
GRAPHS 

UNIT IV: Graph Theory Terminology, Graph Representations, Graph operations- Graph 

Traversals (BFS & DFS), Connected components, Spanning Trees, Biconnected Components, 

Minimum Spanning Trees- Krushkal’s Algorithm , Prim’s Algorithm, Shortest paths, Transitive 

closure, All pairs Shortest path-Marshall’s Algorithm. 

BASIC CONCEPTS 

A graph is an abstract data structure that is used to implement the mathematical concept 

of graphs. It is basically a collection of vertices (also called nodes) and edges that connect 

these vertices. A graph is often viewed as a generalization of the tree structure, where instead 

of having a purely parent-to-child relationship between tree nodes, any kind of complex 

relationship can exist. 

WHY GRAPHS ARE USEFUL 

Graphs are widely used to model any situation where entities or things are related to each other 

in pairs. For example, the following information can be represented by graphs: 

 Family trees: in which the member nodes have an edge from parent to each of their

children.

 Transportation networks: in which nodes are airports, intersections, ports, etc. The edges

can be airline flights, one-way roads, shipping routes, etc.

Definition

A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices

and E(G) represents the edges that connect these vertices.

A  graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D), 

(D, E), (C, E)}. Note that there are five vertices or nodes and six edges in the graph. 

A graph can be directed or undirected. In an undirected graph, edges do not have any 

direction associated with them. That is, if an edge is drawn between nodes A and B, then the 

nodes can be traversed from A to B as well as from B to A. 
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In a directed graph, edges form an ordered pair. If there is an edge from A to B, then 

there is a path from A to B but not from B to A. The edge (A, B) is said to initiate from node A 

(also known as initial node) and terminate at nodeB (terminalnode).  

Directed Graph 

Graph Terminology 

Adjacent nodes or neighbours 

 For every edge, e = (u, v) that connects nodes u and v, the nodes u and v are the end-points and 

are said to be the adjacent nodes or neighbours. 

Degree of a node 

 Degree of a node u, deg(u), is the total number of edges containing the node u. If 

deg(u) = 0, it means that u does not belong to any edge and such a node is known 

as an isolated node. 

Regular graph  

It is a graph where each vertex has the same number of neighbours. That is, every node has the 

same degree. A regular graph with vertices of degree k is called a k–regular graph or a regular 

graph of degree k. 

 

Path  

A path P written as P = {v0 , v1 , v2 , ..., vn ), of length n from a node u to v is defined as a 

sequence of (n+1) nodes. Here, u = v0 , v = vn and vi–1 is adjacent to vi for i = 1, 2, 3, ..., n.  

Closed path  

A path P is known as a closed path if the edge has the same end-points. That is, if v0 = vn .  

Simple path 

 A path P is known as a simple path if all the nodes in the path are distinct with an exception 

that v0 may be equal to vn . If v0 = vn , then the path is called a closed simple path. 

Cycle 

 A path in which the first and the last vertices are same. A simple cycle has no repeated edges or 

vertices (except the first and last vertices). 

Connected graph  

A graph is said to be connected if for any two vertices (u, v) in V there is a path from u to v. 

That is to say that there are no isolated nodes in a connected graph. A connected graph that does 

not have any cycle is called a tree. Therefore, a tree is treated as a special graph 
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Complete graph A graph G is said to be complete if all its nodes are fully connected. That is, 

there is a path from one node to every other node in the graph. A complete graph has n(n–1)/2 

edges, where n is the number of nodes in G 

 

 

Labelled graph or weighted graph 

 A graph is said to be labelled if every edge in the graph is assigned some data. In a weighted 

graph, the edges of the graph are assigned some weight or length. The weight of an edge 

denoted by w(e) is a positive value which indicates the cost of traversing the edge.  

 Multiple edges Distinct edges which connect the same end-points are called multiple edges. 

That is, e = (u, v) and e' = (u, v) are known as multiple edges of G. 

