
DATA STRUCTURES

1
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – II

POINTERS

POINTER ARRAYS

✓ When an array is declared, the compiler allocates a base address and

sufficient amount of memory to contain all the elements of the array

in continuous memory locations.

✓ The base address is the location of the first element of the array

denoted by a[0].

✓ The compiler also defines the array name as constant pointer to the

first element.

✓ For Example: -

int a [5] = {1, 2, 3, 4, 5};

✓ Here if the base address is 1000 for “a” and integer occupies 4 bytes

then the five elements requires 20 bytes as shown below.

✓ The name of the array is “a” and it is defined as a constant pointer

pointing to the first element of the array and it is a[0] whose base

address is 1000 becomes the value of ”a”. It is represented as

a = &a[0] = 1000;

✓ If p is a pointer of integer type then p to point the array a is given by

the assignment statement

p = a;

which is equivalent to

p = &a[0];

www.Jntufastupdates.com 1

DATA STRUCTURES

2
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ Now it is possible to access every value of a using p++ to move from

one element to another element as

P = &a[0] =1000

P+1 = &a[1] = 1004

P+2 = &a[2] = 1008

P+3 = &a[3] = 1012

P+4 = &a[4] = 1016

✓ The address of the element is calculated by using the formula

address of a[3] = base address + (3 * scale factor of int)

✓ When handling arrays we can use pointers to access the array

elements. Hence *(p+3) gives the value of a[3].

✓ Pointers can also be used to manipulate two dimensional arrays. In

one dimensional array “a” the expression.

*(a+i) or *(p+i)

LINKED LIST

✓ It is a collection of linear list of data elements.

✓ The data elements are called nodes.

✓ Each node contains two parts: data and link.

✓ The data represents integers and link is a pointer that points to next

node.

✓ The last node of the linked list is not connected to any node so it

stores the value NULL in link part.

✓ Here NULL is defined as -1

✓ NULL pointer denotes end of the list.

✓ It contains pointer variable called start node that contains the address

of first node in the list

✓ We can traverse the list starting from start node that contains first

node address and in turn first node contains second node address and

so on thus forming chain of nodes.

✓ If start == NULL then the list is empty.

www.Jntufastupdates.com 2

DATA STRUCTURES

3
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The diagrammatic representation of linked list is shown below:

NODE REPRESENTATION

✓ In C language, the code for the linked list is

 struct node

 {

 int data;

 struct node *next;

 }

SINGLE LINKED LIST

✓ “A single linked list is a linked list in which each node contains

only one link pointing to the next node in the list”.

✓ A linked list allocates space for each element separately in its own

block of memory called a "node".

✓ The list gets an overall structure by using pointers to connect all its

nodes together.

✓ Each node contains two fields - a "data" field to store element, and a

"next" field which is a pointer used to connect to the next node.

✓ Each node is allocated in the heap using malloc() and it is explicitly

de-allocated using free().

✓ The single linked list starts with a pointer to the “start” node.

✓ The single linked list is called as linear list or chain.

www.Jntufastupdates.com 3

DATA STRUCTURES

4
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The traversing of data can be in one direction only.

✓ The beginning of the linked list is stored in a "start" pointer which

points to the first node.

✓ The first node contains a pointer to the second node. The second node

contains a pointer to the third node and so on.

✓ The last node in the list has its next field set to NULL to mark the end

of the list.

ADT FOR SINGLE LINKED LIST

AbstractDataType SlinkedList

{

 instances:

finite collection of zero or more elements linked by

pointers

operations:

 Count(): Count the number of elements in the list.

 Addatbeg(x): Add x to the beginning of the list.

 Addatend(x): Add x at the end of the list.

 Insert(k, x): Insert x just after kth element.

 Delete(k): Delete the kth element.

Search(x): Return the position of x in the list otherwise

return -1 if not found

 Traverse(): Display all elements of the list

 }

www.Jntufastupdates.com 4

DATA STRUCTURES

5
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IMPLEMENTATION OF SINGLE LINKED LIST

Before writing the code to build the list, we need to create a start

node, used to create and access other nodes in the linked list.

✓ Creating a structure with one data item and a next pointer, which will

be pointing to next node of the list. This is called as self-referential

structure.

✓ Initialize the start pointer to be NULL.

struct slinklist

{

int data;

struct slinklist* next;

};

typedef struct slinklist node;

node *start = NULL;

BASIC OPERATION PERFORMED ON SINGLE LINKED LIST

The different operations performed on the single linked list are listed

as follows.

1. Creation 2. Insertion

3. Deletion 4. Traversing

5. Searching

Creating a node for Single Linked List

✓ Creating a singly linked list starts with creating a node.

✓ Sufficient memory has to be allocated for creating a node.

✓ The information is stored in the memory, allocated by using the

malloc() function.

✓ The function getnode(), is used for creating a node, after allocating

memory for the node, the information for the node data part has to be

read from the user and set next field to NULL and finally return the

node.

www.Jntufastupdates.com 5

DATA STRUCTURES

6
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

node* getnode()

{

node* newnode;

newnode = new node;

printf(“Enter data”);

scanf(“%d”, &newnode -> data;

newnode -> next = NULL;

return newnode;

 }

Creating a Singly Linked List with ‘n’ number of nodes

The following steps are to be followed to create ‘n’ number of nodes.

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below.

✓ The next field of the new node is made to point the first node (i.e.

start node) in the list by assigning the address of the first node.

✓ The start pointer is made to point the new node by assigning the

address of the new node.

4. Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes

void createlist(int n)

{

www.Jntufastupdates.com 6

DATA STRUCTURES

7
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

int i;

node *newnode;

node *temp;

for(i = 0; i < n ; i++)

{

newnode = getnode();

if(start = = NULL)

{

start = newnode;

}

else

{

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

}

}

}

INSERTION OF A NODE

✓ One of the most important operations that can be done in a singly

linked list is the insertion of a node.

✓ Memory is to be allocated for the newnode before reading the data.

✓ The newnode will contain empty data field and empty next field.

✓ The data field of the newnode is then stored with the

information read from the user.

✓ The next field of the newnode is assigned to NULL.

✓ The newnode can then be inserted at three different places namely:

✓ Inserting a node at the beginning.

✓ Inserting a node at the end.

✓ Inserting a node at specified position.

www.Jntufastupdates.com 7

DATA STRUCTURES

8
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSERTING A NODE AT THE BEGINNING

The following steps are to be followed to insert a newnode at the

beginning of the list:

1. Get the newnode using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below:

newnode -> next = start;

start = newnode;

The function insert_at_beg(), is used for inserting a node at the

beginning.

void insert_at_beg()

{

node *newnode;

newnode = getnode();

if(start == NULL)

{

start = newnode;

}

else

{

newnode -> next = start;

start = newnode;

}

}

www.Jntufastupdates.com 8

DATA STRUCTURES

9
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSERTING A NODE AT THE END

The following steps are followed to insert a new node at the end of the

list:

1. Get the new node using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()

{

node *newnode, *temp;

newnode = getnode();

if(start == NULL)

{

start = newnode;

}

else

{

temp = start;

while(temp -> next != NULL)

www.Jntufastupdates.com 9

DATA STRUCTURES

10
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = temp -> next;

temp -> next = newnode;

}

}

INSERTING A NODE AT SPECIFIED POSITION

The following steps are followed, to insert a new node in an

intermediate position in the list:

1. Get the new node using getnode() then newnode = getnode();

2. Ensure that the specified position is in between first node and last node.

If not, specified position is invalid. This is done by countnode() function.

3. Store the starting address (which is in start pointer) in temp and prev

pointers. Then traverse the temp pointer upto the specified position followed

by prev pointer.

4. After reaching the specified position, follow the steps given below:

prev -> next = newnode;

newnode -> next = temp;

The function insert_at_mid(), is used for inserting a node in the

intermediate position.

void insert_at_mid()

{

node *newnode, *temp, *prev;

www.Jntufastupdates.com 10

DATA STRUCTURES

11
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

int pos, nodectr, ctr = 1;

newnode = getnode();

printf(“ Enter the position”);

scanf(“%d”, &pos);

nodectr = countnode(start);

if(pos > 1 && pos < nodectr)

{

temp = prev = start;

while(ctr < pos)

{

prev = temp;

temp = temp -> next;

ctr++;

}

prev -> next = newnode;

newnode -> next = temp;

}

else

{

printf(“%d”, pos);

}

}

DELETION OF A NODE

✓ Another operation that can be done in a singly linked list is the

deletion of a node.

✓ Memory is to be released for the node to be deleted.

✓ It is done by using free() function.

✓ A node can be deleted from the list from three different places.

✓ Deleting a node at the beginning.

✓ Deleting a node at the end.

✓ Deleting a node at specified position.

www.Jntufastupdates.com 11

DATA STRUCTURES

12
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELETING A NODE AT THE BEGINNING

The following steps are followed, to delete a node at the beginning of

the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = start;

start = start -> next;

free(temp);

The function delete_at_beg(), is used for deleting the first node in

the list.

void delete_at_beg()

{

node *temp;

if(start == NULL)

{

printf(“ Empty List ”);

return ;

}

else

{

temp = start;

start = temp -> next;

free(temp);

printf(“Node deleted”);

}

}

www.Jntufastupdates.com 12

DATA STRUCTURES

13
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELETING A NODE AT THE END

The following steps are followed to delete a node at the end of the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = prev = start;

while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}

prev -> next = NULL;

free(temp);

The function delete_at_last(), is used for deleting the last node in the

list.

void delete_at_last()

{

node *temp, *prev;

if(start == NULL)

{

printf(“ Empty List ”);

return ;

}

else

{

temp = start;

www.Jntufastupdates.com 13

DATA STRUCTURES

14
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

prev = start;

while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}

prev -> next = NULL;

free(temp);

printf(“Node deleted”);

}

}

DELETING A NODE AT SPECIFIED POSITION

The following steps are followed, to delete a node from the specified

position in the list.

1. If list is empty then display ‘Empty List’ message

2. If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)

{

temp = prev = start;

ctr = 1;

while(ctr < pos)

{

prev = temp;

temp = temp -> next;

ctr++;

}

prev -> next = temp -> next;

free(temp);

printf(“Node deleted”);

}

www.Jntufastupdates.com 14

DATA STRUCTURES

15
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

The function delete_at_mid(), is used for deleting the specified position

node in the list.

void delete_at_mid()

{

int ctr = 1, pos, nodectr;

node *temp, *prev;

if(start == NULL)

{

printf(“ Empty List ”);

return ;

}

else

{

printf(“ Enter position of node to delete ”);

scanf(“%d”, &pos);

nodectr = countnode(start);

if(pos > nodectr)

{

printf(“ This node doesnot exist: ”);

}

if(pos > 1 && pos < nodectr)

{

temp = prev = start;

while(ctr < pos)

{

prev = temp;

temp = temp -> next;

www.Jntufastupdates.com 15

DATA STRUCTURES

16
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ctr ++;

}

prev -> next = temp -> next;

free(temp);

printf(“Node deleted”);

}

else

printf(“Invalid position”);

}

}

TRAVERSAL AND DISPLAYING A LIST (LEFT TO RIGHT)

To display the information, you have to traverse (move) a linked list,

node by node from the first node, until the end of the list is reached.

