
1

UNIT-1

Introduction to Java Basics

History of Java:

• Java is an efficient powerful Object-Oriented Programming language developed in the

year of 1991 by James Gosling and his team members at Sun micro systems.

• James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project

in June 1991. The small team of sun engineers called Green Team.

• Initially Java is called with a name Oak is a symbol of strength and choosen as a national

tree of many countries like U.S.A., France, Germany, Romania etc.

• In 1995, Oak was renamed as "Java" .

• Java is an island of Indonesia where first coffee was produced (called java coffee).

• Sun micro systems purchased by Oracle Corporation in the year of 2010.

• JDK (Java Development tool Kit) 1.0 released in (January 23, 1996).

Java Version History

There are many java versions that has been released. Current stable release of Java is Java SE 8.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep, 2004)

8. Java SE 6 (11th Dec, 2006)

9. Java SE 7 (28th July, 2011)

10. Java SE 8 (18th March, 2014)

Where it is used?According to Sun, 3 billion devices run java. There are many devices where

java is currently used. Some of them are as follows:
1. Desktop Applications such as acrobat reader, media player, antivirus etc.
2. Web Applications such as irctc.co.in, javatpoint.com etc.
3. Enterprise Applications such as banking applications.
4. Mobile
5. Embedded System

6. Smart Card
7. Robotics
8. Games etc.

www.Jntufastupdates.com 1

2

Types of Java Applications
There are mainly 4 type of applications that can be created using java programming:
1) Standalone Application
It is also known as desktop application or window-based application. An application that we need
to install on every machine such as media player, antivirus etc. AWT and Swing are used in java
for creating standalone applications.
2) Web Application
An application that runs on the server side and creates dynamic page, is called web application.
Currently, servlet, jsp, struts, jsf etc. technologies are used for creating web applications in java.
3) Enterprise Application
An application that is distributed in nature, such as banking applications etc. It has the advantage
of high level security, load balancing and clustering. In java, EJB is used for creating enterprise
applications.

4) Mobile Application
An application that is created for mobile devices. Currently Android and Java ME are used for
creating mobile applications.

Java Characteristics (or) Features of java (or) Java Buzz words:
There is given many features of java. They are also known as java buzzwords. The Java Features
given below are simple and easy to understand.

1. Simple

2. Object-Oriented

3. Platform independent

4. Secured

5. Robust

6. Architecture neutral

7. Portable

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

Simple

According to Sun, Java language is simple because:

syntax is based on C++ (so easier for programmers to learn it after C++).

removed many confusing and/or rarely-used features e.g., explicit pointers, operator overloading
etc.

No need to remove unreferenced objects because there is Automatic Garbage Collection in
java.

www.Jntufastupdates.com 2

3

Object-oriented

Object-oriented means we organize our software as a combination of different types of objects
that incorporates both data and behaviour.

Object-oriented programming(OOPs) is a methodology that simplify software development and
maintenance by providing some rules.

Basic concepts of OOPs are:

1. Object
2. Class
3. Inheritance
4. Polymorphism
5. Abstraction
6. Encapsulation.

www.Jntufastupdates.com 3

4

Platform Independent

A platform is the hardware or software environment in which a program runs.
There are two types of platforms software-based and hardware-based. Java provides software-
based platform.
The Java platform differs from most other platforms in the sense that it is a software-based
platform that runs on the top of other hardware-based platforms. It has two components:

• Runtime Environment

• API(Application Programming Interface)
Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac/OS etc. Java
code is compiled by the compiler and converted into bytecode. This bytecode is a platform-
independent code because it can be run on multiple platforms i.e. Write Once and Run
Anywhere(WORA).

Secured

Java is secured because:

• No explicit pointer

• Java Programs run inside virtual machine sandbox

Robust
Robust simply means strong. Java uses strong memory management. There are lack of pointers
that avoids security problem. There is automatic garbage collection in java. There is exception
handling and type checking mechanism in java. All these points makes java robust.

Architecture-neutral
There are no implementation dependent features e.g. size of primitive types is fixed.
In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes
of memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for both 32 and 64
bit architectures.

www.Jntufastupdates.com 4

5

Portable: We may carry the java bytecode to any platform.
High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still
somewhat slower than a compiled language (e.g., C++)

Distributed

We can create distributed applications in java. RMI and EJB are used for creating distributed
applications. We may access files by calling the methods from any machine on the internet.

Multi-threaded
A thread is like a separate program, executing concurrently. We can write Java programs that
deal with many tasks at once by defining multiple threads. The main advantage of multi-
threading is that it doesn't occupy memory for each thread. It shares a common memory area.
Threads are important for multi-media, Web applications etc.

****** ******

Java program Compilation and Execution Process:
Sample java program:

import java.lang.*; // package import section

class Sample // creating a class
{

public static void main(String args[]) // main() execution starts from here

{
System.out.println(“Hello world”); // writing “Hello world” on console

}

}

• Save the above program with an extension .java i.e Sample.java in a specific location.

Compilation:

• for compilation of java program we use “javac” keyword.

Execution:
• After successful compilation of java program .class file will be created. This is called

bytecode.

• for executing java program we use .class file name with “java” keyword as follows.

Sample.java

Compiler

Sample.class

JVM
(java
virtual
Machine)

Output

*******-----------*******

javac Sample.java

www.Jntufastupdates.com 5

6

Java Virtual Machine(JVM):

• JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides
runtime environment in which java bytecode can be executed.

• JVMs are available for many hardware and software platforms (i.e. JVM is platform
dependent).

• The JVM performs following operations: Loads code,Verifies code, Executes code and
Provides runtime environment

• Internal Archietecture of JVM:

Classloader: Classloader is a subsystem of JVM that is used to load class files.

Class(Method) Area: Class(Method) Area stores per-class structures such as the runtime

constant pool, field and method data, the code for methods.

Heap: It is the runtime data area in which objects are allocated.

Stack: Java Stack stores frames.It holds local variables and partial results, and plays a part

in method invocation and return.

Each thread has a private JVM stack, created at the same time as thread.

A new frame is created each time a method is invoked. A frame is destroyed when its

method invocation completes.

Program Counter Register: PC (program counter) register. It contains the address of the Java

virtual machine instruction currently being executed.

Native Method Stack: It contains all the native methods used in the application.

Execution Engine: It contains

• A virtual processor

• Interpreter: Read byte code stream then execute the instructions.

www.Jntufastupdates.com 6

7

Installation of JDK:

• Just-In-Time(JIT) compiler: It is used to improve the performance.JIT compiles

parts of the byte code that have similar functionality at the same time, and

Hence reduces the amount of time needed for compilation. Here the term

compiler refers to a translator from the instruction set of a Java virtual machine

(JVM) to the instruction set of a specific CPU.

******----------------******

The JDK software has two different versions: a 32-bit Windows version an

version. Before you download the software, you will need to know which

you are using. If you don’t already know what version of Windows you hav

fairly quickly!