 Loop An edge that has identical end-points is called a loop. That is, e = (u, u). 

 Multi-graph A graph with multiple edges and/or loops is called a multi-graph.  

Size of a graph The size of a graph is the total number of edges in i 

Directed Graphs 

A directed graph G, also known as a digraph, is a graph in which every edge has a direction 

assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For 

an edge (u, v),  

 The edge begins at u and terminates at v. 

  u is known as the origin or initial point of e.Correspondingly, v is known as the 

destination or terminal point of e.  

  u is the predecessor of v. Correspondingly, v is the successor of u. ∑ Nodes u and v are 

adjacent to each other 

 

Terminology of a Directed Graph 

 
Out-degree of a node The out-degree of a node u, written as outdeg(u), is the number of 

edges that originate at u. 

 

In-degree of a node The in-degree of a node u, written as indeg(u), is the number of 

edges that terminate at u. 

 

Degree of a node The degree of a node, written as deg(u), is equal to the sum of in-

degree and out-degree of that node. Therefore, deg(u) = indeg(u) + outdeg(u). 
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Isolated vertex A vertex with degree zero. Such a vertex is not an end-point of any 

edge. 

 

Pendant vertex (also known as leaf vertex) A vertex with degree one. 

 

Cut vertex A vertex which when deleted would disconnect the remaining graph. 

 

Source   A node u is known as a source if it has a positive out-degree but a zero in-

degree. 

 

Sink    A node u is known as a sink if it has a positive in-degree but a zero out-degree.  

 

Reachability  A node v is said to be reachable from node u, if and only if there exists a 

(directed) path from node u to node v. For example, if you consider the directed graph 

given in Fig. 13.5(a), you will observe that node D is reachable from node A. 

 

Strongly connected directed graph A digraph is said to be strongly connected if and 

only if there exists a path between every pair of nodes in G. That is, if there is a path 

from node u to v, then there must be a path from node v to u. 

 

Weakly connected digraph A directed graph is said to be weakly connected if it is 

connected by ignoring the direction of edges. That is, in such a graph, it is possible to 

reach any node from any other node by traversing edges in any direction (may not be in 

the direction they point). The nodes in a weakly connected directed graph must have 

either out-degree or in-degree of at least 1. 

 

 Parallel/Multiple edges Distinct edges which connect the same end-points are called 

multiple edges. That is, e = (u, v) and e' = (u, v) are known as multiple edges of G. In  

below diagram e3 and e5 are multiple edges connecting nodes C and D. 

 

 

  

Simple directed graph A directed graph G is said to be a simple directed graph if and only if it 

has no parallel edges. However, a simple directed graph may contain cycles with an exception 

that it cannot have more than one loop at a given node. 

REPRESENTATION OF GRAPHS 
There are three common ways of storing graphs in the computer’s memory. 

1. Adjacency Matrix 

2. Adjacency List 
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Adjacency Matrix Representation  

In this representation, the graph is represented using a matrix of size total number of 

vertices by a total number of vertices. That means a graph with 4 vertices is represented using a 

matrix of size 4X4. In this matrix, both rows and columns represent vertices. This matrix is 

filled with either 1 or 0. Here, 1 represents that there is an edge from row vertex to column 

vertex and 0 represents that there is no edge from row vertex to column vertex. 

 

For example, consider the following undirected graph representation... 

 

Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix. 

The entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the 

order of nodes will result in a different adjacency matrix. 

 

Directed graph representation... 

 

 

Graphs and their corresponding adjacency matrices 
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From the above examples, we can draw the following conclusions:  

1. For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal. 

2.  The adjacency matrix of an undirected graph is symmetric. 

3.  The memory use of an adjacency matrix is O(n2 ), where n is the number of nodes in 

the graph. 

4.  Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of 

edges in the graph. 

5.  The adjacency matrix for a weighted graph contains the weights of the edges connecting 

the nodes. 

 

Adjacency List 
In this representation, every vertex of a graph contains list of its adjacent vertices. 