Traversing a list involves the following steps.

1. Assign the address of start pointer to a temp pointer.

2. Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the

information stored in the list from left to right.

void traverse()

{

node *temp;

temp = start;

printf(“ The contents of List (Left to Right) ”);

if(start == NULL)

printf(“ Empty List ”);

else

{

while (temp != NULL)

{

printf(“%d”, temp -> data);

www.Jntufastupdates.com 16

DATA STRUCTURES

17
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = temp -> next;

}

}

printf(“%d”, X);

}

SEARCHING A NODE IN A SINGLE LINKED LIST

✓ Searching a single linked list means to find a particular element in the

single linked list.

✓ A single linked list consists of nodes which are divided into two parts,

the data part and the next part.

✓ So searching means finding whether a given value is present in the

data part of the node or not.

✓ If it is present, then display element found otherwise element not

found.

 void search()

{

 node *temp;

 int value = 30;

 temp = start;

 if(start == NULL)

 printf(“ Empty List ”);

 else

 {

while (temp != NULL)

 {

www.Jntufastupdates.com 17

DATA STRUCTURES

18
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 if(value = temp->data)

 {

 printf(“ Element found ”);

 return;

 }

 temp = temp -> next;

 }

 printf(“ Element not found ”);

 }

 }

ADVANTAGES OF SINGLE LINKED LIST

✓ Insertions and Deletions can be done easily.

✓ It does not need movement of elements for insertion and deletion.

✓ The space is not wasted as we can get space according to our

requirements.

✓ Its size is not fixed.

✓ It can be extended or reduced according to requirements.

✓ Elements may or may not be stored in consecutive memory available,

even then we can store the data in computer.

✓ It is less expensive.

DISADVANTAGES OF SINGLE LINKED LIST

✓ It requires more space as pointers are also stored with information.

✓ Different amount of time is required to access each element.

✓ If we have to go to a particular element then we have to go through all

those elements that come before that element.

www.Jntufastupdates.com 18

DATA STRUCTURES

19
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ We cannot traverse it from last.

✓ It is not easy to sort the elements stored in the Single linked list.

CIRCULAR LINKED LISTS

✓ Circular linked list is a linked list which consists of collection of nodes

each of which has two parts, namely the data part and the next part.

✓ The data part contains the value of the node and the next part has the

address of the next node.

✓ The last node of list has the next pointer pointing to the first node

thus making circular traversal possible in the list. A circular linked

list has no beginning and no end.

✓ In circular linked list no null pointers are used, hence all pointers

contain valid address.

IMPLEMENTATION OF CIRCULAR LINKED LIST

Before writing the code to build the list, we need to create a start

node, used to create and access other nodes in the linked list.

✓ Creating a structure with one data item and a next pointer, which will

be pointing to next node of the list. This is called as self-referential

structure.

✓ Initialize the start pointer to be NULL.

www.Jntufastupdates.com 19

DATA STRUCTURES

20
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

struct clinklist
{

int data;

struct clinklist* next;

};

typedef struct clinklist node;

node *start = NULL;

BASIC OPERATION PERFORMED ON CIRCULAR LINKED LIST

The operations on the circular linked list are listed as follows.

1. Creation

1. Insertion

2. Deletion

3. Traversing

4. Display

CREATING A NODE FOR CIRCULAR LINKED LIST

✓ Creating a circular linked list starts with creating a node. Sufficient

memory has to be allocated for creating a node.

✓ The information is stored in the memory, allocated by using the

malloc() function.

✓ The function getnode(), is used for creating a node, after allocating

memory for the node, the information for the node data part has to be

read from the user and set next field to NULL and finally return the

node.

node* getnode()

{

node* newnode;

newnode = new node;

printf(“ Enter data ”);

scanf(“%d”, &newnode -> data);

newnode -> next = NULL;

www.Jntufastupdates.com 20

DATA STRUCTURES

21
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

return newnode;

}

Creating a Circular Linked List with ‘n’ number of nodes

The following steps are to be followed to create ‘n’ number of nodes.

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below.

 temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

4. Repeat the above steps ‘n’ times.

5. newnode -> next = start;

The function createlist(), is used to create ‘n’ number of nodes

void createlist(int n)

{

int i;

node *newnode;

node *temp;

for(i = 0; i < n ; i++)

{

www.Jntufastupdates.com 21

DATA STRUCTURES

22
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

newnode = getnode();

if(start = = NULL)

{

start = newnode;

}

else

{

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

}

newnode -> next = start;

}

}

INSERTING A NODE

✓ One operation performed on circular linked list is the insertion of a

node.

✓ Memory is to be allocated for the newnode before reading the data.

✓ The newnode will contain empty data field and empty next field. The

data field of the newnode is then stored with the information read

from the user. The next field of the newnode is assigned to NULL.

✓ The newnode can then be inserted at three different positions:

✓ Inserting a node at the beginning.

✓ Inserting a node at the end.