On older systems find your “Computer” icon from the Start menu or on
your desktop. Right-click on this icon and select “Properties”. You can then
read the “System Type” to determine if you have a 32 or 64-bit operating
system

d a 64-bit Windows

version of Windows

e, you can find out

On Windows 7 you can open the Start menu and choose “Computer” from the list. On the

“Computer” screen, click on the button that says “System Properties”, as seen below:

www.Jntufastupdates.com 7

8

This will bring up a screen with information about your computer and your version of Windows.

Look for a section titled “System”. This section will easily tell you what version of Windows you

have installed next to the “System Type” label:

Keep this information handy! We will use it to determine which version of the JDK to download.

Downloading the JDK

To download the Java Development Kit (JDK), launch your web browser (e.g. Internet Explorer)

and goto address: http://www.oracle.com/technetwork/java/javase/downloads/index.html.

This page shows many download options. The top of the page shows the most common JDK

download options:

For this course, you can select either JDK version 6 (which we have chosen in the textbook) or

JDK version 7 (which is newly released). Select the “JDK” download button for the corresponding

version further down on the screen:

www.Jntufastupdates.com 8

http://www.oracle.com/technetwork/java/javase/downloads/index.html

9

Or if you prefer JDK 6.0 (1.6):

The Download button will open another page which will list the various JDK installation files. You

must choose “Accept License Agreement” in order to continue with the download and

installation.

Once you have accepted the license agreement, you will need to choose a file to download. The

Windows files are at the bottom of the screen. If you have a 32-bit Windows system, you will

choose the “Windows x86” file. If you have a 64-bit Windows system, you will need to choose

the “Windows x64” file.

As soon as you click to download the file, a pop-up window will appear asking you to either “Save”

or “Run” the program. The look of this window will depend on what version of Windows and

which Internet browser you are using to download the file. The following screenshots are from

Mozilla Firefox and Internet Explorer:

www.Jntufastupdates.com 9

10

Select “Save File” or “Save” to save the file to a location on your local hard drive. You can save it

to your Desktop or some other file folder. Remember this location so you can find it later!

Oracle updates the exact version of the JDK frequently. Our examples show JDK version 1.6.29

(6.0.29), but keep in mind that the version available to you at the time of download will likely

be different! Or you may choose JDK 1.7.X (7.0.X) if you prefer.

Once the file is saved, use your Windows Explorer to find and run the program by double- clicking

in it. Depending on your version of Windows and security settings you may get a security popup

as shown below. Click on “Run” to continue.

When setup is launched you should see the following screen:

This is the first screen in the install process. Click “Next” to continue.

www.Jntufastupdates.com 10

11

This next screen lists all of the possible JDK options that can be installed. Since we will be covering

the basics of Java in this course, you can just accept the defaults and simply click on the ‘Next’

button to continue. There is no need to make any changes on this screen.

The next screen will display a simple progress bar while the JDK files are being installed. This

process could take anywhere from seconds to minutes, depending on the speed of your

computer.

www.Jntufastupdates.com 11

12

When the JDK is finished installing, the installation program will install the JRE files. The screen

above will allow you to choose the directory where the JRE will be located. We recommend that

you allow the files to install in the default directory, as shown below.

Once you choose the “Next” button, the installation will display another progress bar. This will

show the progress of the installation of the JRE files.

The next screen will simply show the progress of your JRE installation. In this first step, the

installation program will automatically download additional files from the Oracle website. This

is a large program and will take some time!

www.Jntufastupdates.com 12

13

At this point, the installation of the JDK files is complete. When you click on the “Finish” button

on this screen, a browser window will appear, displaying registration information for Java.

Registration for the JDK software is optional and is not necessary for the completion of this course.

If you choose not to register, simple close this window.

Congratulations! You have finished the installation of the JDK and JRE in your Windows

computer.

******------------******

www.Jntufastupdates.com 13

14

Java Basics :

Identifiers:

• Identifiers are used for class names, method names, and variable names.
• An identifier may be any descriptive sequence of uppercase and lowercase letters,

numbers, or the underscore and dollar-sign characters.

• They must not begin with a number, lest they be confused with a numeric literal. Again,
Java is case-sensitive, so VALUE is a different identifier than Value. Some examples of
valid identifiers are:

AvgTemp count a4 $test this_is_ok

• Invalid variable names include:
2count high-temp Not/ok

Variables:
• The variable is the basic unit of storage in a Java program.

• A variable is defined by the combination of an identifier, a type, and an optional initializer.

• In addition, all variables have a scope, which defines their visibility, and a lifetime.

• Declaring a Variable:
In Java, all variables must be declared before they can be used. The basic form of a
variable declaration is shown here:

type identifier [= value], identifier [= value], ... ;
• Here are several examples of variable declarations of various types. Note that some

include an initialization.
int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

• Types of Variable:
There are three types of variables in java:

➢ local variable: declared inside the method is called local variable.

➢ instance variable: declared inside the class but outside the method, is called

instance variable . It is not declared as static.

➢ static variable: declared as static is called static variable. It cannot be local.
Example:

class A

{

int data=50;//instance variable

static int m=100;//static variable

void method()

{

int n=90;//local variable

} }

www.Jntufastupdates.com 14

15

Data types:
Data types represent the different values to be stored in the variable. In java, there are two types of

data types:

o Primitive data types

o Non-primitive data types

Data Type Default Value Default size Range

boolean false 1 bit -

char '\u0000' 2 byte 0 to 65,536

byte 0 1 byte –128 to 127

short 0 2 byte –32,768 to 32,767

int 0 4 byte –2,147,483,648 to 2,147,483,647

long 0L 8 byte –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

float 0.0f 4 byte 1.4e−045 to 3.4e+038

double 0.0d 8 byte 4.9e–324 to 1.8e+308

Why char uses 2 byte in java and what is \u0000 ?

It is because java uses Unicode system than ASCII code system. The \u0000 is the lowest range of
Unicode system. To get detail explanation about Unicode visit next page.

www.Jntufastupdates.com 15

16

Example on variables:

class Simple

{

public static void main(String[] args)

{

int a=10;

int b=10;

int c=a+b;

float f1=10.25f;

double d=123.4567;

char ch=’a’;

boolean b1=true;

boolean b2=false;

System.out.println(“int c=”+c);

System.out.println(“float f1=”+f1);

System.out.println(“double d =“+d);

System.out.println(“char ch =”+ch);

System.out.println(“boolean b1=”+ b1);

System.out.println(“boolean b2=”+ b2);

}

}

Literals:
• A literal is a source code representation of a fixed value. They are represented directly in

the code without any computation.

• Literals can be assigned to any primitive type variable. For example:
byte a = 68;
char a = 'A'

• byte, int, long, and short can be expressed in decimal(base 10), hexadecimal(base 16) or

octal(base 8) number systems as well.

