
1

Syllabus:
• Searching - Linear search, Binary search, Fibonacci search-Hashing

• Sorting- Definition-Insertion sort, Selection sort, Exchange (Bubble sort, Quick sort), merging

(Merge sort)-Iterative and recursive merge sort, Shell sort- Radix sort-Heap sort.

Unit – V

 Searching means to find whether a particular value is present in an array or not.

 If the value is present in the array, then searching is said to be successful and the searching process gives the

location of that value in the array.

 However, if the value is not present in the array, the searching process displays an appropriate message

and in this case searching is said to be unsuccessful.

 Searching techniques are linear search, binary search and Fibonacci Search

 Linear search is a technique which traverses the array sequentially to locate given item or search

element.

 In Linear search, we access each element of an array one by one sequentially and see whether it is

desired element or not. We traverse the entire list and match each element of the list with the item whose

location is to be found. If the match found then location of the item is returned otherwise the algorithm

return NULL.

 A search is successful then it will return the location of desired element

 If A search will unsuccessful if all the elements are accessed and desired element not found.

 Linear search is mostly used to search an unordered list in which the items are not sorted. Linear

search is implemented using following steps...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the first element in the list.

Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function Step 4 - If

both are not matched, then compare search element with the next element in the list. Step 5 - Repeat steps 3

and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and terminate the

function.

Example:

Consider the following list of elements and the element to be searched...

LINEAR SEARCH:

 SEARCHING:

www.Jntufastupdates.com 1

2

www.Jntufastupdates.com 2

3

• Binary search is the search technique which works efficiently on the sorted lists. Hence, in order to search

an element into some list by using binary search technique, we must ensure that the list is sorted.

• Binary search follows divide and conquer approach in which, the list is divided into two halves and the

item is compared with the middle element of the list. If the match is found then, the location of middle

element is returned otherwise, we search into either of the halves depending upon the result produced

through the match.

Algorithm:

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function. Step 5 -

If both are not matched, then check whether the search element is smaller or larger than the middle

element.

Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left sub list

of the middle element.

Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right sub list

of the middle element.

Step 8 - Repeat the same process until we find the search element in the list or until sublist contains only

one element.

Step 9 - If that element also doesn't match with the search element, then display "Element is not found in

the list!!!" and terminate the function.

Example:

BINARY SEARCH:

www.Jntufastupdates.com 3

4

Example 2:

 Fibonacci search is an efficient search algorithm based on divide and conquer principle that can find an

element in the given sorted array with the help of Fibonacci series in O(log N) time complexity. This is

based on Fibonacci series which is an infinite sequence of numbers denoting a pattern which is captured

by the following equation:

F(n)=n if n<=1

F(n)=F(n-1)+F(n-2) if n>1

 Where F(i) is the ith number of the Fibonacci series where F(0) and F(1) are defined as 0 and

1 respectively.

 The first few Fibonacci numbers are: 0,1,1,2,3,5,8,13....

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0) = 1 + 0 = 1

FIBONACCI SEARCH:

www.Jntufastupdates.com 4

5

F(3) = F(2) + F(1) = 1 + 1 = 2

F(4) = F(3) + F(2) = 1 + 2 = 3 and so continues the series

 Other searches like binary search also work for the similar principle on splitting the search space to a

smaller space but what makes Fibonacci search different is that it divides the array in unequal parts and

operations involved in this search are addition and subtraction these arithmetic operations takes place

simple and hence reducing the work load of the computing machine.

Algorithm:

 Let the length of given array be n [0. n-1] and the element to be searched be x.

 Then we use the following steps to find the element with minimum steps:

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be f(M)

Let the two Fibonacci numbers preceding it be f(M-1) and f(M-2). F(M) =

F(Size of array)

F(M-1) = F(M) - 1

F(M-2) = F(M-1) -1

i (index) = min (offset + F(M-2) , n-1) //Offset = -1

2. While the array has elements to be checked:

-> Compare x with the last element of the range covered by f(M-2)

-> If x matches, return index value

-> Else if x is less than the element, move the three Fibonacci variables two Fibonacci down, Indicating

removal of approximately two-third of the unsearched array from rear end. Not Reset offset to index

-> Else x is greater than the element, move the three Fibonacci variables one Fibonacci down. Reset

offset to index. Indicating removal of approximately one-third of the unsearched array from front end.

