0
page no. 4
JNTUK-R19-2-1-ECE-OOPJAVA

OOP through JAVA (JNTUK-R19-2-1-ECE)

UNIT II: INHERITANCE AND POLYMORPHISM

Object class, Polymorphism, Dynamic
ract class, Interface In

Syllabus: -
Inheritance in java, Super and sub class, Overriding,
binding, Generic programming, Casting objects, Instance of operator, Abst

java, Package in java, UTIL package.

1. INHERITANCE IN JAVA: o
- Inheritance is the way of producing new classes from already existing classes.

OR _ |
- Inheritance is the process by which objects of one class acquire the properties of objects of another

class
- Inheritance supports the concept of hierarchical classification.

- The newlv created class is also called as sub class or child class or derived class.
- The old or existing class is also called as super class or parent class or base class.

Types of Inheritance:
- Inheritance is of 5 types
i) Single Inheritance
11) Multi-level Inheritance
iii) Multiple Inheritance
iv) Hierarchical Inheritance
v) Hybrid Inheritance-
- Java does not support Hybrid Inheritance.
i) Single Inheritance:)
- Single Inheritance representing one super class and one sub class.
Example:
class A

{
int a=10;
void display()
A
System.out.printin("a="+a);

j
)

class B extends A

1
j
class Single
(_
public static void main(String args(])
{ -
B obj=new BY();

. ——m

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScanner1

obj.display();
}
} —
Output:
a=10

ii) Multi-level Inheritance:

- Multi-level inheritance representing
Example:

class A

{

int a=10;

void display I()
!

Svystem.out.printin("a="+a):

)

\
)

class B extends A

I
|

int b=20;

void display2()

{
System.out.printin("b="+b);

}
/

class C extends B

{
;

class Multilevel

{

public static void ma*in(Slring argsl])
{

C obj=new C();

obj.display 1();

obj.display2();

}

j
Output:

a=10
=20

a sub class derived from a sub class derived from a super class

Scanned with CamScanner

www.Jntufastupdates.com Scanned with CamScanned

111) Multiple Inheritance:

- Multiple inheritance representing multiple super classes and one sub class.

- Java does not support multiple inheritance directly.

- Java provides an interface concept to support the concept of multiple inheritance.
Example:

interface Car

J
\

Int speed=60;

public void distanceTravelled();
[
J

interface Bus

\

int distance=100:;
public void speed();

!
!

public class Vehicle implements Car,Bus

\
int DT
int ASP;
public void distanceTravelled()

/
\

DT=speed*distance;

System.out.printIn("Total Distance Travelled is : "+DT);
) _
public void speed()

{
int ASP=DT/speed,;

System.out.printin("Average Speed maintained is : "+ASP);

j
public static void main(String args[])

{

Vehicle vl=new Vehicle():
v].distanceTravelled();
vl.speed();

}
b

Output:
Total Distance Travelled is : 6000 _

Average Speed maintained is : 100

iv) Hierarchical Inheritance:

- Hierarchical inheritance representing one super class and multiple sub classes.

— -

Scanned with CamScanner
www.Jntufastupdates.com Scanned with CamScannerd

Example:
class A

{

int a=10;

void display()
{

System.out.printin("a="+a),

}
}

class B extends A

i
\

1 -
|

class C extends A

|

class D extends A

o - i

class Hierarchical
{
public static void main(String args[])
{
B bl=new B();
C cl=new C();
D dl=new D();
bl .display();
cl.display();
d1.display():
p
f
QOutput:
a=10
a=10
a=10

2. SUPER CLASS AND SUB CLASS:

- The newly created class is also called as sub class or child class or derived class.
- The old or existing class is also called as super class or parent class or base class.
i) Super Keyword in Java:

- super is a keyword in java which refers to the immediate super class object

- super can be used to refer immediate parent class instance variable

- super can be used to invoke immediate parent class method

Scanned with CamScanner
www.Jntufastupdates.com Scanned with CamScanneh

- super() can be used to invoke immediate parent class constructor
Examplel:

class A

\

AQ)
]
\
System.out.printIn("Super class");
\
]

class B extends A

'
\

B()
\
super().

