✓ It is not a stable sorting technique.

✓ The time complexity of bubble sort is O(n2) in all cases.

✓ Bubble sort uses the concept of passes.

✓ The phases in which the elements are moving to acquire their proper

positions is called passes.

✓ It works by comparing adjacent elements and bubbles the largest

element towards right at the end of the first pass.

✓ The largest element gets sorted and placed at the end of the sorted

list.

✓ This process is repeated for all pairs of elements until it moves the

largest element to the end of the list in that iteration.

✓ Bubble sort consists of (n-1) passes, where n is the number of

elements to be sorted.

✓ In 1st pass the largest element will be placed in the nth position.

✓ In 2nd pass the second largest element will be placed in the (n-1)th

position.

✓ In (n-1)th pass only the first two elements are compared.

Algorithm for Bubble Sort

BUBBLE_SORT(A, N)

Step 1: Repeat Step 2 For I = to N-1

Step 2: Repeat For J = to N - I

Step 3: IF A[J] > A[J + 1]

SWAP A[J] and A[J+1]

Step 4: EXIT

www.Jntufastupdates.com 21

DATA STRUCTURES

22
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Example for Bubble Sort

www.Jntufastupdates.com 22

DATA STRUCTURES

23
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

www.Jntufastupdates.com 23

DATA STRUCTURES

24
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Bubble Sort

#include<stdio.h>

void bubble_sort(int [], int);

int main(void)

{

 int n, a[10], i;

 clrscr();

 printf(" Enter the size of the array ");

 scanf("%d", &n);

 printf(" Enter the elements of the array ");

 for(i=0; i<n; i++)

 scanf("%d", &a[i]);

 bubble_sort(a,n);

 return 0;

}

void bubble_sort(int a[], int n)

{

 int i, j, m, temp;

 for(i=1; i<n-1; i++)

 {

 for(j=0; j<n; j++)

 {

 if(a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

 }

 printf(" The sorted list of elements are ");

 for(i=0; i<n; i++)

www.Jntufastupdates.com 24

DATA STRUCTURES

25
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf("%d\t", a[i]);

}

QUICK SORT

✓ It is developed by C.A.R. Hoare.

✓ It is also known as partition exchange sort.

✓ This sorting algorithm uses divide and conquer strategy.

✓ In this method, the division is carried out dynamically.

✓ It contains three steps:

✓ Divide – split the array into two sub arrays so that each element in

the right sub array is greater than the middle element and each

element in the left sub array is less than the middle element. The

splitting is done based on the middle element called pivot. All the

elements less than pivot will be in the left sub array and all the

elements greater than pivot will be on right sub array.

✓ Conquer – recursively sort the two sub arrays.

✓ Combine – combine all the sorted elements in to a single list.

✓ Consider an array A[i] where i is ranging from 0 to n – 1 then the

division of elements is as follows:

A[0]……A[m – 1], A[m], A[m + 1] …….A[n]

✓ The partition algorithm is used to arrange the elements such that

all the elements are less than pivot will be on left sub array and

greater then pivot will be on right sub array.

✓ The time complexity of quick sort algorithm in worst case is O(n2),

best case and average case is O(n log n).

✓ It is faster than other sorting techniques whose time complexity is

O(n log n)

Algorithm for Quick Sort

QUICK_SORT (A, LOW, HIGH)

Step 1: IF (LOW < HIGH)

CALL PARTITION (A, LOW, HIGH, MID)

www.Jntufastupdates.com 25

DATA STRUCTURES

26
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CALL QUICKSORT(A, LOW, MID - 1)

CALL QUICKSORT(A, MID + 1, HIGH)

Step 2: EXIT

Algorithm for Partition

PARTITION (A, LOW, HHIGH, MID)

Step 1: SET PIVOT = A[LOW], I =LOW, J = HIGH

Step 2: Repeat Steps 3 to 5 while I <= LOW

Step 3: Repeat while A[LOW] <= A[PIVOT]