• Prefix 0 is used to indicate octal, and prefix 0x indicates hexadecimal when using these

number systems for literals. For example:
int decimal = 100;
int octal = 0144; int

hexa = 0x64;

• String literals in Java are specified like they are in most other languages by enclosing a

sequence of characters between a pair of double quotes. Examples of string literals are:
"Hello World"
"two\nlines"
"\"This is in quotes\""

• String and char types of literals can contain any Unicode characters. For example:
char a = '\u0001';

String a = "\u0001";

www.Jntufastupdates.com 16

17

• In java we have some escape sequences.

Keywords:
• There are 49 reserved keywords currently defined in the Java language .

• These keywords, combined with the syntax of the operators and separators, form the
definition of the Java language.

• These keywords cannot be used as names for a variable,class, or method.

• The keywords const and goto are reserved but not used. In the early days of Java,
several other keywords were reserved for possible future use.

• However, the current specification for Java only defines the keywords shown above.

• The assert keyword was added by Java 2, version 1.4

• In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes,
and so on.

www.Jntufastupdates.com 17

18

Operators:
Java provides a rich set of operators to manipulate variables. We can divide all the Java
operators into the following groups:

➢ Arithmetic Operators

➢ Relational Operators

➢ Bitwise Operators

➢ Boolean Logical Operators

Arithmetic Operators:
• Arithmetic operators are used in mathematical expressions in the same way that they

are used in algebra.

• The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

• The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java
is, essentially, a subset of int.

• Example program:
class Test
{

public static void main(String args[])
{

int a = 10;
int b = 20;
int c = 25;
int d = 25;

System.out.println("a + b = " + (a + b));
System.out.println("a - b = " + (a - b));
System.out.println("a * b = " + (a * b));
System.out.println("b / a = " + (b / a));
System.out.println("b % a = " + (b % a));
System.out.println("c % a = " + (c % a));
System.out.println("a++ = " + (a++));

www.Jntufastupdates.com 18

19

System.out.println("b-- = " + (a--));
// Check the difference in d++ and ++d
System.out.println("d++ = " + (d++));
System.out.println("++d = " + (++d));

}
}

This will produce the following result:
a + b = 30
a - b = -10
a * b = 200
b / a = 2
b % a = 0
c % a = 5
a++ = 10
b-- = 11
d++ = 25
++d = 27

Compound assignment:

• Compound assignment opaerators are +=, -=, *=, /=, %=

• Examples:

int a=10;
a=a+10;

(or) int a=10;
a+=10;

int a=20;
a=a/10;

(or) int a=20;
a/=10;

Relational Operators:
• The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering.

• The relational operators are shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

• The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop
statements.

• Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=.

int a = 4;
int b = 1;
boolean c = a < b; // c is false

• Example program:
class Test
{

public static void main(String args[])
{

int a = 10;
int b = 20;

www.Jntufastupdates.com 19

20

System.out.println("a == b = " + (a == b));
System.out.println("a != b = " + (a != b));
System.out.println("a > b = " + (a > b));
System.out.println("a < b = " + (a < b));
System.out.println("b >= a = " + (b >= a));
System.out.println("b <= a = " + (b <= a));

}
}

Output:
a == b = false
a != b = true
a > b = false
a < b = true
b >= a = true
b <= a = false

Bit wise operators:
• Java defines several bitwise operators which can be applied to the integer types, long, int,

short, char, and byte. These operators act upon the individual bits of their operands.

• They are summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

BITWISE LOGICAL OPERATORS

• The bitwise logical operators are &, |, ^, and ~.

• The bitwise operators are applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

• The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example,

00101010 becomes 11010101 (after the NOT operator is applied.)

• The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in
all other cases. Here is an example:

www.Jntufastupdates.com 20

21

00101010 42
& 00001111 15

00001010 10

• The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15

00101111 47

• The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result
is 1. Otherwise, the result is zero.

00101010 42
^ 00001111 15

Left Shift
00100101 37

• The left shift operator, <<, shifts all of the bits in a value to the left a specified number of
times.

• It has this general form:
value << num

• Here, num specifies the number of positions to left-shift the value in value. That is, the

<< moves all of the bits in the specified value to the left by the number of bit positions
specified by num.

• For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on
the right.

byte a = 64, b;
int i;
i = a << 1;
b = (byte) (a << 2);

After shifting operation i =128 and b=0 (because byte takes only 8-bits)

a<<1 : a is left shifted by one position
 256 128 64 32 16 8 4 2 1
a=(64) 1 0 0 0 0 0 0

i=(a<<1) 1 0 0 0 0 0 0 0

a<<2 : a is left shifted by 2 positions
 256 128 64 32 16 8 4 2 1

a=(64) 1 0 0 0 0 0 0

b=(byte)(a<<2) 1 0 0 0 0 0 0 0 0

www.Jntufastupdates.com 21

22

Right Shift
• The right shift operator, >>, shifts all of the bits in a value to the right a specified

number of times.

• Its general form is shown here:
value >> num

• Here, num specifies the number of positions to right-shift the value in value.

• That is, the >> moves all of the bits in the specified value to the right the number of bit
positions specified by num.

• The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a = a >> 2; // a now contains 8

a>>2 : a is right shifted by two positions
 64 32 16 8 4 2 1

a=32 1 0 0 0 0 0

a=a>>2 1 0 0 0

Bitwise Operator Assignments:
• All of the binary bitwise operators have a shorthand form similar to that of the algebraic

operators, which combines the assignment with the bitwise operation.

• For example, the following two statements, which shift the value in a right by four bits,
are equivalent:

a = a >> 4;
a >>= 4;

• Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

a = a | b;
a |= b;

• Example program:
class OpBitEquals

{

public static void main(String args[])

{

}

}

output :
a = 3

b = 1

c = 6

int a = 1;

int b = 2;

int c = 3;

a |= 4;

b >>= 1;

c <<= 1;

a ^= c;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

www.Jntufastupdates.com 22

23

Boolean Logical operators:
• The Boolean logical operators operate only on boolean operands.

• All of the binary logical operators combine two boolean values to form a resultant
boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

• The logical Boolean operators, &, |, and ^, operate on boolean values in the same
way that they operate on the bits of an integer.

• The logical ! operator inverts the Boolean state: !true == false and !false == true. The
following table shows the effect of each logical operation:

Short-Circuit Logical Operators(&&, ||):

• Java provides two interesting Boolean operators not found in many other computer
languages.

• These are secondary versions of the Boolean AND and OR operators, and are known as

short-circuit logical operators. As you can see from the preceding table,

• the OR operator results in true when A is true, no matter what B is. Similarly, the AND

operator results in false when A is false, no matter what B is.

• Example:

class Test

{

public static void main(String args[])

{

int a=10,b=30;

if(a<10 && b<40) //false

System.out.println(“Hello”);

www.Jntufastupdates.com 23

24

if(a>5 || b>40) //true

System.out.println(“Hai”);

}

}

• Output:

Hai

The ? Operator:
• Java includes a special ternary (three-way) operator that can replace certain types of

if-then-else statements.

• The ? has this general form:
expression1 ? expression2 : expression3

• In the above form expression1 results a Boolean value either true or false. If it is true
expression2 evaluated otherwise epression2 evaluated.