For example, consider the following directed graph representation implemented using linked 

list... 

 

This representation can also be implemented using an array as follows.. 
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The key advantages of using an adjacency list are: 

1 It is easy to follow and clearly shows the adjacent nodes of a particular node.  

2. It is often used for storing graphs that have a small-to-moderate number of edges. That is, an 

adjacency list is preferred for representing sparse graphs in the computer’s memory; otherwise, 

an adjacency matrix is a good choice.  

3. Adding new nodes in G is easy and straightforward when G is represented using an adjacency 

list. Adding new nodes in an adjacency matrix is a difficult task, as the size of the matrix needs 

to be changed and existing nodes may have to be reordered. 

4. For a directed graph, the sum of the lengths of all adjacency lists is equal to the number of 

edges in G. 

5. For an undirected graph, the sum of the lengths of all adjacency lists is equal to twice the 

number of edges in G because an edge (u, v) means an edge from node u to v as well as an edge 

from v to u. 

Graph Traversal 

Graph traversal is a technique used for a searching vertex in a graph. The graph traversal is also 
used to decide the order of vertices is visited in the search process. A graph traversal finds the 

edges to be used in the search process without creating loops. That means using graph traversal 

we visit all the vertices of the graph without getting into looping path. 

There are two graph traversal techniques and they are as follows... 

1. DFS (Depth First Search) 

2. BFS (Breadth First Search) 

Breadth First Search (BFS) Algorithm 

Breadth first search is a graph traversal algorithm that starts traversing the graph from 

root node and explores all the neighboring nodes. Then, it selects the nearest node and explore 

all the unexplored nodes. The algorithm follows the same process for each of the nearest node 

until it finds the goal. 

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a 

graph without loops. We use Queue data structure with maximum size of total number of 

vertices in the graph to implement BFS traversal. 

We use the following steps to implement BFS traversal... 

 Step 1 - Define a Queue of size total number of vertices in the graph. 

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it 

into the Queue. 

 Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the 

Queue and insert them into the Queue. 

 Step 4 - When there is no new vertex to be visited from the vertex which is at front of 

the Queue then delete that vertex. 

 Step 5 - Repeat steps 3 and 4 until queue becomes empty. 

 Step 6 - When queue becomes empty, then produce final spanning tree by removing 

unused edges from the graph 

www.Jntufastupdates.com 7



 

 

 

 

 

 

 

www.Jntufastupdates.com 8



 

 

 

 

Example 2: 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a 

queue. 

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 
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At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep 

on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the program is 

over. 

Example 

Consider the graph G shown in the following image, calculate the minimum path p from node A 

to node E. Given that each edge has a length of 1. 

 

Solution: 

Minimum Path P can be found by applying breadth first search algorithm that will begin at node 

A and will end at E. the algorithm uses two queues, 

namely QUEUE1 and QUEUE2. QUEUE1 holds all the nodes that are to be processed 

while QUEUE2 holds all the nodes that are processed and deleted from QUEUE1. 

Lets start examining the graph from Node A. 

1. Add A to QUEUE1 and NULL to QUEUE2. 

QUEUE1 = {A}   

QUEUE2 = {NULL}   
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2. Delete the Node A from QUEUE1 and insert all its neighbours. Insert Node A into QUEUE2 

QUEUE1 = {B, D}   

QUEUE2 = {A}   

3. Delete the node B from QUEUE1 and insert all its neighbours. Insert node B into QUEUE2. 

QUEUE1 = {D, C, F}    

QUEUE2 = {A, B}   

 

4. Delete the node D from QUEUE1 and insert all its neighbours. Since F is the only neighbour 
of it which has been inserted, we will not insert it again. Insert node D into QUEUE2. 

QUEUE1 = {C, F}   

QUEUE2 = { A, B, D}   

5. Delete the node C from QUEUE1 and insert all its neighbours. Add node C to QUEUE2. 

QUEUE1 = {F, E, G}   

QUEUE2 = {A, B, D, C}   

6. Remove F from QUEUE1 and add all its neighbours. Since all of its neighbours has already 

been added, we will not add them again. Add node F to QUEUE2. 

