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Association Analysis 

Association   analysis  is  useful   for  discovering  interesting    relationships    hidden 
in  large  data sets.  The  uncovered  relationships  can  be  represented   in the  form 
of association rules. For example,  the  following rule  can  be extracted  from  the 
data  set shown  in Table  6.1: 

 
{Diapers}  - - > {Beer} 

 
 
 

 
 
 

The  rule  suggests that  a strong  relationship  exists  between  the  sale  of diapers 

and  beer  because  many  customers  who  buy  diapers  also  buy  beer.   Retailers 

can use this type of rules to  help  them  identify  new  opportunities  for  cross- 

selling  their  products  to the  customers. 

 
Binary  Representation  Market   basket   data  can  be represented  in a binary 

format  as  shown  in  Table  6.2,  where  each  row  corresponds   to  a  transaction 

and each column corresponds to an item. An  item  can  be treated  as  a binary 

variable whose value is one if the item is  present  in  a  transaction  and  zero 

otherwise. Because the presence of an item  in a transaction  is often  considered 

more  important   than   its  absence,  an  item  is an  asymmetric    binary   variable. 
 
 

 

 
Association  Rule  An  association  rule  is  an  implication   expression  of the 
form X Y, where X and Y are disjoint itemsets,  i.e.,  X  ∩ Y  = 0. The 
strength of an association rule can be measured in terms of its support and 
confidence. 
Support determines how often a rule is applicable to a given data set, while 
confidence determines how frequently items  in  Y  appear  in transactions  that 
contain   X.  The  formal  definitions  of these  metrics   are 
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Example: Consider the rule {Milk, Diapers} {Beer}. Since  the support 

count for {Milk, Diapers, Beer} is 2 and the total number  of transactions  is 5, 

the rule's  support  is 2/5 = 0.4. 

The rule's confidence  is  obtained by  dividing  the  support  count  for  {Milk, 

Diapers, Beer} by the support count for {Milk, Diapers}. Since there are 3 

transactions that contain milk and  diapers,   the  confidence  for this  rule  is 2/3  = 

0.67. 

 
Apriori Principle: If  an  itemset is frequent, then  all of its subsets   must 

also  be frequent. 

To  illustrate  the  idea  behind  the  Apriori  principle,  consider  the  itemset lattice 

shown  in  Figure  6.3.  Suppose  {c, d, e}  is  a  frequent  itemset.   Clearly, any 

transaction      that    contains     {c, d, e}  must   also  contain    its  subsets,     {c, d},{c,e}, 

{d,e},   {c},   {d},   and   {e}.    As  a  result,    if  {c,d,e}    is  frequent,    then all  subsets 

of  {c, d, e}  (i.e.,  the   shaded   itemsets    in  this   figure)   must   also  be frequent. 

 
Conversely, if an  itemset  such  as  {a, b} is infrequent,   then   all of its  supersets must 

be   infrequent   too.   As   illustrated    in    Figure    6.4,    the    entire    subgraph 

containing  the  supersets  of  {a, b}  can   be   pruned   immediately   once   {a, b}  is 

found    to   be   infrequent. 
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Apriori algorithm: 
 

 

 
 

 
 

The   pseudocode for  the   frequent itemset generation part of  the   Apriori 

algorithm is  shown in  Algorithm 6.1. Let   Ck  denote  the set  of  candidate k- 
itemsets and  Fk  denote   the  set  of frequent k-itemsets: 

• The  algorithm initially makes  a single  pass  over the  data   set to  determine the 

support of each  item. Upon   completion of this   step, the  set  of all frequent  l- 

itemsets,  H,  will  be  known   (steps   1 and  2) . 

• Next,   the   algorithm   will  iteratively   generate   new  candidate   k-itemsets using 

the frequent (k - 1)- itemsets found in the previous iteration (step 5). Candidate 

generation    is implemented    using  a function   called  apriori- gen. 
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To count the support  of the  candidates,  the  algorithm  needs  to  make  an 

additional pass over the data set (steps 6-10). The subset  function  is used  to 

determine  all  the  candidate  itemsets  in  Ck  that   are   contained   in each 

transaction   t. 

• After  counting  their  supports,  the   algorithm   eliminates   all   candidate 

itemsets   whose  support   counts  are less than  minsup   (step  12). 

• The  algorithm  terminates   when   there   are   no  new   frequent   itemsets   gen- 
erated,   i.e.,  Fk = 0 (step   13). 

 
 

***** 
 

Note: Refer class note book for examples on frequent itemset generation and association 

rules generation by using Apriori algorithm. 
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Compact Representation  of Frequent Itemsets 
 

The  number  of frequent   itemsets   produced   from  a transaction   data set   can   be 

very   large.   it is  useful   to   identify   a  small   set   of itemsets    from   which   all 

other   frequent    itemsets    can  be  derived. 

Two such representations are maximal  frequent item sets  and  closed frequent 

itemsets. 

Maximal Frequent Itemset: A maximal frequent item set is defined as a frequent 

itemset   for which  none  of its  immediate  supersets are  frequent. 

For example,  consider   the    itemset    lattice     shown    in   Figure 6.16.    The   itemsets 

in  the   lattice   are  divided    into  two  groups:    They    are frequent    and   infrequent. 