• Example:
class Ternary

{

public static void main(String args[])

{

int i, k;

i = 10;

k = i < 0 ? -i : i;

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);
}

}

• Output :

Absolute value of i is 10

Operator Precedence:

• Bellow table shows the order of precedence for Java operators, from highest to lowest.

www.Jntufastupdates.com 24

25

• This expression first adds 3 to b and then shifts a right by that result. That is, this
expression can be rewritten using redundant parentheses like this:

a >> (b + 3)

• However, if you want to first shift a right by b positions and then add 3 to that result,
you will need to parenthesize the expression like this:
(a >> b) + 3

• The given expression a | 4 + c >> b & 7 can be evaluated as follows

(a | (((4 + c) >> b) & 7))

**********------------------***********

Typecasting:(primitive type conversion):

• Typecasting means converting one data type to another data type.

• Typecasting can be done in two ways

1. Implicit typecasting

2. Explicit typecasting

Implicit typecasting:
• Compliler perform implicit typecasting automatically when smaller data type value into

larger data type.

• In implicit type casting there is no loss of information.

• Implicit typecasting also called as widening or up casting.

• Example:

int n=’a’;

System.out.println(n); //97

byte short

char

int long float double

www.Jntufastupdates.com 25

26

Explicit typecasting:

• Programmer performs explicit typecasting when larger data type value into smaller data
type.

• In explicit type casting there may be chance of loss of information.

• Implicit typecasting also called as narrowing or down casting.

• Example: double d=10.5;

int n=(int)d; // n becomes 10

byte short

int long float double

char

Decision making and Looping statements:

if-else:
• General form of if-else is

if (condition)
{

// true action
}
else
{

// false action
}

• In the above general form condition must be Boolean type either true or false.

Example:

int a=10,b=20;

www.Jntufastupdates.com 26

27

if (a<b)

System.out.println(“ a is smaller than b”); // executes

else

System.out.println(“ a is larger than b”);

• Nested if- else:

int a=10,b=20,c=30;

if (a<b && a<c)

System.out.println(“ a is largest”); // executes

else if(b<a && b<c)

System.out.println(“ b is largest”);

else

System.out.println(“ c is largest”);

switch:
• The Java switch statement executes one statement from multiple conditions. It is like if-else-if

ladder statement.
Syntax:

switch(expression)
{

case value1: //code to be executed;
break; //optional
case value2: //code to be executed;
break; //optional

......

default: //code to be executed if all cases are not matched;
}

Example:
int choice=2;
switch(choice)

{

case 1: System.out.println(“this is case 1”);
break

case 2: System.out.println(“this is case 2”);
break;

case 3: System.out.println(“this is case 3”);

break;

default: System.out.println(“this is default case”);
}

Output: this is case 2

for loop:

• The Java for loop is used to iterate a part of the program several times. If the number of
iteration is fixed, it is recommended to use for loop.

• There are three types of for loop in java.

o Simple For Loop

o For-each or Enhanced For Loop

o Labeled For Loop

www.Jntufastupdates.com 27

28

Simple for Loop

The simple for loop is same as C/C++. We can initialize variable, check condition and

increment/decrement value.

Syntax:

for(initialization;condition;incr/decr)

{

//code to be executed

}
Example:

class ForExample

{

public static void main(String[] args)

{

for(int i=1;i<=10;i++)

{

System.out.print(i+” “);

}

}

}

for-each Loop

• The for-each loop is used to traverse array or collection in java. It is easier to use than
simple for loop because we don't need to increment value and use subscript notation.

• It works on elements basis not index. It returns element one by one in the defined
variable.

Syntax:

for(Type var:array)

{

//code to be executed

}

Example:
class ForEachExample

{

public static void main(String[] args)

{

int arr[]={12,23,44,56,78};

for(int i:arr)

{

www.Jntufastupdates.com 28

29

System.out.println(i+” “);

}

}
}

Labeled for Loop

• We can have name of each for loop. To do so, we use label before the for loop. It is useful
if we have nested for loop so that we can break/continue specific for loop.

• Normally, break and continue keywords breaks/continues the inner most for loop only.

Syntax:

labelname:

for(initialization;condition;incr/decr)

{

//code to be executed

}

Example:
class LabeledForExample

{
public static void main(String[] args)

{

aa:

for(int i=1;i<=3;i++)

{

bb:
for(int j=1;j<=3;j++)

{

if(i==2&&j==2)

{

break aa;

}

}

}

}

Output:

System.out.println(i+" "+j);

}

1 1
1 2
1 3
2 1

www.Jntufastupdates.com 29

30

While Loop:

• The Java while loop is used to iterate a part of the program several times. If the number

of iteration is not fixed, it is recommended to use while loop.
Syntax:

while(condition)
{

//code to be executed
}

Example:
class WhileExample
{

public static void main(String[] args)

{

int i=1;
while(i<=10)

{

}

}

Output:

System.out.print(i+” “);
i++;

}

1 2 3 4 5 6 7 8 9 10

do-while Loop:

• The Java do-while loop is used to iterate a part of the program several times.
• If the number of iteration is not fixed and you must have to execute the loop at least

once, it is recommended to use do-while loop.

• The Java do-while loop is executed at least once because condition is checked after loop
body.

Syntax:
do
{

//code to be executed

}while(condition);

Example:
class DoWhileExample

{
public static void main(String[] args)
{

int i=1;
do
{

}

Output:

System.out.print(i);

i++;
}while(i<=10);

}

www.Jntufastupdates.com 30

31

1 2 3 4 5 6 7 8 9 10

break Statement:
• The Java break is used to break loop or switch statement. It breaks the current flow of

the program at specified condition. In case of inner loop, it breaks only inner loop.
Syntax:

Example:

jump-statement;

break;

class BreakExample
{

public static void main(String[] args)

{
for(int i=1;i<=10;i++)

{
if(i==5)
{

break;

}

}

}

Output:
1 2 3 4

System.out.print(i);

}

continue Statement:
• The Java continue statement is used to continue loop.

• It continues the current flow of the program and skips the remaining code at specified
condition.

• In case of inner loop, it continues only inner loop.
Syntax:

Example:

jump-statement;

continue;

class ContinueExample
{

public static void main(String[] args)

{
for(int i=1;i<=10;i++)
{

if(i==5)
{

continue;
}

}

}

Output:

System.out.print(i);

}

www.Jntufastupdates.com 31

32

1 2 3 4 6 7 8 9 10

Methods:

• In java, a method is like function i.e. used to expose behavior of an object.

• The advantages of methods are code reusability and code optimization

• This is the general form of a method:
type name(parameter-list)
{

// body of method
}

• Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create.

• If the method does not return a value, its return type must be void.
• The name of the method is specified by name. This can be any legal identifier other than

those already used by other items within the current scope.

• The parameter-list is a sequence of type and identifier pairs separated by commas.

• Parameters are essentially variables that receive the value of the arguments passed to the
method when it is called.