INSERTING A NODE AT THE BEGINNING

The following steps are to be followed to insert a new node at the

beginning of the circular list:

1. Get the new node using getnode().

newnode = getnode();

www.Jntufastupdates.com 22

DATA STRUCTURES

23
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2. If the list is empty, assign new node as start.

start = newnode;

newnode -> next = start;

3. If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start)

last = last -> next;

newnode -> next = start;

start = newnode;

last -> next = start;

INSERTING A NODE AT THE END

The following steps are followed to insert a new node at the end of the

list:

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

newnode -> next = start;

3. If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != start)

www.Jntufastupdates.com 23

DATA STRUCTURES

24
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = temp -> next;

temp -> next = newnode;

newnode -> next = start;

DELETING A NODE AT THE BEGINNING

The following steps are followed, to delete a node at the beginning of

the list:

1. If the list is empty, display a message ‘Empty List’.

2. If the list is not empty, follow the steps given below:

last = temp = start;

while(last -> next != start)

last = last -> next;

start = start -> next;

last -> next = start;

3. After deleting the node, if the list is empty then start = NULL.

DELETING A NODE AT THE END

The following steps are followed to delete a node at the end of the list:

1. If the list is empty, display a message ‘Empty List’.

2. If the list is not empty, follow the steps given below:

www.Jntufastupdates.com 24

DATA STRUCTURES

25
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = start;

prev = start;

while(temp -> next != start)

{

prev = temp;

temp = temp -> next;

}

prev -> next = start;

4. After deleting the node, if the list is empty then start = NULL

TRAVERSING A CIRCULAR LINKED LIST FROM LEFT TO

RIGHT

✓ To display the list, we have to traverse (move) the circular linked list,

node by node from the first node, until the end of the list is reached.

✓ Traversing a list involves the following steps.

 1. Assign the address of start pointer to a temp pointer.

 2. Display the information from the data field of each node.

✓ The function traverse() is used for traversing and displaying the

information stored in the list from left to right.

 void traverse()

{

 node *temp;

 temp = start;

 printf(“ The contents of List (Left to Right)”);

 if(start == NULL)

 printf(“ Empty List ”);

www.Jntufastupdates.com 25

DATA STRUCTURES

26
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

else

 {

 do

 {

 printf(“%d”, temp -> data);

 temp = temp -> next;

 } while (temp != start);

 }

 }

SEARCHING A NODE IN A CIRCULAR LINKED LIST

✓ Searching a circular linked list means to find a particular element in

the circular linked list.

✓ A circular linked list consists of nodes which are divided into two

parts, the data part and the next part.

✓ So searching means finding whether a given value is present in the

data part of the node or not.

✓ If it is present, then display element found otherwise element not

found.

 void search()

{

 node *temp;

 int value = 30;

 temp = start;

www.Jntufastupdates.com 26

DATA STRUCTURES

27
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 if(start == NULL)

 printf(“ Empty List ”);

 else

 {

while (temp->next != start)

 {

 if(value = temp->data)

 {

 printf(“ Element found ”);

 return;

 }

 temp = temp -> next;

 }

 printf(“ Element not found ”);

 }

 }

DOUBLY LINKED LSITS

✓ A double linked list is a two-way list in which all nodes will have two

links.

✓ This helps in accessing both successor node and predecessor node

from the given node position.

✓ It provides bi-directional traversing.

✓ Each node has three fields namely

✓ Left link

✓ Data

www.Jntufastupdates.com 27

DATA STRUCTURES

28
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ Right link

✓ The left link points to the predecessor node and the right link points

to the successor node. The data field stores the required data. The

beginning of the double linked list is stored in a "start" pointer which

points to the first node.

✓ The first node’s left link and last node’s right link is set to NULL.

IMPLEMENTATION OF DOUBLY LINKED LIST

Before writing the code to build the list, we need to create a start

node, used to create and access other nodes in the linked list.

✓ Creating a structure with one data item and a right pointer, which will

be pointing to next node of the list and left pointer pointing to the

previous node. This is called as self-referential structure.

✓ Initialize the start pointer to be NULL.

struct dlinklist

{

struct dlinklist * left;

int data;

struct dlinklist * right;

};

typedef struct dlinklist node;

node *start = NULL;

www.Jntufastupdates.com 28

DATA STRUCTURES

29
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BASIC OPERATION PERFORMED ON DOUBLY LINKED LIST

The different operations performed on the doubly linked list are listed

as follows.

1. Creation

2. Insertion

3. Deletion

4. Traversing

5. Display

Creating a node for Doubly Linked List

✓ Creating a double linked list starts with creating a node.

✓ Sufficient memory has to be allocated for creating a node.

✓ The information is stored in the memory, allocated by using the

malloc() function.

✓ The function getnode(), is used for creating a node, after allocating

memory for the node, the information for the node data part has to be

read from the user and set left and right fields to NULL and finally

return the node.

node* getnode()

{

node* newnode;

newnode = new node;

printf(“ Enter data ”);

scanf(“%d”, &newnode -> data);

newnode -> left = NULL;

newnode -> right = NULL;

return newnode;

}

Creating a Doubly Linked List with ‘n’ number of nodes

The following steps are to be followed to create ‘n’ number of nodes.

1. Get the new node using getnode().

www.Jntufastupdates.com 29

DATA STRUCTURES

30
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below.

✓ The left field of the new node is made to point the previous node.

✓ The previous nodes right field must be assigned with address of the

new node.

4. Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes

void createlist(int n)

{

int i;

node *newnode;

node *temp;

for(i = 0; i < n ; i++)

{

newnode = getnode();

if(start = = NULL)

{

start = newnode;

}

else

{

temp = start;

www.Jntufastupdates.com 30

DATA STRUCTURES

31
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

while(temp -> right != NULL)

{

temp = temp -> right;

 }

temp -> right = newnode;

newnode -> left = temp;

}

}
}

INSERTION OF A NODE

✓ One of the most important operation that can be done in a doubly

linked list is the insertion of a node.