System.out.printin("Current class");
'
'

\
|

class SuperDemo

)
I

public static void main(String args[])
!
B obj = new B();
}
[}
]
Output:
Super class
Current class
Example2:

class Person

f
[

int id;
String name;
Person(int id,String name)
1
this.id=id;
this.name=name;

j
)

class Emp extends Person

{

float salary;
Emp(int id,String name,float salary)

MRS A b A & & L IYAVE L

e ———— p— - o —

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScanne|5

—— — — — - - i . e T R e T e DS e

{

super(id,name);//reusing parent constructor
this.salary=salary:

} |

void display()

\

. . "o > " .
System.out.printIn(id+" "+name+" "+salary);

}
'

class SuperDemo2

{

public static void main(String[] args)
\
Emp el=new Emp(1,"RGV™30000f),
el.display();
H _
)
Output:
| RGV 30000.0

3. METHOD OVERRIDING:

- If subclass (child class) has the same method as declared in the parent class, 1t i1s known as method
overriding in Java.

- In other words, If a subclass provides the specific implementation of the method that has been
declared by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding:
* Method overriding is used to provide the specific implementation of a method which is

already provided by its superclass.
* Method overriding is used for runtime polymorphism
Rules for Java Method Overriding
* The method must have the same name as in the parent class
 The method must have the same parameter as in the parent class.
e There must be an IS-A relationship (inheritance).

Example:
class Parent

(-
void show() { System.out.printIn("Parent's show()"); }

;

class Child extends Parent

{
void show() { System.out.printIn("Child's show()"); }

)

class Main

Scanned with CamScanner

www.Jntufastupdates.com Scanned with CamScannelO

\
public static void main(String[] args)
\

Parent obj1 = new Parent();

ob) 1.show():

Parent obj2 = new Child();

obj2.show();

} —

}
Output:

Parent's show()
Child's show()

4. OBJECT CLASS IN JAVA:

- The Object class is the parent class of all the classes in java by default.

- In other words, it is the topmost class of java.

- Object class is present in java.lang package.

- Every class in Java is directly or indirectly derived from the Object class.

- If a Class does not extend any other class then it is direct child class of Object and if extends other
class then it is an indirectly derived.

- Therefore, the Object class methods are available to all Java classes.

- Hence Object class acts as a root of inheritance hierarchy in any Java Program.
Methods in Object class:

- The Object class provides many methods depicted in a table as,

Method Description

public final Class getClass() returns the Class class object of this object. The Class
class can further be used to get the metadata of this class.

public int hashCode() returns the hashcode number for this object.
Public boolean equals(Object obj) compares the given object to this object.
protected Object clone() throws creates and returns the exact copy (clone) of this object.

CloneNotSupportedException

public String toString() returns the string representation of this object.
r public final void notify() wakes up single thread, waiting on this object's monitor.
—public final void notify All() wakes up all the threads, waiting on this object's monitor.
public final void wait(long causes the current thread to wait for the specified
timeout)throws milliseconds, until another thread notifies (invokes

Scanned with CamScanner

www.Jntufastupdates.com Scanned with CamScannerl

InterruptedException notify() or notifyAll() method). |

causes the current thread to wait for the spec:ﬂed ;
milliseconds and nanoseconds, until another threa

notifies (invokes notify() or notifyAll() methi)d).

public final void wait(long
timeout,int nanos)throws
InterruptedException

causes the current thread to wait, until another thread

public final void wait()throws _ -
notifies (invokes notify() or notifyAll() method).

InterruptedException

protected void finalize()throws is invoked by the garbage collector before object is beir
~ Throwable garbage collected.

"

i

5. POLYMORPHISM IN JAVA:

- Polymorphism is a concept by which we can perform a single action in different ways.

- Polymorphism is derived from 2 Greek words: poly and morphs. |

- The word "poly" means many and "morphs" means forms. So polymorphism means many forms.