• If the method has no parameters, then the parameter list will be empty.

• Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;
Here, value is the value returned.

• Example program for usage of method:
class Box
{

double width;
double height;
double depth;
void volume() // method
{

double vol=width*height*depth;
System.out.println("Volume is " + vol);

}
}
class BoxDemo
{

public static void main(String args[])
{

Box mybox = new Box();
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
mybox.volume();

}
}

www.Jntufastupdates.com 32

33

Output: Volume is 3000.0

• Example program for return a value from method :
class Box
{

double width;
double height;
double depth;
double volume() // method return type is double
{

return width*height*depth;
}

}

class BoxDemo
{

public static void main(String args[])
{

Box mybox = new Box();
mybox.width = 10;

mybox.height = 20;
mybox.depth = 15;
double vol= mybox.volume();
System.out.printlln(“volume is” + vol);

}
}

Output: Volume is 3000.0

Example program for method with parameters:

class Values
{

void add(int a,int b)
{

int c=a+b;
System.out.printlln(“addition of a, b is ”+c);

}
}

class Addition
{

public static void main(String args[])
{

Addition ad=new Addition();
ad.add(10,20);

}
}

Output: addition of a, b is 30

• Returning values from a method:

class Values
{

www.Jntufastupdates.com 33

34

void add(int a,int b)
{

c=a+b;
return c;

}
}

class Addition
{

public static void main(String args[])
{

int res;
Addition ad=new Addition(); res=ad.add(10,20);
System.out.printlln(“addition of a, b is ”+res);

}
}

Output: addition of a, b is 30

Method
Overloading:

******---------*******

www.Jntufastupdates.com 34

35

• In Java it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different.

• These methods are said to be overloaded, and the process is referred to as method
overloading.

• Method overloading is one of the ways that Java implements polymorphism.

• Method overloading is also called as “ Static binding or Compile time polymorphism or
Early binding”.

• Example for method overloading

class Overload
{

void dispaly()
{

System.out.println("No parameters");
}
void display(int a)
{

System.out.println("integer a: " + a);
}
void display(double d)
{

System.out.println("double d: " + d);
}
void display(String s)
{

System.out.println("String s:" + s);
}

} class OverloadDemo
{

public static void main(String args[])
{

OverloadDemo ob = new OverloadDemo();
ob.display();
ob. display(10);
ob. display(10.325);
ob. display(“hello”);

}
}

Output:
No parameters
integer a: 10
double d: 10.325

display(duble d)

display()

display(String s) display(int a)

www.Jntufastupdates.com 35

36

String s: hello

Arrays:

• An array is a group of similar data elements that are referred to by a common name.

• Arrays of any type can be created and may have one or more dimensions.

• A specific element in an array is accessed by its index.

• It is a data structure where we store similar elements. We can store only fixed set of
elements in a java array.

• The advantage of an array is code optimization and random access.

Types of Array in java
There are two types of array.

o Single Dimensional Array
o Multidimensional Array

Single Dimensional Array

• Syntax for declare an array

dataType[] arr; (or)
dataType []arr; (or)
dataType arr[];

• Instantiation of an Array

arr=new datatype[size];
• Example

class Testarray
{

public static void main(String args[])
{

int a[]=new int[3];
a[0]=10;

a[1]=20;
a[2]=70;
for(int i=0;i<a.length;i++) System.out.println(a[i]);

}
}

Output: 10
20
70

• Declaration, Instantiation and Initialization of an Array:
datatype arr[]={val1,val2,val3,…};//declaration, instantiation and initialization

www.Jntufastupdates.com 36

37

Example:
class Testarray1
{

public static void main(String args[])
{

int a[]={33,3,4,5};
for(int i=0;i<a.length;i++)

System.out.print(a[i]+” “);
}

}

Output:33 3 4 5

Multidimensional array
• data is stored in row and column based index (also known as matrix form).

• Syntax to Declare Multidimensional Array

dataType[][] arrayRefVar; (or)
dataType [][]arrayRefVar; (or)
dataType arrayRefVar[][]; (or)
dataType []arrayRefVar[];

• To instantiate Multidimensional Array

int[][] arr=new int[3][3];//3 row and 3 column

• To initialize Multidimensional Array

arr[0][0]=1;
arr[0][1]=2;
arr[0][2]=3;
arr[1][0]=4;
………………….arr[2][2]=9;

• Example:
class Testarray3
{

public static void main(String args[])
{

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

for(int i=0;i<3;i++)
{

for(int j=0;j<3;j++)
{

System.out.print(arr[i][j]+" ");
}

}

Output:1 2 3
2 4 5
4 4 5

System.out.println();

}
}

******-------******

www.Jntufastupdates.com 37

1

UNIT- 1 - PART-B

Classes, Objects and Inheritance
Syllabus:

Classes and Objects- classes, Creating Objects, Methods, constructors, overloading methods
and constructors, garbage collection, static keyword, this keyword, parameter passing,
recursion, Arrays, Strings, Command line arguments.
Inheritance: Types of Inheritance, Deriving classes using extends keyword, concept of
overriding, super keyword, final keyword.

Class:
 A class is a group of objects that has common properties. It is a template or blueprint from

which objects are created.

 Simple classes may contain only code or only data, most real-world classes contain both.

 A class is declared by use of the class keyword.

 The general form of a class is
class classname

{

type instance-variable1;

type instance-variable2;

// …….

type instance-variableN;

type methodname1(parameter-list)

{

// body of method

}

type methodname2(parameter-list)

 {

// body of method

}

// ...

type methodnameN(parameter-list)

{

// body of method

}

}

 The data, or variables, defined within a class are called instance variables.

 The code is contained within methods. Collectively, the methods and variables defined
within a class are called members of the class.

 Simple Class like as bellow

class Box

{

double width;

double height;

double depth;

}

www.Jntufastupdates.com 38

2

 In the above, a class defines a new type of data. In this case, the new data type is called
Box. You will use this name to declare objects of type Box.

 a class declaration only creates a template; it does not create an actual object.

 For creating a Box object we use,

Box mybox = new Box(); // create a Box object called mybox

 Here mybox will be an instance of Box.

 To acces variables, methods inside a class we have to use .(dot) operator.

 The dot operator links the name of the object with the name of an instance variable.

 to assign the width variable of mybox the value 100, you would use the following
statement:

mybox.width=100;

 Example:

class Box

 {

double width;

double height;

double depth;

}

class BoxDemo

{

public static void main(String args[])

{

Box mybox = new Box();

double vol;

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

 The above program must save with BoxDemo.java (because BoxDemo contains main())

 After compiling the program two class files are created one is Box.class and other one is

BoxDemo.class

 At the time of running BoxDemo.class file will be loaded by JVM

 For compilation: javac BoxDemo.java

 For Running: java BoxDemo

 Output:

Volume is 3000.0

www.Jntufastupdates.com 39

3

 We can create multiple objects for the same class

 Example

class Box

 {

double width;

double height;

double depth;

}

class BoxDemo

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox1 = new Box();

double vol1,vol2;

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

vol1 = mybox1.width * mybox1.height * mybox1.depth;

mybox1.width = 10;

mybox1.height = 15;

mybox1.depth = 5;

vol2= mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume of mybox1 is " + vol1);

System.out.println("Volume of mybox2 is " + vol2);

}

}

 Output
Volume of mybox1 is 3000.0

Volume of mybox2 is 750.0

Objects:
 Class is a template or blueprint from which objects are created. So object is the

instance(result) of a class.

 for creating objects we have to use following code.