3. Since there might be a single element remaining for comparison, check if F(M-1) is '1'. If Yes, compare x with

that remaining element. If match, return index value.

Example: The Elements in array & Search key is

Search_Key 85

elements 10 22 35 40 45 50 80 82 85 90 95

Index 0 1 2 3 4 5 6 7 8 9 10

Initially the Fibonacci series is …

0 1 1 2 3 5 8 13 21 34

1 2 3 4 5 6 7 8 9 10

 F(m-2) F(m-1) F(m)

To calculate index position i = min(offset+F(m-2), n-1), Initially offset value is -1.

F(m) F(m-1) F(m-2) Offset i(index) a[i] Consequence

13 8 5 -1 (-1+5,10) = 4 45 1 steps down, Reset offset

8 5 3 4 (4+3, 10)=7 82 1 steps down, Reset offset

www.Jntufastupdates.com 5

6

 SORTINGS:

5 3 2 7 (7+2, 10) =9 90 2 steps down

2 1 1 7 (7+1, 10) = 8 85 Return i

Finally our desired element is found at the location of 8.

Hashing:
Hashing in the data structure is a technique of mapping a large chunk of data into small tables using a hashing

function. It is also known as the message digests function. It is a technique that uniquely identifies a specific item

from a collection of similar items.

It uses hash tables to store the data in an array format. Each value in the array has assigned a unique index

number. Hash tables use a technique to generate these unique index numbers for each value stored in an array format.

This technique is called the hash technique.

You only need to find the index of the desired item, rather than finding the data. With indexing, you can quickly

scan the entire list and retrieve the item you wish. Indexing also helps in inserting operations when you need to insert

data at a specific location. No matter how big or small the table is, you can update and retrieve data within seconds.

 Hashing in a data structure is a two-step process.

1. The hash function converts the item into a small integer or hash value. This integer is used as an index to store

the original data.

2. It stores the data in a hash table. You can use a hash key to locate data quickly.

Hash Function

The hash function in a data structure maps arbitrary size of data to fixed-sized data. It returns the following values: a

small integer value (also known as hash value), hash codes, and hash sums.

hash = hashfunc(key)

index = hash % array_size
The function must satisfy the following requirements:

 A good hash function is easy to compute.

 A good hash function never gets stuck in clustering and distributes keys evenly across the hash table.

 A good hash function avoids collision when two elements or items get assigned to the same hash value.

Definition: Sorting is a technique to rearrange the list of records(elements) either in ascending or descending

order, Sorting is performed according to some key value of each record.
Categories of Sorting:

The sorting can be divided into two categories. These are:

 Internal Sorting

 External Sorting

 Internal Sorting: When all the data that is to be sorted can be accommodated at a time in the main

memory (Usually RAM). Internal sorting has five different classifications: insertion, selection,

exchanging, merging, and distribution sort

 External Sorting: When all the data that is to be sorted can’t be accommodated in the memory (Usually

RAM) at the same time and some have to be kept in auxiliary memory such as hard disk, floppy disk,

magnetic tapes etc.

Ex: Natural, Balanced, and Polyphase.

www.Jntufastupdates.com 6

7

INSERTION SORT:

 In Insertion sort the list can be divided into two parts, one is sorted list and other is unsorted list. In each pass the first

element of unsorted list is transfers to sorted list by inserting it in appropriate position or proper place.

 The similarity can be understood from the style we

arrange a deck of cards. This sort works on the

principle of inserting an element at a particular

position, hence the name Insertion Sort.

Following are the steps involved in insertion sort:

1. We start by taking the second element of the given array, i.e. element at index 1, the key. The key

element here is the new card that we need to add to our existing sorted set of cards

2. We compare the key element with the element(s) before it, in this case, element at index 0:

o If the key element is less than the first element, we insert the key element before the first element.

o If the key element is greater than the first element, then we insert it after the first element.