- There are two types of polymorphism in Java:
- compile-time polymorphism and runtime polymorphism.
- compile-time polymorphism supports overloading and runtime polymorphism supports overriding

6. DYNAMIC BINDING:
- Connecting a method call to the method body is known as binding.

- There are two types of binding

. i) Static Binding (also known as Early Binding).

«, 1) Dynamic Binding (also known as Late Binding).
- When type of the object is determined at compiled time(by the compiler), it is known as static
binding.
- If there is any private, final or static method in a class, there is static binding.
- When type of the object is determined at run-time, it is known as dynamic binding.
Example (dynamic binding)

class Animal{

void eat(){System.out.printin("animal is eating...");}

\
J

class Dog extends Animal{
void eat(){System.out.printin("dog is eating...");} «

public static void main(String args[]){
Animal a=new Dog();
a.eat();

}

}
Qutput:
dog is eating...

Scanned with CamScanner

www.Jntufastupdates.com Scanned with CamScanneld

7. CAST_]NG OBJECTS AND The instanceof OPERATOR:
- l(:l‘lc object reference can be typecast into another object reference. This is called casting
object.
Example:.
.m(new Student()):

- It assigns the object new Student() to a parameter of the Object type.
- This statement is equivalent to

Object 0 = new Student(); // Implicit casting

m(o),
- The statement Object 0 = new Student(), known as implicit casting, is legal because an

instance of Student is an instance of Object.
- Suppose you want to assign the object reference o to a variable of the Student type using

the following statement:
Student b = o;
- In this case a compile error would occur. Why does the statement Object 0 = new Student()

work but Student b = o0 doesn*1?
- The reason is that a Student object is always an instance of Object, but an Object is not

necessarily an instance of Student.
- Even though you can see that o is really a Student object, the compiler is not clever enough to

know 1t
- To tell the compiler that o is a Student object, use explicit casting.

- The syntax is similar to the one used for casting among primitive data types.
- Enclose the target object type in parentheses and place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting
- It 1s always possible to cast an instance of a subclass to a variable of a superclass (known as
upcasting), because an instance of a subclass is always an instance of its superclass.

- When casting an instance of a superclass to a variable of its subclass (known as downcasting),

- Explicit casting must be used to confirm your intention to the compiler with the (SubclassName)

cast notation.

The instanceof Operator:
- The instanceof is an object reference operator and returns true if the object on the left-hand side is

an instance of the class given on the right hand side.
- This operator allows us to determine whether the object belongs to a particular class or not.

Example:
person instanceof student
- It is true if the object person belongs to the class student, otherwise it is false.

8. ABSTRACT CLASS IN JAVA:
- An abstract class must be declared with an abstract keyword.

- It can have abstract and non-abstract methods.

- [t cannot be instantiated.

- It can have constructors and static methods also.
- It can have final methods whtich will force the subclass not to change the body of the method.

Scanned with CamScanner

Scanned with CamScanne9

www.Jntufastupdates.com

- A method which is declared as abstract and does not have implementation is known as an abstract
method.

Example:

abstract class shape
{
abstract double area();

j

class rectangle extends shape

{
double I=12.5,b=2.5:

double area()
{ =
return |*b;

1
J

J

class triangle extends shape

{
double b=4.2 h=6.5:

double area() *

{

return 0.5%b*h; ~

}

} -

class square extends shape -

{

double s=6.5; _
double area()

{

return 4*s;
}
h

class shapedemo

{

public static void main(Striﬁg[] args)
{

rectangle rl=new rectangle();
triangle t1=new triangle();

square s|=new square();
System.out.printin("The area of rectangle is: "+rl.area());

System.out.println("The area of triangle is: "+t1.area());
S ystem.out,pri ntin("The area of square is: "+s].area());
} _
h
Output:

le is: 31.25

The area of rectang

-

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScanﬂeO

The area of triangle is: 13.65
The area of square is: 26.0 - : _

9. THE FINAL KEYWORD:

- The final keyword in java is used to restrict the user.