Box mybox;
// declare reference to object

mybox = new Box();
 // allocate a Box object
 Here new keyword is
allocating memory of Box
object.

www.Jntufastupdates.com 40

4

Assigning Object Reference Variables:

 For example see the following code

Box b1 = new Box();

Box b2 = b1;

 In the above code b1 and b2 will both refer to the same object.

 The assignment of b1 to b2 did not allocate any memory or copy any part of the original
object.

 It simply makes b2 refer to the same object as does b1.

 Thus, any changes made to the object through b2 will affect the object to which b1 is
referring, since they are the same object.

******----------*******

Methods:

 In java, a method is like function i.e. used to expose behavior of an object.

 The advantages of methods are code reusability and code optimization

 This is the general form of a method:
type name(parameter-list)
{

// body of method
}

 Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create.

 If the method does not return a value, its return type must be void.

 The name of the method is specified by name. This can be any legal identifier other than
those already used by other items within the current scope.

 The parameter-list is a sequence of type and identifier pairs separated by commas.

 Parameters are essentially variables that receive the value of the arguments passed to the
method when it is called.

 If the method has no parameters, then the parameter list will be empty.

 Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;
Here, value is the value returned.

www.Jntufastupdates.com 41

5

 Example program for usage of method:
class Box

 {

double width;

double height;

double depth;

void volume() // method

{

 double vol=width*height*depth;

System.out.println("Volume is " + vol);

}

}

class BoxDemo

{

public static void main(String args[])

{

Box mybox = new Box();

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

mybox.volume();

 }

}

 Output: Volume is 3000.0

 Example program for return a value from method :
class Box

 {

double width;

double height;

double depth;

double volume() // method return type is double

{

 return width*height*depth;

}

}

class BoxDemo

{

public static void main(String args[])

{

Box mybox = new Box();

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

double vol= mybox.volume();

System.out.printlln(“volume is” + vol);

 }

 }

Output: Volume is 3000.0

www.Jntufastupdates.com 42

6

 Example program for method with parameters:

class Values

 {

 void add(int a,int b)

 {

 int c=a+b;

 System.out.printlln(“addition of a, b is ”+c);

 }

 }

class Addition

{

public static void main(String args[])

{

 Addition ad=new Addition();

 ad.add(10,20);

}

}

 Output: addition of a, b is 30

 Returning values from a method:

class Values

 {

 void add(int a,int b)

 {

 c=a+b;

 return c;

 }

 }

class Addition

{

public static void main(String args[])

{

 int res;

Addition ad=new Addition();

 res=ad.add(10,20);

 System.out.printlln(“addition of a, b is ”+res);

}

}

 Output: addition of a, b is 30

www.Jntufastupdates.com 43

7

Constructors:
 A constructor initializes an object immediately upon creation. It has the same name

 as the class in which it resides and is syntactically similar to a method.

 Once defined, the constructor is automatically called immediately after the object is
created, before the new operator completes.

 Constructors do not any return type, not even void.

 This is because the implicit return type of a class’ constructor is the class type itself.

 Example:

class Addition

{

 Addition()

 {

 System.out.println(“This is Default constructor”);

 }

}

class ConstructorDemo

{

 public static void main(String args[])

 {

 Addition ad=new Addition();

 }

}

 Output: This is Default constructor

 Now we can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

Addition ad=new Addition();

new Addition() is calling the Addition() constructor.

 When we do not explicitly define a constructor for a class, then Java creates a default
constructor for the class.

Parameterized Constructors:
 We can pass parameters to the constructor

class Addition

{

 Addition(int a,int b)

 {

 int c;

 c=a+b;

 System.out.println(“Tha addition of a, b is “);

 System.out.println(c);

 }

}

www.Jntufastupdates.com 44

8

class ParameterConstructor

{

 public static void main(String args[])

 {

 Addition ad=new Addition(10,20);

 }

}

Output: Tha addition of a, b is 30

******---------*******

Method Overloading:
 In Java it is possible to define two or more methods within the same class that share

the same name, as long as their parameter declarations are different.

 These methods are said to be overloaded, and the process is referred to as method
overloading.

 Method overloading is one of the ways that Java implements polymorphism.

 Method overloading is also called as “ Static binding or Compile time polymorphism or
Early binding”.

 Example for method overloading

class Overload

 {

void dispaly()

{

System.out.println("No parameters");

}

void display(int a)

{

System.out.println("integer a: " + a);

}

void display(double d)

{

System.out.println("double d: " + d);

}

void display(String s)

{

System.out.println("String s:" + s);

}

}

display()

display(int a) display(duble d)

display(String s)

www.Jntufastupdates.com 45

9

class OverloadDemo

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

ob.display();

ob. display(10);

ob. display(10.325);

ob. display(“hello”);

 }

}

Output:
No parameters

integer a: 10

double d: 10.325

String s: hello

Constructor overloading:
 In addition to overloading normal methods, you can also overload constructor methods.

 In Java it is possible to define two or more constructors within the same class that share
the same name, as long as their parameter declarations are different.

 Example
class Display

{

Dispaly()

{

System.out.println("No parameters");

}

Dispaly(int a)

{

System.out.println("integer a: " + a);

}

Dispaly(double d)

{

System.out.println("double d: " + d);

}

Display(String s)

{

System.out.println("String s:" + s);

}

}

class OverloadDemo

{

public static void main(String args[])

{

 Display ds=new Display();

 Display ds1=new Display(10);

 Display ds2=new Display(10.325);

 Display ds3=new Display(“hello”);

}

}

www.Jntufastupdates.com 46

10

Output:
No parameters

integer a: 10

double d: 10.325

String s: hello

Java Garbage Collection

 In java, garbage means unreferenced objects.

 Garbage Collection is process of reclaiming the runtime unused memory automatically. In
other words, it is a way to destroy the unused objects.

 To do so, we were using free() function in C language and delete() in C++. But, in java it is
performed automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced

objects from heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to make

extra efforts.

How can an object be unreferenced?

There are many ways:

o By nulling the reference

o By assigning a reference to another

o By annonymous object etc.

1) By nulling a reference:

Employee e=new Employee();

e=null;

2) By assigning a reference to another:

Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;//now the first object referred by e1 is available for garbage collection

3) By annonymous object:

new Employee();

www.Jntufastupdates.com 47

11

static keyword:
 It is possible to create a member that can be used by itself, without reference to a specific

instance.

 To create such a member, precede its declaration with the keyword static.