✓ Memory is to be allocated for the newnode before reading the data.

✓ The newnode will contain empty data field and empty left and right

fields.

✓ The data field of the newnode is then stored with the information read

from the user.

✓ The left and right fields of the newnode are set to NULL.

✓ The newnode can then be inserted at three different places namely:

✓ Inserting a node at the beginning.

✓ Inserting a node at the end.

✓ Inserting a node at specified position.

INSERTING A NODE AT THE BEGINNING

The following steps are to be followed to insert a newnode at the

beginning of the list:

1. Get the newnode using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below:

newnode -> right = start;

start -> left = newnode;

start = newnode;

www.Jntufastupdates.com 31

DATA STRUCTURES

32
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSERTING A NODE AT THE END

The following steps are followed to insert a new node at the end of the

list:

1. Get the new node using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty follow the steps given below:

temp = start;

while(temp -> right != NULL)

temp = temp -> right;

temp -> right = newnode;

newnode -> left = temp;

INSERTING A NODE AT SPECIFIED POSITION

The following steps are followed, to insert a new node in an

intermediate position in the list:

1. Get the new node using getnode() then newnode = getnode();

2. Ensure that the specified position is in between first node and last node.

If not, specified position is invalid. This is done by countnode() function.

www.Jntufastupdates.com 32

DATA STRUCTURES

33
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

3. Store the starting address (which is in start pointer) in temp and prev

pointers. Then traverse the temp pointer upto the specified position followed

by prev pointer.

4. After reaching the specified position, follow the steps given below:

newnode -> left = temp;

newnode ->right = temp ->right;

temp -> right ->left = newnode;

temp -> right = newnode;

DELETION OF A NODE

✓ Another operation that can be done in a doubly linked list is the

deletion of a node.

✓ Memory is to be released for the node to be deleted.

✓ A node can be deleted from the list from three different places.

✓ Deleting a node at the beginning.

✓ Deleting a node at the end.

✓ Deleting a node at specified position.

DELETING A NODE AT THE BEGINNING

The following steps are followed, to delete a node at the beginning of

the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = start;

start = start -> right;

start -> left = NULL;

free(temp);

www.Jntufastupdates.com 33

DATA STRUCTURES

34
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELETING A NODE AT THE END

The following steps are followed to delete a node at the end of the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = start;

while(temp -> right != NULL)

{

temp = temp ->right;

}

temp –> left -> right = NULL;

free(temp);

DELETING A NODE AT SPECIFIED POSITION

The following steps are followed, to delete a node from the specified

position in the list.

1. If list is empty then display ‘Empty List’ message

2. If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)

{

temp = start;

www.Jntufastupdates.com 34

DATA STRUCTURES

35
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ctr = 1;

while(ctr < pos)

{

temp = temp -> right;

ctr++;

}

temp -> right -> left = temp -> left;

temp -> left -> right = temp -> right;

free(temp);

}

TRAVERSAL AND DISPLAYING A LIST

✓ To display the list, we have to traverse (move) the double linked list,

node by node from the first node, until the end of the list is reached.

✓ To traverse double linked list from left to rightwe have the following

steps:

 1. If list is empty then display ‘Empty List’ message.

 2. If the list is not empty, follow the steps given below:

 temp = start;

 while(temp != NULL)

 {

 printf(“%d”, temp -> data);

 temp = temp -> right;

 }

✓ To display the list, we have to traverse (move) the double linked list,

node by node from the first node, until the end of the list is reached.

www.Jntufastupdates.com 35

DATA STRUCTURES

36
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The following steps are followed, to traverse a list from left to right:

 1. If list is empty then display ‘Empty List’ message.

 2. If the list is not empty, follow the steps given below:

 temp = start;

 while(temp!= NULL)

 {

 printf(“%d”, temp -> data);

 temp = temp -> right;

 }

COUNTING THE NUMBER OF NODES

The following code will count the number of nodes exist in the list

(using recursion).

int countnode(node *start)

{

if(start = = NULL)

return 0;

else

return(1 + countnode(start ->right));

}

SEARCHING A NODE IN A DOUBLE LINKED LIST

✓ Searching a double linked list means to find a particular element in

the double linked list.

✓ A double linked list consists of nodes which are divided into two parts,

the data part and the next part.

✓ So searching means finding whether a given value is present in the

data part of the node or not.

www.Jntufastupdates.com 36

DATA STRUCTURES

37
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ If it is present, then display element found otherwise element not

found.

 void search()

{

 node *temp;

 int value = 30;

 temp = start;

 if(start == NULL)

 printf(“ Empty List ”);

 else

 {

while (temp->right != NULL)

 {

 if(value = temp->data)

 {

 printf(“ Element found ”);

 return;

 }

 temp = temp -> right;

 }

 printf(“ Element not found ”);

 }

 }

LINKED STACKS

✓ A stack is a data structure in which addition of new element or

deletion of an existing element always takes place at the same end.

✓ This end is known as top of stack.

www.Jntufastupdates.com 37

DATA STRUCTURES

38
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ When an item is added to a stack, the operation is called push, and

when an item is removed from the stack the operation is called pop.

✓ Stack is also called as Last-In-First-Out (LIFO) list.

✓ The element that is inserted last is the first element to be removed

from the stack.

✓ Stack can be implemented using linked list and the same operations

can be performed at the end of the list using top pointer.