3. Then, we make the third element of the array as key and will compare it with elements to it's left and

insert it at the proper position.

4. And we go on repeating this, until the array is sorted.

Example 1:

Example 2:

www.Jntufastupdates.com 7

8

SELECTION SORT:

 Given a list of data to be sorted, we simply select the smallest item and place it in a sorted list. These

steps are then repeated until we have sorted all of the data.

 In first step, the smallest element is search in the list, once the smallest element is found, it is exchanged

with the element in the first position.

 Now the list is divided into two parts. One

is sorted list other is unsorted list. Find out

the smallest element in the unsorted list and

it is exchange with the starting position of

unsorted list, after that it will added in to

sorted list.

 This process is repeated until all the elements are sorted. Ex:

asked to sort a list on paper.

Algorithm:

SELECTION SORT (ARR, N)

Step 1: Repeat Steps 2 and 3 for K = 1 to N-1 Step

2: CALL SMALLEST (ARR, K, N, Loc)

Step 3: SWAP A[K] with ARR[Loc]

Step 4: EXIT

Algorithm for finding minimum element in the list.

SMALLEST (ARR, K, N, Loc)

Step 1: [INITIALIZE] SET Min = ARR[K]

Step 2: [INITIALIZE] SET Loc = K

Step 3: Repeat for J = K+1 to N

IF Min > ARR[J]

SET Min = ARR[J]

SET Loc = J

[END OF IF]

[END OF LOOP]

Step 4: RETURN Loc

Example 1:

www.Jntufastupdates.com 8

9

Example 2: Consider the elements 23,78,45,88,32,56

Time Complexity:

Number of elements in an array is ‘N’

Number of passes required to sort is ‘N-1’

Number of comparisons in each pass is 1st pass N-1, 2nd Pass N-2 … Time

required for complete sorting is:

T(n) <= (N-1)*(N-1)

T(n) <= (N-1)2

Finally, The time complexity is O(n2).

www.Jntufastupdates.com 9

10

BUBBLE SORT:

 Bubble Sort is also called as Exchange Sort

 In Bubble Sort, each element is compared with its adjacent element

a) If he first element is larger than the second element then the position of the elements are

interchanged.

b) Otherwise, the position of the elements are not changed.

c) The same procedure is repeated until no more elements are left for comparison.

 After the 1st pass the largest element is placed at

(N-1)th location. Given a list of n elements, the

bubble sort requires up to n – 1 passes to sort the

data.

Example 1:

 We take an unsorted array for our example.

 Bubble sort starts with very first two elements, comparing them to check which one is greater.

 In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33 with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

 Next we compare 33 and 35. We find that both are in already sorted positions.

 Then we move to the next two values, 35 and 10. We know then that 10 is smaller 35.

 We swap these values. We find that we have reached the end of the array. After one iteration, the array

should look like this −

 To be defined, we are now showing how an array should look like after each iteration. After the second

iteration, it should look like this

www.Jntufastupdates.com 10

11

 Notice that after each iteration, at least one value moves at the end.

 And when there's no swap required, bubble sorts learns that an array is completely sorted.

Example 2:

Algorithm:

BUBBLE SORT(ARR, N)

Step 1: Read the array elements

Step 2: i:=0;

Step 3: Repeat step 4 and step 5 until i<n

Step 4: j:=0;

Step 5: Repeat step 6 until j<(n-1)-i

Step 6: if A[j] > A[j+1]

Swap(A[j],A[j+1])

End if

End loop 5

End loop 3

Step 7: EXIT

Time Complexity:

Number of elements in an array is ‘N’

Number of passes required to sort is ‘N-1’

Number of comparisons in each pass is 1st pass N-1, 2nd Pass N-2 … Time

required for complete sorting is:

T(n) <= (N-1)*(N-1)

www.Jntufastupdates.com 11

12

T(n) <= (N-1)2

Finally, The time complexity is

O(n2).

 Quick sort follows Divide and Conquer algorithm. It is dividing array in to smaller parts based on

partitioning and performing the sort operations on those divided smaller parts. Hence, it works well for

large datasets.

So, here are the steps how Quick sort works in simple words.