- The java final keyword can be used in many context. Final can be:
a) final variable

b) final method —
c) final class
- The final keyword can be applied with the variables, a final variable that have no value it is called
blank final variable or uninitialized final yariable.
- It can be initialized in the constructor only.
- The blank final variable can be static also which will be initialized in the static block only.
a) final variable: __ _
- If you make any variable as final, you cannot change the value of final variable(It will be constant).
Example of final vaniable:

- There is a final variable speedlimit, we are going to change the value of this variable. but It can't be
changed because final variable once assigned a value can never be changed.

class Bike©

\
final int speedlimit=90;//final variable

void run()
) {speedlimir:«lﬂo;
fmblic static void main(String args[]) -
{Bike‘) obj=new Bike9():
obj.run();

!
j//end of class

Qutput:
Compile Time Error

b) final method:

- If you make any method as final, you cannot override it.
Example of final method: -

class Bike{
final void run(){System.out.printIn("running");}

h

class Honda extends Bike {
void run(){System.out.printIn("running safely with 100kmph™);}

public static void main(String args|[]){

‘_——-ﬁﬂ

Scanned with CamScanner
WWW . J nthaStU pd ateS . CO m Scanned with CamScan15r1

Honda honda= new Honda();
honda.run();

}
;

Output:
Compile Time Error

c) final class:
- If you make any class as final, you cannot extend it.
Example of final class:

final class Bike{}

class Hondal extends Bike{ |)
void run(){System.out.printin("running safely with 100kmph");}

public static void main(String args[D1
Hondal honda= new Hondal();
honda.run();

H

b
QOutput:

Compile Time Error

Is final method inherited?

- Yes, final method is inherited but you cannot override it. For Example:
class Bike{

final void run(){System.out.printin("running...");}

i
class Honda2 extends Bike{

public static void main(String args[]){
new Honda2().run();
1

J

J

Output: '
running...

10. INTERFACES:
- An interface is a collection of abstract methods and final variables

- By default, the methods declared inside interface are abstract and variables are final
- By default, all variables and methods inside an interface are public o

- Java provides an interface concept to support the ¢ ' —
_ oncept of mul ' :
Defining Interfaces: P tiple inheritance.

interface InterfaceName

{

T e e,

Scanned with CamScanner
www.Jntufastupdates.com

Scanned with CamScan132

Variable declarations;

Method declarations;

1
J

Variable declaration in an Interface:
static final type variablename=value;
Method declaration in an interface:
returntype methodname(parameter-list);
Example:
interface Area
\ \ — _
final static float pi=3.14F;
float compute(float x,float y):
void show(): B
)
Extending Interfaces:
Svntax:

interface SubInterfaceName extends SuperinterfaceName

I
|

Varnable declarations;
Method declarations;

|

Example:
interface A

t) - - .

interface B extends A

)

- Interface can be extended from more than one interface also

Example:
Interface A

{

H

interface B

{

}

interface C extends A,B
{

)

Implementing Interfaces:
Syntax1:

class classname implements interfacename

{

body of classname;

) it s s

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScan133

)

r—— terfacel interface2,........
class classname extends superclassname implements interfacel,

f
\

body of classname:;

b

—Example Program:
Class implementing Claculator interface
intertace Calculator

{

int add(int a,int b);

int subtract(int a,int b);
int multiply(int a,int b);
int divide(int a.int b):

1
[

class Normal Calculator implements Calculator

[.
1

public int add(int a.int b){
retuma+b; }

public int subtract(int a,int b) {
return a — b; }

public int multiply(int a,int b) {
retuma * b; |

public int divide(int a,int b)

{

retumm a/b:

\
f

public static void main(String args[])

J

Normal_Calculator ¢ = new Normal_Calculator();
System.out.printin("Value after addition = "+c.add(5,2)):
System.out.printin("Value after Subtraction = " tc.subtract(5,2));
System.oul.println("Value after Multiplication =" +c.multiply(5 ’2))-
System.out.printin("Value after division = " tc.divide(§,2)); -