REPRESENTATION OF STACK USING LINKED LIST

✓ A stack is represented using an array is easy, but the drawback is

that the array must be declared to have some fixed size.

✓ In case the stack is a very small or its maximum size is known in

advance, then the array implementation of the stack gives an efficient

implementation.

✓ But if the array size cannot be determined in advance, then linked

representation is used.

✓ The storage requirement of linked representation of the stack with n

elements is O(n), and the time requirement for the operations is O(1).

✓ In a linked stack, every node has two parts—one that stores data and

another that stores the address of the next node.

✓ The START pointer of the linked list is used as TOP. All insertions and

deletions are done at the node pointed by TOP.

✓ If TOP = NULL, then it indicates that the stack is empty.

www.Jntufastupdates.com 38

DATA STRUCTURES

39
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OPERATIONS ON LINKED STACKS

✓ There are three possible operations performed on a stack. They are

push, pop and peek.

✓ Push: Allows adding an element at the top of the stack.

✓ Pop: Allows removing an element from the top of the stack.

✓ Peek: it returns the value of topmost element of the stack

Push Operation

✓ Create a temporary node and store the value of x in the data part of

the node.

✓ Now make next part of temp point to top and then top point to temp.

✓ That will make the newnode as the topmost element in the stack.

Algorithm for PUSH Operation

Step 1: Allocate memory for the temporary node and name it as temp

Step 2: Set temp - > data = x

Step 3: if top = NULL

 Set temp - > next = NULL

 Set top = temp

else

 Set temp - > next = top

 Set top = temp

Step 4: Exit

EXAMPLE

✓ The push operation is used to insert an element into the stack. The

new element is added at the topmost position of the stack.

✓ To insert an element with value 20, we first check if top=NULL. Then

we allocate memory for a newnode(temp), store the value in its data

part and NULL in its next part.

www.Jntufastupdates.com 39

DATA STRUCTURES

40
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The newnode(temp) will then be called top. However, if top!=NULL,

then we insert the newnode(temp) at the beginning of the linked stack

and name this newnode(temp) as top.

Pop Operation

✓ The data in the topmost node of the stack is first stored in a variable

called x.

✓ Then a temporary pointer is created to point to top.

✓ The top is now safely moved to the next node below it in the stack.

✓ Temp node is deleted and the item is returned.

Algorithm for POP Operation

Step 1: if top = NULL

 display Underflow and goto step 6

Step 2: Set x = top - > data

Step 3: Set temp = top

Step 4: Set top = top - > next

Step 5: free temp

Step 6: Exit

EXAMPLE:

✓ The pop operation is used to delete the topmost element from a stack.

Before deleting the value, we must first check if top=NULL, then we

display stack is empty and no more deletions can be done.

✓ If an attempt is made to delete a value from a stack that is already

empty, an underflow message is printed.

www.Jntufastupdates.com 40

DATA STRUCTURES

41
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ In case top!=NULL, then we will delete the node pointed by top, and

make top point to the second element of the linked stack.

IMPLEMENTATION OF STACKS USING LINKED LIST

#include<stdio.h>

struct node

{

 int data;

 struct node *next;

}*top = NULL;

void push(int);

void pop();

void display();

int main(void)

{

 int choice, value;

 clrscr();

 printf("\n:: Stack using Linked List ::\n");

 while(1)

{

 printf("1. Push\n2. Pop\n3. Display\n4. Exit\n");

 printf("Enter your choice: ");

www.Jntufastupdates.com 41

DATA STRUCTURES

42
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 scanf("%d", &choice);

 switch(choice)

 {

 case 1: printf("Enter the value to be insert: ");

 scanf("%d", &value);

 push(value);

 break;

 case 2: pop(); break;

 case 3: display(); break;

 case 4: exit(0);

default: printf("\nWrong selection!!! Please try

again!!!\n");

 }

 }

}

void push(int value)

{

 struct node *newnode;

 newnode = (struct node*)malloc(sizeof(struct node));

 newnode->data = value;

 if(top == NULL)

 newnode->next = NULL;

 else

 newnode->next = top;

 top = newnode;

 printf("\nInsertion is Success!!!\n");

}

void pop()

{

 if(top == NULL)

 printf("\nStack is Empty!!!\n");

 else

www.Jntufastupdates.com 42

DATA STRUCTURES

43
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 {

 struct node *temp = top;

 printf("\nDeleted element: %d", temp->data);

 top = temp->next;

 free(temp);

 }

}

void display()

{

 if(top == NULL)

 printf("\nStack is Empty!!!\n");

 else

 {

 struct node *temp = top;

 while(temp->next != NULL)

 {

 printf("%d--->",temp->data);

 temp = temp -> next;

 }

 printf("%d--->NULL",temp->data);

 }

}

LINKED QUEUES AND ITS REPRESENTATION

✓ Queue is a linear data structure that permits insertion of new element

at one end and deletion of an element at the other end.

✓ The end at which the deletion of an element take place is called front,

and the end at which insertion of a new element can take place is

called rear.

✓ The deletion or insertion of elements can take place only at the front

or rear end called dequeue and enqueue.

www.Jntufastupdates.com 43

DATA STRUCTURES

44
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The first element that gets added into the queue is the first one to get

removed from the queue.

✓ Hence the queue is referred to as First-In-First-Out list (FIFO).

✓ We can perform the similar operations on two ends of the list using

two pointers front pointer and rear pointer.

OPERATIONS ON QUEUES USING LINKED LIST

Enqueue operation

✓ In linked list representation of queue, the addition of new element to

the queue takes place at the rear end.