QUEUE1 = {E, G}   

QUEUE2 = {A, B, D, C, F}  

 

7. Remove E from QUEUE1, all of E's neighbours has already been added to QUEUE1 

therefore we will not add them again. All the nodes are visited and the target node i.e. E is 

encountered into QUEUE2. 

QUEUE1 = {G}   

QUEUE2 = {A, B, D, C, F,  E}   

Applications of BFS Algorithm 

Some of the real-life applications where a BFS algorithm implementation can be highly 

effective. 

 Un-weighted Graphs: BFS algorithm can easily create the shortest path and a minimum 

spanning tree to visit all the vertices of the graph in the shortest time possible with high 

accuracy. 

 P2P Networks: BFS can be implemented to locate all the nearest or neighboring nodes 

in a peer to peer network. This will find the required data faster. 

 Web Crawlers: Search engines or web crawlers can easily build multiple levels of 

indexes by employing BFS. BFS implementation starts from the source, which is the 

web page, and then it visits all the links from that source. 

 Navigation Systems: BFS can help find all the neighboring locations from the main or 

source location. 

 Network Broadcasting: A broadcasted packet is guided by the BFS algorithm to find 

and reach all the nodes it has the address for. 
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DFS (Depth First Search) 
DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph 

without loops. We use Stack data structure with maximum size of total number of vertices in 

the graph to implement DFS traversal 

we use the following steps to implement DFS traversal... 

 Step 1 - Define a Stack of size total number of vertices in the graph. 

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on 

to the Stack. 

 Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top 

of stack and push it on to the stack. 

 Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is 

at the top of the stack. 

 Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex 

from the stack. 

 Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty. 

 Step 7 - When stack becomes Empty, then produce final spanning tree by removing 

unused edges from the graph 

Back tracking is coming back to the vertex from which we reached the current 

vertex.
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Applications of Depth-First Search Algorithm  

Depth-first search is useful for:  

1. Finding a path between two specified nodes, u and v, of an unweighted graph. 

2.  Finding a path between two specified nodes, u and v, of a weighted graph.  

3.  Finding whether a graph is connected or not. 

4.  Computing the spanning tree of a connected graph. 

SHORTEST PATH ALGORITHMS 

Three different algorithms to calculate the shortest path between the vertices of a graph G. 

These algorithms include:  

1. Minimum spanning tree 

2.  Dijkstra’s algorithm  

3.  Warshall’s algorithm  

 

While the first two use an adjacency list to find the shortest path, Warshall’s algorithm uses an 

adjacency matrix to do the same. 

Minimum Spanning Trees 

A spanning tree is a subset of Graph G, which has all the vertices covered with 

minimum possible number of edges. Hence, a spanning tree does not have cycles and it cannot 

be disconnected.. 

 Every connected and undirected Graph G has at least one spanning tree. A disconnected graph 

does not have any spanning tree, as it cannot be spanned to all its vertices. 

 

We found three spanning trees off one complete graph. A complete undirected graph can have 

maximum nn-2 number of spanning trees, where n is the number of nodes. In the above 

addressed example, n is 3, hence 33−2 = 3 spanning 

trees are possible. 
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General Properties of Spanning Tree 

We now understand that one graph can have more than one spanning tree. Following are a 

few properties of the spanning tree connected to graph G − 

 A connected graph G can have more than one spanning tree. 

 All possible spanning trees of graph G, have the same number of edges and vertices. 

 The spanning tree does not have any cycle (loops). 

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the 

spanning tree is minimally connected. 

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree 

is maximally acyclic. 

Application of Spanning Tree: 

Spanning tree is basically used to find a minimum path to connect all nodes in a graph. 

Common application of spanning trees is − 

 Civil Network Planning 

 Computer Network Routing Protocol 

 Cluster Analysis 

Minimum Spanning Tree (MST) 

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum 

weight than all other spanning trees of the same graph. In real-world situations, this weight can 

be measured as distance, congestion, traffic load or any arbitrary value denoted to the edges. 