)
! a
Output

C:\javabook>java Normal _Calculator
Value after addition = 7

Value after Subtraction = 3

Value after Multiplication= 10

Value after division = 2

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScan134

Implementing Multiple Inheritance:

interface Car

{
int speed=60; ‘
public void distanceTravelled():

}

interface Bus

|
\

int distance=100;
public void speed();

1
|

public class Vehicle implements Car,Bus

i
\

int DT
int ASP;
public void distanceTravelled()

l
DT=speed*distance;
System.out.printin("Total Distance Travelled is : "+DT);

}
public void speed()
i
t
int ASP=DT/speed;
System.out.printIn("Average Speed maintained is : "+ASP);

A
|

public static void main(String args[])

f
|

Vehicle vi=new Vehicle();
v] .distanceTravclled();

vl.speed();

\
J

j

Output:
Total Distance Travelled 1s : 6000

Average Speed maintained is : 100

_ _ - p— - — . . Il -_

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScan135

11. Abstract Class Vs Interface: - ,

luterf ‘ Abstract Class o
nteriace | — o inher '
Clddd
. e not possible: @
Multiple inheritance possible: a class can inheritany Multiple inheritance nOt P
number of interfaces. one class.

Fp herit a class.
| mherit an mterface d 15 used to herit
implements keyword is used to inhent an intertace. extends keywor

: * . 2s public or abstr
Bv default, all methods in an interface are public and Mclh@s have to be tagged as P
abstract: no need to tag it as public and abstract. if required. N |
Abstract classes can have partial implementation.

act or both,

Interfaces have no implementation at all "
_ | - verriaden.
All methods of an interface need to be overridden. Only abstract methods need to be 0

P . ' . * t* ‘
Al variables declared in an interface are by default Variables, if required, have to be declared as public, static.

public, static. or final. or final

Interfaces do not have-any constructors. Abstract classes can have constructors.

Methods 1n an interface cannot be static. Non-abstract methods can be static.
12. PACKAGES:

- A package is a collection of classes, interfaces and sub-packages.
- By using packages, we can reuse the code already we created.

- Packages are java’s way of grouping a variety of classes and/or interfaces together.
- Java API contains a set of classes and interfaces that are in the form of packages.

] Java Software

~

JOK JRE

(tools like / \
javac,java,....)

Java Class Library Jvm
(Java API)

Types of packages:
- Java contains two types of packages
i) Predefined Packages)
i) User-defined Packages
i) Predefined Packages
- Java has many predefined packages.
- A package is contained many predef
compressing into a single jar
- RT jar file is located at,

ned classes and ip
file called RT jar fije nterfaces and g these are given by

Scanned with CamScanner
www.Jntufastupdates.com

Scanned with CamScan136

C:\jdk 1.5\)re\lib\RT .jar
— - Commonly used predefined packages are given in a table as,

Package Functionality

java.lang Basic language fundamentals

java.util Utlity classes and collection data structure classes
java.io File handling operations

java.math Arbitrary precision arithmetic

java.net Network programming

java.sql Java Database Connectivity (JDBC) to access databases

java.awt Abstract window toolkit for native GUI components

javax.swing Lightweight programming for platform-independent rich GUI components

- The smallest package in java is java.applet
- The biggest package in java is java.awt

Using System or Predefined Packages:
- We use predefined packages using import keyword.

Syntax:

import packagename.*;

OR

import packagename.classname;
Example:

import java.io.*;

import java.lang. Math:

1) User-defined Packages:

- The general form of creating user-defined packages is
' package packagename;

Steps to create user-defined packages:
- Create a folder where directo

ry name and package name to be created. Both must be same.