✓ It is the normal operation of adding a node at the end of a list.

Algorithm for Enqueue(inserting an element)

Allocate memory for the new node and name it as temp

 set newnode - > data = value

 set newnode -> next = NULL

 if (front = NULL) then

 set rear = front = newnode

 set rear - > next = front -> next = NULL

else

 set rear - > next = temp

 set rear = rear - > next

 set rear -> next = NULL

www.Jntufastupdates.com 44

DATA STRUCTURES

45
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Dequeue operation

✓ The dequeue operation deletes the first element from the front end of

the queue.

✓ Initially it is checked, if the queue is empty.

✓ If it is not empty, then return the value in the node pointed by front,

and moves the front pointer to the next node.

Algorithm for Dequeue(deleting an element)

if (front = NULL)

 display “Queue is empty”

 return

else

 while(front != NULL)

 temp = front

 front = front - > next

 free(temp)

www.Jntufastupdates.com 45

DATA STRUCTURES

46
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IMPLEMENTATION OF QUEUES USING LINKED LIST

#include<stdio.h>

#include <stdlib.h>

struct queue

{

 int data;

 struct queue *next;

};

typedef struct queue node;

node *front = NULL;

node *rear = NULL;

node* getnode()

{

 node *temp;

 temp = (node *) malloc(sizeof(node)) ;

 printf("\n Enter data ");

 scanf("%d", &temp -> data);

temp -> next = NULL;

 return temp;

}

void insertQ()

{

 node *newnode;

 newnode = getnode();

 if(newnode == NULL)

 {

 printf("\n Queue Full");

 return;

 }

 if(front == NULL)

 {

 front = newnode;

www.Jntufastupdates.com 46

DATA STRUCTURES

47
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 rear = newnode;

 }

 else

 {

 rear -> next = newnode;

 rear = newnode;

 }

 printf("\n\n\t Data Inserted into the Queue..");

}

void deleteQ()

{

 node *temp;

 if(front == NULL)

 {

 printf("\n\n\t Empty Queue..");

 return;

 }

 temp = front;

 front = front -> next;

 printf("\n\n\t Deleted element from queue is %d ", temp ->data);

 free(temp);

}

void displayQ()

{

 node *temp;

 if(front == NULL)

 {

 printf("\n\n\t\t Empty Queue ");

 }

 else

 {

 temp = front;

www.Jntufastupdates.com 47

DATA STRUCTURES

48
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf("\n\n\n\t\t Elements in the Queue are: ");

 while(temp != NULL)

 {

 printf("%5d ", temp -> data);

 temp = temp -> next;

 }

 }

}

char menu()

{

 char ch;

 clrscr();

 printf("\n \t..Queue operations using pointers.. ");

 printf("\n\t -----------**********-------------\n");

 printf("\n 1. Insert ");

 printf("\n 2. Delete ");

 printf("\n 3. Display");

 printf("\n 4. Quit ");

 printf("\n Enter your choice: ");

 ch = getche();

 return ch;

}

int main(void)

{

 char ch;

 do

 {

 ch = menu();

 switch(ch)

 {

 case '1' :

 insertQ();

www.Jntufastupdates.com 48

DATA STRUCTURES

49
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 break;

 case '2' :

 deleteQ();

 break;

 case '3' :

 displayQ();

 break;

 case '4':

 return;

 }

 } while(ch != '4');

 return 0;

}

POLYNOMIALS

A polynomial is of the form

Where, ci is the coefficient of the ith term and n is the degree of the

polynomial. Some examples are:

5x2 + 3x + 1

12x3 + 4

4x6 + 10x4 – 5x + 3

5x4 – 8x3 + 2x2 + 4x1 + 9

23x9 + 18x7 – 41x6 + 163x4 – 5x + 3

REPRESENTATION OF POLYNOMIALS

✓ It is not necessary to write terms of the polynomials in decreasing

order of degree.

✓ In other words the two polynomials 1 + x and x + 1 are equivalent.

✓ The computer implementation requires implementing polynomials as a

list of pairs of coefficient and exponent.

www.Jntufastupdates.com 49

DATA STRUCTURES

50
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ Each of these pairs will constitute a structure, so a polynomial will be

represented as a list of structures.

✓ A linked list structure that represents polynomials 5x4 – 8x3 + 2x2 +

4x1 + 9

Advantages

✓ Save space

✓ Easy to maintain

✓ Do not need to allocate memory size initially

Disadvantages

✓ It is difficult to back up to the start of the list

✓ It is not possible to jump to the beginning of the list from the end of

the list

POLYNOMIAL ADDITION

✓ To add two polynomials we need to scan them once.

✓ If we find terms with the same exponent in the two polynomials then

we add the coefficients otherwise we copy the term of larger exponent

into the sum and go on.

✓ When we reach at the end of one of the polynomial then remaining

part of the other is copied into the sum.

✓ To add two polynomials follow the following steps:

✓ Read two polynomials.

✓ Add them.

✓ Display the resultant polynomial.