Minimum Spanning-Tree Algorithm 

 Kruskal's Algorithm 

 Prim's Algorithm 

Both are greedy algorithms. 

www.Jntufastupdates.com 16

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm


Kruskal’s Minimum Spanning Tree Algorithm 

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This 

algorithm treats the graph as a forest and every node it has as an individual tree. A tree 

connects to another only and only if, it has the least cost among all available options and does 

not violate MST properties. 

To understand Kruskal's algorithm let us consider the following example − 

 

Step 1 - Remove all loops and Parallel Edges 

Remove all loops and parallel edges from the given graph. 

 

In case of parallel edges, keep the one which has the least cost associated and remove all others. 

 

Step 2 - Arrange all edges in their increasing order of weight 

The next step is to create a set of edges and weight, and arrange them in an ascending order of 

weightage (cost). 

 

Step 3 - Add the edge which has the least weightage 

Now we start adding edges to the graph beginning from the one which has the least weight. 

Throughout, we shall keep checking that the spanning properties remain intact. In case, by 

adding one edge, the spanning tree property does not hold then we shall consider not to include 

the edge in the graph. 

 

www.Jntufastupdates.com 17



The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not 
violate spanning tree properties, so we continue to our next edge selection. 

Next cost is 3, and associated edges are A,C and C,D. We add them again − 

 

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. − 

 

We ignore it. In the process we shall ignore/avoid all edges that create a circuit. 

 

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on. 

 

Now we are left with only one node to be added. Between the two least cost edges available 7 

and 8, we shall add the edge with cost 7. 

 

By adding edge S,A we have included all the nodes of the graph and we now have minimum 

cost spanning tree 

Construct the minimum spanning tree (MST) for the given graph using 

Kruskal’s Algorithm- 
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Solution- 

To construct MST using Kruskal’s Algorithm, 

 Simply draw all the vertices on the paper. 

 Connect these vertices using edges with minimum weights such that no cycle gets formed. 

Step-01: 

 

Step-02: 

 

Step-03: 

 

 

Step-04: 

 

 

Step-05: 
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Step-06: 

 

 

Step-07: 

 

 

Since all the vertices have been connected / included in the MST, so we stop. 

Weight of the MST 

= Sum of all edge weights 

= 10 + 25 + 22 + 12 + 16 + 14 

= 99 units 

 

Example 

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be 

having (9 – 1) = 8 edges.  

After sorting: 

Weight   Src    Dest 

1         7      6 

2         8      2 

2         6      5 

4         0      1 

4         2      5 

6         8      6 

7         2      3 

www.Jntufastupdates.com 20



7         7      8 

8         0      7 

8         1      2 

9         3      4 

10        5      4 

11        1      7 

14        3      5 

Now pick all edges one by one from the sorted list of edges  

1. Pick edge 7-6: No cycle is formed, include it.  

 

  

 

2.Pick edge 8-2: No cycle is formed, include it.  

 

 

3.Pick edge 6-5: No cycle is formed, include it.  

 

4. Pick edge 0-1: No cycle is formed, include it.  

 

5.Pick edge 2-5: No cycle is formed, include it.  
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6.Pick edge 8-6: Since including this edge results in the cycle, discard it. 

7. Pick edge 2-3: No cycle is formed, include it.  

 
 

8. Pick edge 7-8: Since including this edge results in the cycle, discard it. 

9. Pick edge 0-7: No cycle is formed, include it.  

 

10. Pick edge 1-2: Since including this edge results in the cycle, discard it. 

11. Pick edge 3-4: No cycle is formed, include it.  

 

Since the number of edges included equals (V – 1), the algorithm stops here. 

Prim’s Algorithm- 
  

 Prim’s Algorithm is a famous greedy algorithm. 

 It is used for finding the Minimum Spanning Tree (MST) of a given graph. 