 When a member is declared static, it can be accessed before any objects of its class are
created, and without reference to any object.

 We can declare both methods and variables to be static.

 The most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist.

 Instance variables declared as static are, essentially, global variables.

 Methods declared as static have several restrictions:
 They can only call other static methods.
 They must only access static data.
 They cannot refer to this or super in any way.

 We can declare a static block which gets executed exactly once, when the class is first
loaded.

 Example
 class UseStatic

{

static int a = 3;

static int b;

static void display(String s)

{

System.out.println(“Static method invoked String s= “+s);

}

static

{

System.out.println("Static block initialized.");

b = a * 4;

}

}

class StaticDemo

{

 public static void main(String args[])

 {

 System.out.println(“static variable a= ”+ UseStatic.a);

 System.out.println(“static variable b= “+UseStatic.b);

 UseStatic. Display(“JAVA”);

 }

}

Ouput:

Static block initialized.

 static variable a= 3

 static variable b= 12

 static method invoked String s= JAVA

www.Jntufastupdates.com 48

12

this keyword:
 In java, this is a reference variable that refers to the current object.

Usage of this keyword
 Here some usages of this keyword.

1. To refer current class instance variable.

2. To Invoke current class constructor.

To refer current class instance variable:
 If there is ambiguity between the instance variable and parameter, this keyword

resolves the problem of ambiguity.

class Student

{

 int id;

 String name;

 Student10(int id,String name)

{

 this.id = id;

 this.name = name;

 }

 void display()

{

System.out.println(id+" "+name);

}

 public static void main(String args[])

{

 Student s1 = new Student10(111,"Karan");

 Student s2 = new Student10(321,"Aryan");

 s1.display();

 s2.display();

 }

}

 Output: 111 Karan

 321 Aryan

To invoke current class constructor
 The this() constructor call can be used to invoke the current class constructor

(constructor chaining).

 This approach is better if you have many constructors in the class and want to reuse

that constructor.

 Example:

class Student1

{

 int id;

 String name;

 Student1()

{

System.out.println("default constructor is invoked");

}

 Student1(int id,String name)

{

 this ();//it is used to invoked current class constructor.

 this.id = id;

www.Jntufastupdates.com 49

13

 this.name = name;

 }

 void display()

{

System.out.println(id+" "+name);

}

 public static void main(String args[])

{

 Student1 e1 = new Student13(111,"karan");

 Student1 e2 = new Student13(222,"Aryan");

 e1.display();

 e2.display();

 }

}

 Output:

 default constructor is invoked

 default constructor is invoked

 111 Karan

 222 Aryan
**********------------*********

parameter passing techniques:

 call by value (or) pass by value

 call by reference (or) pass by reference
Call by value:

 In call by value we are passing only value to the method.

 If we perform any changes inside method that changes will not reflected to main

method.

 Example:

class CallByVal

{

 public static void main(String args[])

 {

 int x=20;

 System.out.println("Before method calling value= "+x);

 display(x);

 System.out.println("After method calling value= "+x);

 }

 public static void display(int y)

 {

 y=y+1;

 System.out.println("Inside method value= "+y);

 }

}

www.Jntufastupdates.com 50

14

Output:

Before method calling value= 20

Inside method value= 21

After method calling value= 20

Call by reference:

 In call by reference we are passing reference i.e an object to the method.

 In this case, If we perform any changes inside method that changes will not reflected to

main method.

 Example:

class CallByRef

{

 int x;

 public static void main(String args[])

 {

 CalByRef c=new CalByRef();

 c.x=20;

 System.out.println("Before method calling value= "+c.x);

 display(c);

 System.out.println("After method calling value= "+c.x);

 }

 public static void display(CalByRef m)

 {

 m.x=m.x+1;

 System.out.println("Inside method value= "+m.x);

 }

}

Output:

Before method calling value= 20

Inside method value= 21

After method calling value= 21

******------******

www.Jntufastupdates.com 51

15

Recursion:
 Recursion is the process of method calling itself.

 A method calling itself is called as recursive method.

 The classic example of recursion is the computation of the factorial of a number.
class Factorial

{

int fact(int n)

{

if(n==1)

return 1;

 else

 n*fact(n-1) ;

}

}

class Recursion

{

public static void main(String args[])

{

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}

}

Output:
 Factorial of 3 is 6

Factorial of 4 is 24

 Factorial of 5 is 120

 Recursion process of fact(5) is given bellow.

******------******

www.Jntufastupdates.com 52

16

Arrays:

 An array is a group of similar data elements that are referred to by a common name.

 Arrays of any type can be created and may have one or more dimensions.

 A specific element in an array is accessed by its index.

 It is a data structure where we store similar elements. We can store only fixed set of
elements in a java array.

 The advantage of an array is code optimization and random access.

Types of Array in java
There are two types of array.

o Single Dimensional Array
o Multidimensional Array

 Single Dimensional Array

 Syntax for declare an array
dataType[] arr; (or)
dataType []arr; (or)
dataType arr[];

 Instantiation of an Array
arr=new datatype[size];

 Example
class Testarray

{

public static void main(String args[])

{

int a[]=new int[3];

a[0]=10;

a[1]=20;

a[2]=70;

for(int i=0;i<a.length;i++)

System.out.println(a[i]);

}

}

Output: 10
 20
 70

www.Jntufastupdates.com 53

17

 Declaration, Instantiation and Initialization of an Array:
datatype arr[]={val1,val2,val3,…};//declaration, instantiation and initialization

Example:
class Testarray1

{

public static void main(String args[])

{

int a[]={33,3,4,5};

for(int i=0;i<a.length;i++)

System.out.print(a[i]+” “);

}

}
 Output:33 3 4 5

Multidimensional array
 data is stored in row and column based index (also known as matrix form).

 Syntax to Declare Multidimensional Array
dataType[][] arrayRefVar; (or)
dataType [][]arrayRefVar; (or)
dataType arrayRefVar[][]; (or)
dataType []arrayRefVar[];

 To instantiate Multidimensional Array
int[][] arr=new int[3][3];//3 row and 3 column

 To initialize Multidimensional Array
arr[0][0]=1;
arr[0][1]=2;
arr[0][2]=3;
arr[1][0]=4;
………………….arr[2][2]=9;

 Example:
class Testarray3

{

 public static void main(String args[])

{

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

for(int i=0;i<3;i++)

{

 for(int j=0;j<3;j++)

{

 System.out.print(arr[i][j]+" ");

 }

 System.out.println();

}

 }

}

Output:1 2 3
 2 4 5
 4 4 5

******-------******

www.Jntufastupdates.com 54

18

Strings:
 Generally, string is a sequence of characters. But in java, string is an object that represents

a sequence of characters.

 The java.lang.String class is used to create string object.

 Strings are immutable in nature, i.e once an object created that object doesn’t allow any
changes to it.

 String is basically an object that represents sequence of char values. An array of characters
works same as java string. For example:

char[] ch={'j','a','v','a'};

String s=new String(ch);

is same as:

String s="javA";

 There are two ways to create String object:
1. By string literal

2. By new keyword

String Literal
 Java String literal is created by using double quotes. For Example:

String s="welcome";
 The advantage of string literal usage is memory efficiency.