SET I = I + 1

Step 4: Repeat while A[j] >= PIVOT

 SET J = J – 1

Step 5: Repeat if I <= J

 SWAP A[I], A[J]

Step 6: SWAP A[LOW], A[J]

Step 7: Return J

Step 8: EXIT

Example for Quick Sort

Let us consider the array of elements to sort them using quick sort

technique

50, 30, 10, 90, 80, 20, 40, 70

We will increment i, if(a[i] <= pivot), we will continue incrementing i

until the condition is false.

www.Jntufastupdates.com 26

DATA STRUCTURES

27
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now a[i] > pivot, so stop incrementing i. As a[j] > pivot we will decrement j

until it becomes false

Now we cannot decrement j because a[j] < pivot. Hence we swap a[i] and a[j]

since i < j.

Now again a[i] < pivot so increment i

Now a[i] > pivot so stop incrementing i and a[j] > pivot so decrement j

www.Jntufastupdates.com 27

DATA STRUCTURES

28
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now a[j] < pivot so stop decrementing j. since i <j swap a[i] and a[j]

Now again a[i] < pivot so increment i

Now a[i] > pivot, so stop incrementing i. As a[j] > pivot we will decrement j

until it becomes false

.

As a[i] > pivot and a[j] < pivot and j crossed i we will swap a[low] and a[j]

We will now start left array to be sorted and then right sub array. The new

pivot for the left sub array is 20

www.Jntufastupdates.com 28

DATA STRUCTURES

29
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now since a[i] > pivot stop incrementing i and a[j] > pivot so decrement j

Now j cannot be decremented and i < j so swap a[i] and a[j]

Now again a[i] < pivot so increment i

Now a[i] > pivot so stop incrementing i and a[j] > pivot so decrement j

Since a[j] < pivot so j cannot be decremented and j crossed i so swap a[low]

and a[j]

There is one element in the left sub array hence all the elements in the right

sub array is to be sorted.

www.Jntufastupdates.com 29

DATA STRUCTURES

30
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Since a[i] > pivot and a[j] < pivot we stop incrementing I and decrementing j

and I < j we swap a[i] and a[j]

Since a[i] < pivot so increment i

Since a[i] > pivot so stop incrementing i and a[j] > pivot so decrement j

Since a[j] < pivot so j cannot be decremented and j crossed i so swap a[low]

and a[j]

Now the left contains 70 and right contains 90 we cannot further subdivide

the array. Hence if we look at the array all the elements are sorted.

www.Jntufastupdates.com 30

DATA STRUCTURES

31
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Quick Sort

#include <stdio.h>

#define size 100

int partition(int a[], int low, int high);

void quick_sort(int a[], int low, int high);

int main(void)

{

 int a[size], i, n;

 printf("\n Enter the number of elements in the array: ");

 scanf("%d", &n);

 printf("\n Enter the elements of the array: ");

 for(i=0;i<n;i++)

 {

 scanf("%d", &a[i]);

 }

 quick_sort(a, 0, n-1);

 printf("\n The sorted array is: \n");

 for(i=0;i<n;i++)

 printf(" %d\t", a[i]);

 return 0;

}

int partition(int a[], int low, int high)

{

 int left, right, temp, mid, flag;

 mid = left = low;

 right = high;

 flag = 0;

 while(flag != 1)

 {

 while((a[mid] <= a[right]) && (mid!=right))

 right--;

 if(mid==right)

www.Jntufastupdates.com 31

DATA STRUCTURES

32
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 flag =1;

 else if(a[mid]>a[right])

 {

 temp = a[mid];

 a[mid] = a[right];

 a[right] = temp;

 mid = right;

 }

 if(flag!=1)

 {

 while((a[mid] >= a[left]) && (mid!=left))

 left++;

 if(mid==left)

 flag =1;

 else if(a[mid] <a[left])

 {

 temp = a[mid];

 a[mid] = a[left];

 a[left] = temp;

 mid = left;

 }

 }

 }

 return mid;

}

void quick_sort(int a[], int low, int high)

{

 int mid;

 if(low<high)

 {

 mid = partition(a, low, high);

 quick_sort(a, low, mid -1);

www.Jntufastupdates.com 32

DATA STRUCTURES

33
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 quick_sort(a, mid+1, high);

 }

}

RADIX SORT

✓ It is a linear sorting algorithm.