 To apply Prim’s algorithm, the given graph must be weighted, connected and undirected. 

 

Prim’s Algorithm Implementation- 

 The implementation of Prim’s Algorithm is explained in the following steps- 

Step-01: 

 Randomly choose any vertex. 

 The vertex connecting to the edge having least weight is usually selected. 

 Step-02: 

 Find all the edges that connect the tree to new vertices. 

 Find the least weight edge among those edges and include it in the existing tree. 

 If including that edge creates a cycle, then reject that edge and look for the next least 

weight edge. 

 Step-03: 

 Keep repeating step-02 until all the vertices are included and Minimum Spanning Tree 

(MST) is obtained. 
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 Problem-01: 

 Construct the minimum spanning tree (MST) for the given graph using Prim’s Algorithm- 

  

Solution- 

 The above discussed steps are followed to find the minimum cost spanning tree using Prim’s 

Algorithm- 

 Step-01: 

 

  

Step-02:       Step-03: 

                   

 

 
 

Step-04:       Step-05: 
  

  

    
 

Step-06: 
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 Since all the vertices have been included in the MST, so we stop. 

  Now, Cost of Minimum Spanning Tree 

= Sum of all edge weights 

= 10 + 25 + 22 + 12 + 16 + 14 

= 99 units 

Example 2 

 Using Prim’s Algorithm, find the cost of minimum spanning tree (MST) of the given graph- 

 

 
 

Solution- 

 The minimum spanning tree obtained by the application of Prim’s Algorithm on the given 

graph is as shown below- 

 

Now, Cost of Minimum Spanning Tree 

= Sum of all edge weights 

= 1 + 4 + 2 + 6 + 3 + 10 

= 26 units 

Example: 

 

Step 1 - Remove all loops and parallel edges 
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Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the 
one which has the least cost associated and remove all others. 

 

Step 2 - Choose any arbitrary node as root node 

 In this case, we choose S node as the root node of Prim's spanning tree. This 

node is arbitrarily chosen, so any node can be the root node, in the spanning tree all the nodes of 

a graph are included and because it is connected then there must be at least one edge, which will 

join it to the rest of the tree. 

Step 3 - Check outgoing edges and select the one with less cost 

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8, 

respectively. We choose the edge S,A as it is lesser than the other. 

 

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We 

select the one which has the lowest cost and include it in the tree. 

 

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all 

the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the 

new edge, which is less than other edges' cost 8, 6, 4, etc. 

 

 

After adding node D to the spanning tree, we now have two edges going out of it having the 

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield 

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included. 
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We may find that the output spanning tree of the same graph using two different algorithms is 

same. 

Comparison between Prim’s and Krushkals 

1. If all the edge weights are distinct, then both the algorithms are guaranteed to find the 

same MST. 

Example- 

  

Consider the following example- 

  

Here, both the algorithms on the above given graph produces the same MST as shown. 

2. If all the edge weights are not distinct, then both the algorithms may not always produce the 

same MST. 

 However, cost of both the MSTs would always be same in both the cases. 

Example- 

 Consider the following example- 
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3. Kruskal’s Algorithm is preferred when-  

• The graph is sparse. 

• There are less number of edges in the graph like E = O(V) 

• The edges are already sorted or can be sorted in linear time. 

  

Prim’s Algorithm is preferred when- 

• The graph is dense. 

            • There are large number of edges in the graph like E = O(V2). 

 

4. Difference between Prim’s Algorithm and Kruskal’s Algorithm- 

 

Prim’s Algorithm Kruskal’s Algorithm 

The tree that we are making or growing 

always remains connected. 

The tree that we are making or growing 

usually remains disconnected. 

Prim’s Algorithm grows a solution from a 
random vertex by adding the next cheapest 

vertex to the existing tree. 

Kruskal’s Algorithm grows a solution 
from the cheapest edge by adding the next 

cheapest edge to the existing tree / forest. 

Prim’s Algorithm is faster for dense 

graphs. 