1. First select an element which is to be called as pivot element.

2. Next, compare all array elements with the selected pivot element and arrange them in such a way that, an

element less than the pivot element are to its left and greater than pivot is to it's right.

3. Finally, perform the same operations on left and right side elements to the pivot element.

How does Quick Sort Partitioning Work

1. First find the "pivot" element in the array.

2. Start the left pointer at first element of the array.

3. Start the right pointer at last element of the array.

4. Compare the element pointing with left pointer and if it is less than the pivot element, then move the left

pointer to the right (add 1 to the left index). Continue this until left side element is greater than or equal to

the pivot element.

5. Compare the element pointing with right pointer and if it is greater than the pivot element, then move the

right pointer to the left (subtract 1 to the right index). Continue this until right side element is less than or

equal to the pivot element.

6. Check if left pointer is less than or equal to right pointer, then swap the elements in locations of these

pointers.

7. Check if index of left pointer is greater than the index of the right pointer, then swap pivot element with

right pointer.

Algorithm:

quickSort(array, lb, ub)

{

if(lb< ub)

{

pivotIndex = partition(arr, lb, ub);

quickSort(arr, lb, pIndex - 1);

quickSort(arr, pivotIndex+1, ub);

}

}

Example:

QUICK SORT:

www.Jntufastupdates.com 12

13

 Radix sort is a linear sorting algorithm for integers and uses the concept of sorting names in alphabetical

order. When we have a list of sorted names, the radix is 26 (or 26 buckets) because there are 26 letters in

the English alphabet. So radix sort is also known as bucket sort.

 Observe that words are first sorted according to the first letter of the name. That is, 26 classes are used to

arrange the names, where the first class stores the names that begin with A, the second class contains the

names with B, and so on.

 During the second pass, names are grouped according to the second letter. After the second pass, names

are sorted on the first two letters. This process is continued till the nth pass, where n is the length of the

name with maximum number of letters.

 When radix sort is used on integers, sorting is done on each of the digits in the number. The sorting

procedure proceeds by sorting the least significant (LSD) to the most significant (MSD) digit. While

sorting the numbers, we have ten buckets, each for one digit (0, 1, 2, …, 9) and the number of passes will

depend on the length of the number having maximum number of digits.

Example 1: Sort the numbers given below using radix sort. 345,

654, 924, 123, 567, 472, 555, 808, 911

 In the first pass, the numbers are sorted according to the digit at ones place.

RADIX SORT:

www.Jntufastupdates.com 13

14

 After this pass, the numbers are collected bucket by bucket. In the second pass, the numbers are sorted

according to the digit at the tens place.

 In the third pass, the numbers are sorted according to the digit at the hundreds place.

 The numbers are collected bucket by bucket. After the third pass, the list can be given as final sorted

list. 123, 345, 472, 555, 567, 654, 808, 911, 924.

Algorithm:

1. Let A be a linear array of n elements A[1], A[2], A[3] A[n]. Digit is the total number of digit in

the largest element in array A.

2. Input n number of elements in an array A.

3. Find the total number of digits in the largest element in the array.
4. Initialize i=1 and repeat the steps 4 and 5 until(i<=Digit).

5. Initialize the bucket j=0 and repeat the steps 5until (j<n).

6. Compare the ith position of each element of the array with bucket number and place it in the
corresponding bucket.

7. Read the elements (S) of the bucket from 0th bucket to 9th bucket and from the first position to the higher

one to generate new array A.

8. Display the sorted array A.

9. Exit.

Divide and Conquer:

 Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a dispute on a

huge input, break the input into minor pieces, decide the problem on each of the small pieces, and then

merge the piecewise solutions into a global solution. This mechanism of solving the problem is called the

Divide & Conquer Strategy.

 Divide and Conquer algorithm consists of a dispute using the

following three steps.

1. Divide the original problem into a set of sub-problems.

2. Conquer: Solve every sub-problem individually, recursively.

3. Combine: Put together the solutions of the sub-problems to get

the solution to the whole problem.

Merge sort is one of the most efficient sorting algorithms. It works on the principle of Divide and Conquer.