✓ It is also known as bucket sort technique or binsort technique or card

sort technique since it uses buckets for sorting.

✓ It can be applied for integers as well as letters. For integers it used 10

buckets and for letters it uses 26 buckets.

✓ If the input is integers then we sort them from least significant digit to

most significant digit.

✓ The number passes used in radix sort depends on the number of

digits.

✓ The time complexity of radix sort in all cases is O(n log n)

✓ It takes more space compared to other sorting algorithms.

✓ It is used only for digits and letters

✓ It depends on the number of digits and letters.

Algorithm for Radix Sort

RadixSort (A, N)

Step 1: Find the largest number in A as LARGE

Step 2: SET NOP = Number of digits in LARGE

Step 3: SET PASS = 0

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET I = 0 and INITIALIZE buckets

Step 6: Repeat Steps 7 to 9 while I<N-1

Step 7: SET DIGIT = digit at PASSth place in A[I]

Step 8: Add A[I] to the bucket numbered DIGIT

Step 9: INCEREMENT bucket count for bucket numbered DIGIT

Step 10: Collect the numbers in the bucket

Step 11: EXIT

www.Jntufastupdates.com 33

DATA STRUCTURES

34
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Example for Radix Sort

Let us consider the array of elements to sort them using radix sort

technique

345, 654, 924, 123, 567, 472, 555, 808, 911

In the first pass, the numbers are sorted according to the digit at one’s

place

After the first pass the numbers are collected bucket by bucket. Thus

the new list for the second pass is

911, 472, 123, 654, 924, 345, 555, 567, 808

In the second pass the numbers are sorted according to the digit at

ten’s place.

www.Jntufastupdates.com 34

DATA STRUCTURES

35
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

After the second pass the numbers are collected bucket by bucket.

Thus the new list for the third pass is

808, 911, 123, 924, 345, 654, 555,567, 472

In the third pass the numbers are sorted according to the digit at

hundred place.

After the third pass the numbers are collected bucket by bucket. Thus

the new list formed is the final result. It is

123, 345, 472, 555, 567, 654, 808, 911, 924

Program for Radix Sort

#include<stdio.h>

int main(void)

{

 int a[100][100], i, n, r=0, c=0, b[100], temp;

 printf(” Enter the size of the array ”);

 scanf(“%d”, &n);

 for(r=0;r<100;r++)

 {

 for(c=0;c<100;c++)

 a[r][c] = 1000;

 }

www.Jntufastupdates.com 35

DATA STRUCTURES

36
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf(” Enter the array elements ”);

 for(i=0;i<n;i++)

 {

 scanf(“%d”, &b[i]);

 r = b[i] /100;

 c = b[i] % 100;

 a[r][c] = b[i];

 }

for(r=0;r<100;r++)

 {

 for(c=0;c<100;c++)

 {

 for(i=0;i<n;i++)

 {

 if(a[r][c] = =b[i])

 {

 printf(“\n\t”);

 printf(“%d”, a[r][c]);

 }

 }

 }

 }

 return 0;

}

MERGE SORT

✓ This sorting algorithm uses divide and conquer strategy.

✓ In this method, the division is carried out dynamically.

✓ It contains three steps:

✓ Divide – split the array into two sub arrays s1 and s2 with each n/2

elements. If A is an array containing zero or one element, then it is

already sorted. But if there are more elements in the array, divide A

www.Jntufastupdates.com 36

DATA STRUCTURES

37
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

into two sub-arrays, s1 and s2, each containing half of the elements of

A.