#include<stdio.h>

#include<stdlib.h>

www.Jntufastupdates.com 50

DATA STRUCTURES

51
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

struct node

{

 int coeff;

 int pow;

 struct node *next;

};

void readpolynomial(struct node** poly)

{

 int coeff, exp, mterms;

 struct node* temp = (struct node *) malloc(sizeof(struct node));

 *poly = temp;

 do

 {

 printf(“\n Coefficient: “);

 scanf(“%d”, &coeff);

 printf(“\n Exponent: “);

 scanf(%d”, &pow);

temp -> coeff = coeff;

 temp -> pow = exp;

 temp -> next = NULL;

 printf(“Have more terms: 1 for Y and 0 for N”);

 scanf(“%d”, &mterms);

 if(mterms)

 {

 temp -> next = (struct node *) malloc(sizeof(struct node));

 temp -> next = NULL;

 }

 }while(mterms);

}

void displaypolynomial(struct node* poly)

{

 printf(“\n Polynomial Expression is “);

www.Jntufastupdates.com 51

DATA STRUCTURES

52
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 while(poly!=NULL)

 {

 printf(“%dX^%d”, poly -> coeff, poly -> pow);

poly = poly -> next;

 if(poly!=NULL)

 printf(“ + “);

 }

}

void addpolynomial(struct node**result, struct node* first, struct node*

second)

{

 struct node* temp = (struct node *)malloc(sizeof(struct node));

 temp -> next = NULL;

 *result = temp;

 while(first && second)

 {

 if(first -> pow > second -> pow)

 {

 temp -> coeff = first -> coeff;

 temp -> pow = first -> pow;

 first = first -> next;

 }

else if(first -> pow < second -> pow)

 {

 temp -> coeff = second -> coeff;

 temp -> pow = second -> pow;

 second = second -> next;

 }

 else

 {

 temp -> coeff = first -> coeff + second -> coeff;

 temp -> pow = first -> pow;

www.Jntufastupdates.com 52

DATA STRUCTURES

53
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 first = first -> next;

 second = second -> next;

 }

 if(first && second)

 {

 temp->next = (struct Node*)malloc(sizeof(struct Node));

 temp = temp->next;

 temp->next = NULL;

 }

 }

 while(first || second)

 {

 temp -> next = (struct Node*)malloc(sizeof(struct Node));

 temp = temp -> next;

 temp -> next = NULL;

 if(first)

 {

 temp -> coeff = first -> coeff;

 temp -> pow = first -> pow;

 first = first -> next;

 }

 else if(second)

 {

 temp -> coeff = second -> coeff;

 temp -> pow = second -> pow;

 second = second -> next;

 }

 }

}

int main(void)

{

 struct node* first = NULL;

www.Jntufastupdates.com 53

DATA STRUCTURES

54
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 struct node* second = NULL;

 struct node* result = NULL;

 printf("\nEnter the corresponding data:-\n");

 printf("\nFirst polynomial:\n");

 readpolynomial(&first);

 displaypolynomial(first);

 printf("\nSecond polynomial:\n");

 readpolynomial(&second);

 displaypolynomial(second);

 addpolynomials(&result, first, second);

 displaypolynomial(result);

 return 0;

}

SPARSE MATRIX

✓ “A matrix that contains very few number of non-zero elements is

called sparse matrix”

✓ “A matrix that contains more number of zero values when compared

with non-zero values is called a sparse matrix”

SPARSE MATRIX REPRESENTATION

For linked representation, we need three structures.

1. head node

2. row node

www.Jntufastupdates.com 54

DATA STRUCTURES

55
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

3. column node

The matrix representation for the sparse matrix is shown below for

example.

In the above matrix representation there are 5 rows, 6 columns and 6

non-zero values. The linked representation is as follows:

HEADER LINKED LIST

✓ A header linked list is a special type of linked list which contains a

header node at the beginning of the list.

✓ In a header linked list, START will not point to the first node of the

list but START will contain the address of the header node.

www.Jntufastupdates.com 55

DATA STRUCTURES

56
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The following are the two types of a header linked list:

✓ Grounded header linked list which stores NULL in the next

field of the last node.

✓ Circular header linked list which stores the address of the

header node in the next field of the last node. So header node

will denote the end of the list.

✓ In other linked lists, if START = NULL, then it is an empty header

linked list.

✓ Let us see how a grounded header linked list is stored in the memory.

In a grounded header linked list, a node has two fields, DATA and

NEXT.

✓ The DATA field will store the information part and the NEXT field will

store the address of the node in sequence.

✓ Note that START stores the address of the header node. The NEXT

field of the header node stores the address of the first node of the list.

✓ This node stores H. The corresponding NEXT field stores the address

of the next node.

✓ Hence, we see that the first node can be accessed by writing

FIRST_NODE = START -> NEXT and not by writing START = FIRST_

NODE.

✓ Let us now see how a circular header linked list is stored in the

memory. The last node in this case stores the address of the header

node (instead of –1).

✓ Hence, we see that the first node can be accessed by writing

FIRST_NODE = START -> NEXT and not writing START =

FIRST_NODE.

www.Jntufastupdates.com 56

DATA STRUCTURES

57
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Algorithm for Insertion

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 10

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL -> NEXT

Step 4: SET PTR = START -> NEXT

Step 5: SET NEW_NODE -> DATA = VAL

Step 6: Repeat Step 7 while PTR -> DATA != NUM

Step 7: SET PTR = PTR -> NEXT

Step 8: NEW_NODE -> NEXT = PTR -> NEXT

Step 9: SET PTR -> NEXT = NEW_NODE

Step 10: EXIT

Algorithm for Deletion

Step 1: SET PTR = START->NEXT

Step 2: Repeat Steps 3 and 4 while

PTR DATA != VAL

Step 3: SET PREPTR = PTR

Step 4: SET PTR = PTR -> NEXT

Step 5: SET PREPTR -> NEXT = PTR -> NEXT

Step 6: FREE PTR

Step 7: EXIT

www.Jntufastupdates.com 57