MERGE SORT:

www.Jntufastupdates.com 14

15

Merge sort repeatedly breaks down a list into several sub lists until each sub list consists of a single element and

merging those sub lists in a manner that results into a sorted list.

Implementation Recursive Merge Sort:

 The merge sort starts at the Top and proceeds downwards, “split the array into two, make a

recursive call, and merge the results.”, until one gets to the bottom of the array-tree.

Example: Let us consider an example to understand the approach better.

1. Divide the unsorted list into n sub-lists based on mid value, each array consisting 1 element

2. Repeatedly merge sub-lists to produce newly sorted sub-lists until there is only 1 sub-list

remaining. This will be the sorted list

Recursive Mere Sort Example:

Example 2:

MergeSort Algoritm:

MergeSort(A, lb, ub)

{

If lb<ub

{

mid = floor(lb+ub)/2;

mergeSort(A, lb, mid)

mergeSort(A, mid+1, ub)

merge(A, lb, ub , mid)

}

}

Iterative Merge Sort:

The Bottom-Up merge sort approach uses iterative methodology. It starts with the “single-element” array, and combines two adjacent

elements and also sorting the two at the same time. The combined-sorted arrays are again combined and sorted with each other until

one single unit of sorted array is achieved.

www.Jntufastupdates.com 15

16

Example: Let us understand the concept with the following example.

Iteration 1:

Iteration 2:

Iteration 3:

Thus the entire array has been sorted and merged.

Two- Way Merge Sort:

Merge Algorithm:

Step 1: set i,j,k=0

Step 2: if A[i]<B[j] then

copy A[i] to C[k] and increment i and k

else

copy B[j] to C[k] and increment j and k

Step 3: copy remaining elements of either A or B into Array C.

www.Jntufastupdates.com 16

17

Time Complexities All the Searching & Sorting Techniques:

SHELL SORT:

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm. This algorithm avoids large

shifts as in case of insertion sort, if the smaller value is to the far right and has to be moved to the far left.

This algorithm uses insertion sort on a widely spread elements, first to sort them and then sorts the less widely spaced

elements. This spacing is termed as interval. This interval is calculated based on Knuth's formula as −

Knuth's Formula

 h = h * 3 + 1

 Where −

 h is interval with initial value 1

This algorithm is quite efficient for medium-sized data sets as its average and worst-case complexity of this algorithm

depends on the gap sequence the best known is Ο(n), where n is the number of items. And the worst case space

complexity is O(n).

Let us consider the following example to have an idea of how shell sort works. We take the same array we have used in

our previous examples. For our example and ease of understanding, we take the interval of 4. Make a virtual sub-list of

all values located at the interval of 4 positions. Here these values are {35, 14}, {33, 19}, {42, 27} and {10, 44}

We compare values in each sub-list and swap them (if necessary) in the original array. After this step, the new array

should look like this −

Then, we take interval of 1 and this gap generates two sub-lists - {14, 27, 35, 42}, {19, 10, 33, 44}

We compare and swap the values, if required, in the original array. After this step, the array should look like this −

www.Jntufastupdates.com 17

18

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion sort to sort the array.

Following is the step-by-step depiction −

We see that it required only four swaps to sort the rest of the array.

Algorithm

Following is the algorithm for shell sort.

Step 1 − Initialize the value of h

Step 2 − Divide the list into smaller sub-list of equal interval h

Step 3 − Sort these sub-lists using insertion sort

Step 3 − Repeat until complete list is sorted

HEAP SORT:

1. Since the tree satisfies Max-Heap property, then the largest item is stored at the root node.

2. Swap: Remove the root element and put at the end of the array (nth position) Put the last item of the tree (heap) at the vacant place.

3. Remove: Reduce the size of the heap by 1.

4. Heapify: Heapify the root element again so that we have the highest element at root.

5. The process is repeated until all the items of the list are sorted.

www.Jntufastupdates.com 18

19

Time Complexity

Best O(nlog n)

www.Jntufastupdates.com 19

20

Worst O(nlog n)

Average O(nlog n)

Space Complexity O(1)

www.Jntufastupdates.com 20