✓ Conquer – sort the two sub arrays s1 and s2.

✓ Combine – combine or merge s1 and s2 elements into a unique sorted

list.

✓ The time complexity of merge sort is O(n log n) in all cases.

Algorithm for Merge Sort

MERGE_SORT(A,LOW, HIGH)

Step 1: IF LOW < HIGH

SET MID = (LOW +HIGH)/2

CALL MERGE_SORT (A, LOW, MID)

CALL MERGE_SORT (A, MID + 1, HIGH)

COMBINE (A, LOW, MID, HIGH)

Step 2: EXIT

Algorithm for Combine

COMBINE (A, LOW, MID, HIGH)

Step 1: SET I = LOW, J = MID + 1, INDEX = LOW

Step 2: Repeat while (I <= MID) AND (J<=HIGH)

IF A[I] < A[J]

SET TEMP[INDEX] = A[I]

SET I = I + 1

SET INDEX = INDEX + 1

ELSE

SET TEMP[INDEX] = A[J]

SET J = J + 1

SET INDEX = INDEX + 1

Step 3: [Copy the remaining elements of right sub-array, if any]

IF I > MID

Repeat while J <= HIGH

www.Jntufastupdates.com 37

DATA STRUCTURES

38
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SET TEMP[INDEX] = A[J]

SET J = J + 1

SET INDEX = INDEX + 1

 [Copy the remaining elements of left sub-array, if any]

ELSE

IF A[I]<= MID

SET TEMP[INDEX] = A[I]

SET I = I + 1

SET INDEX = INDEX + 1

Step 4: EXIT

Example for Merge Sort

Let us consider the array of elements to sort them using Merge sort

technique

6, 1, 4, 3, 5, 7, 9, 2, 8, 0

We then first make the two sublists and combine the two sorted sublists as

a unique sorted list.

www.Jntufastupdates.com 38

DATA STRUCTURES

39
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now let us see the combine operations

1, 3, 4, 5, 6, 0, 2, 7, 8, 9

Now i remains there and j is incremented.

Now j remains there and i is incremented.

www.Jntufastupdates.com 39

DATA STRUCTURES

40
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now i remains there and j is incremented.

Now j remains there i is incremented

Now again i is incremented

www.Jntufastupdates.com 40

DATA STRUCTURES

41
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now again i is incremented.

Now again i is incremented. But the left sub list is completed then j is

incremented until the right sub list is completed

www.Jntufastupdates.com 41

DATA STRUCTURES

42
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Finally we see the array is in sorted order.

Program for Merge Sort

#include <stdio.h>

#define size 100

void combine(int a[], int, int, int);

void merge_sort(int a[],int, int);

int main(void)

{

int a[size], i, n;

printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);

printf("\n Enter the elements of the array: ");

for(i=0;i<n;i++)

scanf("%d", &a[i]);

merge_sort(a, 0, n-1);

printf("\n The sorted array is: \n");

for(i=0;i<n;i++)

printf(" %d\t", a[i]);

return 0;

}

www.Jntufastupdates.com 42

DATA STRUCTURES

43
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

void combine(int a[], int low, int mid, int high)

{

int i=low, j=mid+1, index=low, temp[size], k;

while((i<=mid) && (j<=high))

{

if(a[i] < a[j])

{

temp[index] = a[i];

i++;

}

else

{

temp[index] = a[j];

j++;

}

index++;

}

if(i>mid)

{

while(j<=high)

{

temp[index] = a[j];

j++;

index++;

}

}

else

{

while(i<=mid)

{

temp[index] = a[i];

i++;

www.Jntufastupdates.com 43

DATA STRUCTURES

44
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

index++;

}

}

for(k=low;k<index;k++)

a[k] = temp[k];

}

void merge_sort(int a[], int low, int high)

{

int mid;

if(low<high)

{

mid = (low+high)/2;

merge_sort(a, low, mid);

merge_sort(a, mid+1, high);

combine(a, low, mid, high);

}

}

HEAP SORT

✓ Heap is a complete binary tree and also a Max(Min) tree.