Kruskal’s Algorithm is faster for sparse 

graphs. 

 

Definition 

This algorithm was created and published by Dr. Edsger W. Dijkstra, a brilliant Dutch 

computer scientist and software engineer. 

The Dijkstra’s algorithm finds the shortest path from a particular node, called the source 

node to every other node in a connected graph. It produces a shortest path tree with the source 

node as the root. It is profoundly used in computer networks to generate optimal routes with the 

aim of minimizing routing costs. 

Basics of Dijkstra's Algorithm 

 Dijkstra's Algorithm basically starts at the node that you choose (the source node) and it analyzes the 

graph to find the shortest path between that node and all the other nodes in the graph. 

 The algorithm keeps track of the currently known shortest distance from each node to the source node 

and it updates these values if it finds a shorter path. 

 Once the algorithm has found the shortest path between the source node and another node, that node is 

marked as "visited" and added to the path. 

 The process continues until all the nodes in the graph have been added to the path. This way, we have a 

path that connects the source node to all other nodes following the shortest path possible to reach each 

node. 
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Dijkstra’s Algorithm 

Input − A graph representing the network; and a source node, s 

Output − A shortest path tree, spt[], with s as the root node. 

1. Select the source node also called the initial node 

 2. Define an empty set N that will be used to hold nodes to which a shortest path has been 

found. 

 3. Label the initial node with , and insert it into N.  

4. Repeat Steps 5 to 7 until the destination node is inNor there are no more labelled nodes in N.  

5. Consider each node that is not in N and is connected by an edge from the newly inserted 

node. 

 6. (a) If the node that is not in N has no label then SET the label of the node = the label of the 

newly inserted node + the length of the edge.  

(b) Else if the node that is not in N was already labelled, then SET its new label = minimum 

(label of newly inserted vertex + length of edge, old label)  

7. Pick a node not in N that has the smallest label assigned to it and add it to N. 

Example 

 

The initializations will be as follows − 

 dist[7]={0,∞,∞,∞,∞,∞,∞} 

 Q={A,B,C,D,E,F,G} 

 S𝑆= ∅ 

Pass 1 − We choose node A from Q since it has the lowest dist[] value of 0 and put it in S. The 

neighbouring nodes of A are B and C. We update dist[] values corresponding to B and C 

according to the algorithm. So the values of the data structures become − 

 dist[7]={0,5,6,∞,∞,∞,∞} 

 Q={B,C,D,E,F,G} 

 S={A} 

The distances and shortest paths after this pass are shown in the following graph. The green 

node denotes the node already added to S − 
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Pass 2 − We choose node B from Q since it has the lowest dist[] value of 5 and put it in S. The 

neighbouring nodes of B are C, D and E. We update dist[] values corresponding to C, D and E 

according to the algorithm. So the values of the data structures become − 

 dist[7]={0,5,6,12,13,∞,∞} 

 Q={C,D,E,F,G} 

 S={A,B} 

The distances and shortest paths after this pass are − 

 

Pass 3 − We choose node C from Q since it has the lowest dist[] value of 6 and put it in S. The 

neighbouring nodes of C are D and F. We update dist[] values corresponding to D and F. So the 

values of the data structures become − 

 dist[7]={0,5,6,8,13,10,∞} 

 Q={D,E,F,G} 

 S={A,B,C} 

The distances and shortest paths after this pass are – 
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Pass 4 − We choose node D from Q since it has the lowest dist[] value of 8 and put it in S. The 
neighbouring nodes of D are E, F and G. We update dist[] values corresponding to E, F and G. 