By new keyword
String s=new String("Welcome");
Example:
class StringExample

{

public static void main(String args[])

{

String s1="java";//creating string by java string literal

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating java string by new keyword

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}

}

Output
java
strings
example

www.Jntufastupdates.com 55

19

String handling methods:
S.N Method name General form Example

1 length() int length() String s = new String(“hello”);
System.out.println(s.length());

2 charAt() char charAt(int where) char ch;
ch = "abc".charAt(1);

3 getChars() void getChars
(int sourceStart, int sourceEnd,
char target[], int targetStart)

String s = "This is a demo of the
getChars method.";
int start = 10;
int end = 14;
char buf[] = new char[10];

s.getChars(start, end, buf, 0);
System.out.println(buf);

4 equals() boolean equals(Object str)

5 equalsIgnoreCase() boolean equalsIgnoreCase

(String str)

String s1 = "Hello";

String s2 = "hello";

System.out.println(“s1 and s2 are equal
" +s1.equals(s2));
System.out.println("s1 and s2 are
equal" +s1.equalsIgnoreCase(s4));

6 substring() String substring(int startIndex)

String substring(int startIndex,
 int endIndex)

String s1=”hello java”;

System.out.println(substring(1,4));

7 concat() String concat(String str) String s1 = "one";
String s2 = s1.concat("two");

8 replace() String replace(char original,
char replacement)

String s = "Hello".replace('l', 'w');

9 trim() String trim() String s = " Hello World ";
System.out.println(s.trim());

10 toLowerCase()
toUpperCase()

String toLowerCase()

String toUpperCase()

String s1 = " HELLO";

String s2=”hello”;
System.out.println(s1.toLowerCase());
System.out.println(s2.toUpperCase());

Example program String handling methods:

class StringDemo1

{

 public static void main(String args[])

 {

 String s1="hello qiscet";

 String s2="HELLO QISCET";

 System.out.println("length of string s1= "+s1.length());

 System.out.println("index of 'o' is: "+s1.indexOf('o'));

 System.out.println("String s1 in Uppercase: "+s1.toUpperCase());

 System.out.println("String s1 in Uppercase: "+s2.toLowerCase());

 System.out.println("s1 equals to s2?: "+s1.equals(s2));

 System.out.println("s1 is equal to s2 after ignoring case:”

+s1.equalsIgnoreCase(s2));

 int result=s1.compareTo(s2);

 if(result==0)

www.Jntufastupdates.com 56

20

 System.out.println("s1 is equals to s2");

 else if(result>0)

 System.out.println("s1 is greater than s2");

 else

 System.out.println("s1 is smaller than s2");

 System.out.println("character at index of 6 in s1: "+s1.charAt(6));

 String s3=s1.substring(2,8);

 System.out.println("substring s3 in s1 is: "+s3);

 System.out.println("repalcing 'e' with 'a' in s1: "+s1.replace('e','a'));

 String s4=" qiscet ";

 System.out.println("string s4: "+s4);

 System.out.println("string s4 after trim: "+s4.trim());

 }

}

Output:

*******--------*******

StringBuffer:
 StringBuffer is a peer class of String that provides much of the functionality of strings.

 String represents fixed-length, immutable character sequences. In contrast, StringBuffer
represents growable and writeable character sequences.

 General form of StringBuffer

StringBuffer sb=new StringBuffer(“Hello World”);

 StringBuffer class exists in “java.lang” package.

 StringBuffer is immutable that means, any changes performed to the StringBuffer object
that changes will reflect to object.

www.Jntufastupdates.com 57

21

 StringBuffer Methods:

S.
N

Method
name

General form Example

1 length() int length() StringBuffer sb = newStringBuffer("Hello");

System.out.println("buffer = " + sb);
System.out.println("length="+sb.length());
System.out.println("capacity="+ sb.capacity());

2 capacity() int capacity()

3 ensure
Capacity()

void ensureCapacity

(int capacity)

sb.ensureCapacity(30));

4 setLength() void setLength(int len) StringBuffer sb = new StringBuffer("Hello");
System.out.println("buffer before = " + sb);
System.out.println("charAt(1) before = " + sb.charAt(1));
sb.setCharAt(1, 'i');
sb.setLength(2);

System.out.println("buffer after = " + sb);
System.out.println("charAt(1) after = " + sb.charAt(1));

5 charAt() char charAt(int where)

6 setCharAt() void setCharAt(int where,

char ch)

7 getChars() void getChars(int

sourceStart, int sourceEnd,

char target[],

int targetStart)

StringBuffer sb=new StringBuffer("This is a demo of the
getChars method.");
int start = 10;

int end = 14;
char buf[] = new char[10];
sb.getChars(start, end, buf, 0);
System.out.println(buf);

8 append() StringBuffer append(String

str)

StringBuffer append(int

num)

StringBuffer sb = new StringBuffer(40);
s = sb.append("is a number");

System.out.println(s);

9 insert() StringBuffer insert(int

index, String str)

StringBuffer insert(int

index, char ch)

StringBuffer sb = new StringBuffer("I Java!");

sb.insert(2, "like ");
System.out.println(sb);

10 reverse() StringBuffer reverse() StringBuffer s = new StringBuffer("abcdef");
System.out.println(s);

s.reverse();
System.out.println(s);

11 delete() and
deleteCharAt(
)

StringBuffer delete(int

startIndex, int endIndex)

StringBuffer

deleteCharAt(int loc)

StringBuffer sb = new StringBuffer("This is a test.");
sb.delete(4, 7);
System.out.println("After delete: " + sb);
sb.deleteCharAt(0);

System.out.println("After deleteCharAt: " + sb);

12 replace() StringBuffer replace(int

startIndex, int endIndex,

String str)

StringBuffer sb = new StringBuffer("This is a test.");
sb.replace(5, 7, "was");
System.out.println("After replace: " + sb);

13 substring() String substring(int

startIndex)

String substring(int

startIndex, int endIndex)

StringBuffer sb = new StringBuffer(”hello java”);
String s= substring(1,4);
System.out.println(s);

******-------*******

www.Jntufastupdates.com 58

22

Command line arguments:

 A command-line argument is the information that directly follows the program’s name on
the command line when it is executed.

 To access the command-line arguments inside a Java program is quite easy—they are
stored as strings in the String array passed to main().

 Forexample,


class CommandLine

{

public static void main(String args[])

 {

for(int i=0; i<args.length; i++)

System.out.println("args[" + i + "]: " +args[i]);

}

}

Compilation and Execution:

javac CommandLine.java

java CommandLine this is a test 100 -1

Output:
args[0]: this

args[1]: is

args[2]: a

args[3]: test

args[4]: 100

args[5]: -1

*******------------********

www.Jntufastupdates.com 59

	R20 UNIT I PART A
	Classes, Objects unit 1 part b