✓ A Max(Min) tree is a tree whose root value is larger(smaller) than its

children.

✓ This sorting technique has been developed by J.W.J. Williams.

✓ It is working under two stages.

 Heap construction

 Deletion of a Maximum element key

✓ The heap is first constructed with the given numbers. The maximum

key value is deleted for n -1 times to the remaining heap. Hence we

will get the elements in decreasing order. The elements are deleted one

by one and stored in the array from last to first. Finally we get the

elements in ascending order.

✓ The important points about heap sort technique are:

www.Jntufastupdates.com 44

DATA STRUCTURES

45
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The time complexity of heap sort is O(n log n)

✓ This is a in-place sorting algorithm.

✓ For random input it works slower than quick sort

✓ Heap sort is not a stable sorting method

✓ The space complexity of heap sort is O(1).

Algorithm Heap Sort

✓ Build a max heap from the input data.

✓ At this point, the largest item is stored at the root of the heap. Replace

it with the last item of the heap followed by reducing the size of heap

by 1. Finally, heapify the root of tree.

✓ Repeat above steps while size of heap is greater than 1

Procedure for Working of Heap Sort

Initially on receiving an unsorted list,

✓ First step in heap sort is to build Max-Heap.

✓ Repeat Second, Third and Fourth steps, until we have the complete

sorted list in our array.

✓ Second step - Once heap is built, the first element of the Heap is

largest, so we exchange first and last element of a heap.

✓ Third step - We delete and put last element(largest) of the heap in our

array.

✓ Fourth step - Then we again make heap using the remaining

elements, to again get the largest element of the heap and put it into

the array. We keep on doing the same repeatedly until we have the

complete sorted list in our array.

Example for Heap Sort

Let us consider the array of elements to sort them using heap sort

technique

4, 1, 3, 2, 16, 9, 10, 14, 8, 7

www.Jntufastupdates.com 45

DATA STRUCTURES

46
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Stage -1 construction of heap

www.Jntufastupdates.com 46

DATA STRUCTURES

47
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Stage – 2 deletion of maximum key element

www.Jntufastupdates.com 47

DATA STRUCTURES

48
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Heap Sort

#include<stdio.h>

void heap_sort(int[], int);

void makeheap(int[], int);

int main(void)

{

 int a[10], n, i;

 printf(" Enter the size of the array ");

 scanf("%d", &n);

 printf(" Enter the array elements ");

www.Jntufastupdates.com 48

DATA STRUCTURES

49
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 for(i=0;i<n;i++)

 scanf("%d", &a[i]);

 makeheap(a, n);

 heap_sort(a, n);

 printf(" The elements after sorting are ");

 for(i=0;i<n;i++)

 printf("\t%d", a[i]);

 return 0;

}

void makeheap(int a[], int n)

{

 int i, val, j, parent;

 for(i=1;i<n;i++)

 {

 val = a[i];

 j = i;

 parent = (j - 1) / 2;

 while(j>0 && parent < val)

 {

 a[j] = a[parent];

 j = parent;

 parent = (j - 1) / 2;

 }

 a[j] = val;

 }

}

void heap_sort(int a[], int n)

{

 int i, j, k, temp;

 for(i=n-1;i>0;i--)

 {

www.Jntufastupdates.com 49

DATA STRUCTURES

50
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 temp = a[i];

 a[i] = a[0];

 k = 0;

 if(i == 1)

 j = -1;

 else

 j = 1;

 if(i > 2 && a[2] > a[1])

 j = 2;

 while(j >=0 && temp < a[j])

 {

 a[k] = a[j];

 k = j;

 j = 2 * k +1;

 if(j+1 <= i-1 && a[j] < a[j+1])

 j++;

 if(j > i-1)

 j = -1;

 }

 a[k] = temp;

 }

}

www.Jntufastupdates.com 50