So the values of the data structures become − 

 dist[7]={0,5,6,8,10,10,18} 

 Q={E,F,G} 

 S={A,B,C,D} 

The distances and shortest paths after this pass are – 

 

Pass 5 − We can choose either node E or node F from Q since both of them have the 

lowest dist[] value of 10. We select any one of them, say E, and put it in S. The neighbouring 

nodes of D is G. We update dist[] values corresponding to G. So the values of the data 

structures become − 

 dist[7]={0,5,6,8,10,10,13} 

 Q={F,G} 

 S={A,B,C,D,E} 

The distances and shortest paths after this pass are – 

 

Pass 6 − We choose node F from Q since it has the lowest dist[] value of 10 and put it in S. The 

neighbouring nodes of F is G. The dist[] value corresponding to G is less than that through F. 

So it remains same. The values of the data structures become − 

 dist[7]={0,5,6,8,10,10,13} 

 Q={G} 

 S={A,B,C,D,E,F} 
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The distances and shortest paths after this pass are – 

 

Pass 7 − There is just one node in Q. We remove it from Q put it in S. The dist[] array needs no 

change. Now, Q becomes empty, S contains all the nodes and so we come to the end of the 

algorithm. We eliminate all the edges or routes that are not in the path of any route. So the 

shortest path tree from source node A to all other nodes are as follows − 

 

Transitive Closure of a Directed Graph 

A transitive closure of a graph is constructed to answer reachability questions 

Definition 

For a directed graph G = (V,E), where V is the set of vertices and E is the set of edges, the 

transitive closure of G is a graph G* = (V,E*). In G*, for every vertex pair v, w in V there is an 

edge (v, w) in E* if and only if there is a valid path from v to w in G. 

 

Where and Why is it Needed? Finding the transitive closure of a directed graph is an 

important problem in the following computational tasks 

 Transitive closure is used to find the reachability analysis of transition networks 

representing distributed and parallel systems. 

  It is used in the construction of parsing automata in compiler construction 

  Recently, transitive closure computation is being used to evaluate recursive database 

queries 

Algorithm 

 In order to determine the transitive closure of a graph, we define a matrix t where tk ij = 1, for 

i, j, k = 1, 2, 3, ... n if there exists a path in G from the vertex i to vertex j with intermediate 
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vertices in the set (1, 2, 3, ..., k) and 0 otherwise. That is, G* is constructed by adding an edge 

(i, j) into E* if and only if tk ij = 1  

 

 Its connectivity matrix C is 

0   1    2   3  

1   0   1   0 

1   1   1   0 

0   0   1   0 

1   1   1   1 

 

 

Transitive closure of graphs is  

     1 1 1 1  

     1 1 1 1  

     1 1 1 1  

     0 0 0 1 

 

 

Floyd Warshall Algorithm- 
  

 Floyd Warshall Algorithm is a famous algorithm. 

 It is used to solve All Pairs Shortest Path Problem. 

 It computes the shortest path between every pair of vertices of the given graph. 

 Floyd Warshall Algorithm is an example of dynamic programming approach. 

Advantages- 

Floyd Warshall Algorithm has the following main advantages- 

 It is extremely simple. 

 It is easy to implement. 

 When Floyd Warshall Algorithm Is Used? 

 Floyd Warshall Algorithm is best suited for dense graphs. 

 This is because its complexity depends only on the number of vertices in the given graph. 

 For sparse graphs, Johnson’s Algorithm is more suitable. 
  

 

 Path matrix entry 
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Problem- 
Consider the following directed weighted graph- 

 

Using Floyd Warshall Algorithm, find the shortest path distance between every pair of vertices. 

Solution- 

 Step-01: 

 Remove all the self loops and parallel edges (keeping the lowest weight edge) from the 

graph. 

 In the given graph, there are neither self edges nor parallel edges. 

 Step-02: 

 Write the initial distance matrix. 

 It represents the distance between every pair of vertices in the form of given weights. 

 For diagonal elements (representing self-loops), distance value = 0. 

 For vertices having a direct edge between them, distance value = weight of that edge. 

 For vertices having no direct edge between them, distance value = ∞. 

Initial distance matrix for the given graph is- 

 

Step-03: Using Floyd Warshall Algorithm, write the following 4 matrices-  
 

 

             

                

The last matrix D4 represents the shortest path distance between every pair of vertices. 
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