' ¢:\>md pack|
- Change into createq folder
b = ¢:\>cd pack]
- Def ' '
' Ine the classes and Interfaces required in each application or program and write first statemer
| as package statement
package packagename:
\ Example: | l
One.java
) Package pack |-
. public clasg One
{
b

Scanned with CamScanner
www.Jntufastupdates.com

Scanned with CamScan13r7

}

Two.java

package pack]l;

public class Two

f

- -

}

- Compile all the applications to get .class files. Now the package is created
c:\packl>javac *.java B

- Finally import this package into the other programs.
This is called accessing a package

Accessing a user-defined package:

Syntax:

import packagename.*;

Example: |

Sample.java

import pack].*;

class Sample

{

public static void main(String args[])

13. java.lang PACKAGE:

- Java.lang is a special package, as it is imported by default j

- There is_ no need to expl icitly import the lang packa " all the classes that we create.
- It contains the classes that form the basic buildin o

- Remember we have been usi ‘ 8 blocks of Java
_ ing Strin '
for using these classes, as both lgh sses e) tem class, but e have not

_ ese classes [ie | , imported any package
Commonly used classes and interfaces are Bi:z 'i":‘eaj':‘:bﬂl-;ang package. Y packag
as,

Scanned with CamScanner
www.Jntufastupdates.com

Scanned with CamScan138

java.lang
| Interfaces _I_Clnssm [
Comparable | Boolean
Clonable Byvie
Runnable | Class
Ohject
Intceor

I.nnE
I Float
I Enum
| String
| StnngBufTer |
] String Builder
Thread
Throwable

P'dh_—

= 3

- The wrapper classes for primitive types are given in a table as,
Primitive Wrapper

boolean java.lang.Boolean
byte java.lang.Byte
char java.lang.Character

double java.lang.Double

float java.lang.Float
int java.lang.Integer
long java.lang.Long
short java.lang.Short
void java.lang.Void

14. The java.util PACKAGE:
- The package java.util contains a number of useful classes and interfaces.

-_.lava util package contains collection framework, collection classes, classes related to date :
time, event model, internationalization, and miscellaneous utility classes.

- On importing this package, you can access all these classes and methods.
- The classes and interfaces in java.util include:

S.NO | CLASS PURPOSE

l Hashtable class | for implementing hashtables, or associative arrays
L Vector Clﬂfﬂs which supports variable-length arrays
i gnymcralmn. Interface for iterating through a collection of elements

tring T'okenizer class for parsing strings into distinct tokens separated by
delimiter characters

3 E"E"l()bjefft class and which form the basis of the new AWT event model in Jav
| the EventListener interface 1.1. .

6 Locale class

which represents a particular locale for internationalizatios

3 e . _purposes _
alendar and TimeZone classes interpret the value of a Date object in the context of a
: = particular calendar system .
¢sourceBundle class, which represent sets of localized data
- Llisesc:urceBundle and
PTDPCrty_ResnurceBundle

il - e —— o —

—

Scanned with CamScanner
WWW . J nthaStU pd ateS . CO m Scanned with CamScan139

15. GENERIC PROGRAMMING IN JAVA-

- The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects.
- It makes the code stable by detecting the bugs at compile time. -

- Before generics, we can store any type of objects in the collection, i.e., non-generic.

- Now generics force the _iava programmer to store a specific type of objects.
Advantage of Java Generics:

There are mainly 3 advantages of generics,

i) Type-safety:

- We can hold only a single type of objects in generics.
- It doesn’t allow to store other objects.

- Without Generics, we can store any type of objects.
List list = new ArrayList();
list.add(10);
list.add("10™);
With Generics, it is required to specify the type of object we need to store.
List<Integer> list = new ArrayList<Integer>(); '
list.add(10);
list.add("10");// compile-time error
11) T'vpe casting is not required:
List list = new ArrayList();
list.add("hello™); _
String s = (String) list.get(0);//typecasting
After Generics, we don't need to typecast the object.
List<String> list = new ArrayList<String>();
list.add("hello™);
String s = list.get(0);
iii) _Com pile-Time Checking:
- Itis checked at compile time so problem will not occur at runtime.

;u?t]iingmd programming strategy says it is far better to handle the problem at compile time than
e.

I:,:st<Stﬁng> list = new ArrayList<String>();
list.add("hello"):
list.add(32);//Compile Time Error
Syntax to use generic collection:
ClassOrinterface<T ype>
Example to use Generics in java:

- ArrayList<String>

- e s —] . i .- . i

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScar‘ZO