A frequent  itemset  border  is represented  by a dashed  line.  Every  itemset located 

above  the  border  is frequent,  while  those  located  below  the  border  (the shaded 

nodes)   are  infrequent.    Among   the  itemsets    residing   near  the  border, {a, d}, 

{a, c, e}, and  {b, c, d, e} are  considered  to  be maximal  frequent   itemsets. 

because   their    immediate   supersets   are  infrequent.    An  itemset    such   as  {a, d} 

is  maximal  frequent   because   all  of its  immediate   supersets,   {a, b, d},  {a, c, d}, 

and   {a, d, e},   are   infrequent.   In  contrast,    {a, c}  is  non-maximal    because    one 

of its  immediate   supersets,   {a, c, e},  is frequent. 
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Closed Frequent   Itemsets: 
 

Closed    Itemset:    An   itemset    X   is  closed   if  none   of  its immediate   supersets 

has  exactly   the  same  support    count   as  X. 

 
For  example,  since  the  node  {b, c} is associated  with  transaction  IDs  1, 2, and  3, 

its support count  is equal  to  three.  From  the  transactions given  in  this  diagram, 

notice that every  transaction  that  contains  b also  contains  c.  Consequently,   the 

support for {b} is identical to {b, c} and {b} should not be  considered as a closed 

itemset.    Similarly,  since  c occurs   in  every  transaction  that   contains    both   a and 

d, the itemset {a, d} is not closed. On the other hand,  {b, c}  is  a  closed  itemset 

because    it  does  not   have  the   same   support count   as  any  of its  supersets. 

 

Closed   Frequent    Itemset:      An  itemset    is  a  closed   frequent   itemset    if it 

is closed  and  its support   is greater  than  or equal  to minsup. 
 

 

 

 
In the previous example,  assuming  that  the  support  threshold  is 40%,  {b,c} is a 

closed  frequent  itemset  because  its  support   is 60%.   The   rest   of the   closed 

frequent   itemsets   are  indicated    by the  shaded   nodes. 

 
 

*** 
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FP-Growth  Algorithm: 

FP-Growth  Algorithm encodes  the  data   set   using   a  compact   data   structure 

called  an FP-tree   and extracts    frequent   itemsets   directly   from  this  structure 

FP- Tree Representation 
 

An FP-tree  is a compressed  representation  of the  input  data.  It  is constructed by 

reading   the  data   set one transaction     at  a time  and  mapping    each  transaction onto 

a  path   in  the  FP-tree. 

 
As  different  transactions  can  have  several  items in  common,  their  paths   may 

overlap.   The   more   the   paths   overlap   with   one another,    the  more  compression 

we can  achieve  using  the  FP-tree  structure.  If the  size of the  FP-tree  is small 

enough to fit into main  memory,  this  will  allow us  to  extract  frequent  itemsets 

directly   from  the  structure   in memory    instead of making   repeated    passes   over 

the  data   stored   on  disk. 
 
 
 

 



Data Warehousing and Mining 

Page 100 

 

 

 

Figure 6.24 shows a data set that contains ten transactions and five items. The 

structures  of the  FP-tree  after  reading  the  first  three  transactions   are  also 

depicted in the diagram. Each node in  the  tree  contains  the  label  of an  item 

along with a counter that shows  the  number  of transactions  mapped  onto  the 

given  path.  Initially,  the  FP-tree  contains  only  the  root  node  represented   by 

the  null   symbol. The  FP-tree    is subsequently   extended  in the  following way 

The data set is scanned once to determine the  support  count  of  each item. 

Infrequent items are discarded, while the frequent items are sorted in decreasing 

support counts.  For  the  data  set  shown  in Figure  6.24,  a is the  most  frequent 

item,  followed by b, c, d, and  e. 

 
 

The  algorithm  makes   a  second   pass   over   the   data   to  construct   the   FP- tree. 

After  reading  the  first  transaction,  {a, b},  the   nodes   labeled   as  a and   b  are 

created. A path is then formed  from  null a b to  encode the  transaction. 

Every  node  along  the  path   has  a frequency  count   of 1 

After   reading  the  second transaction,  {b,c,d}, a new  set  of nodes   is created  for 

items b, c,  and   d. A  path is  then  formed to  represent the  transaction by 

connecting the   nodes null    b   C  d. Every  node along   this   path 

also   has   a  frequency   count equal  to   one. Although the first   two   transactions 

have an item in  common, which   is  b, their paths are   disjoint because  the 

transactions  do  not  share   a common   prefix. 

The third transaction, {a,c,d,e}, shares a common  prefix  item  (which is a) 

with the  first  transaction.  As a result,  the  path  for the  third transaction, 

null a c d e, overlaps with the path for the first 

transaction, null a b. Because of their overlapping path, the frequency 

count for node a is incremented to two, while the frequency counts for the 

newly created  nodes, c, d, and e, are equal to one. 

 
This process  continues  until  every  transaction  has  been  mapped  onto  one of the 

paths  given  in  the  FP-tree.   The    resulting   FP-tree   after   reading all  the 

transactions    is shown  at  the  bottom    of Figure   6.24. 

 
 

Note: Refer class note book for examples on frequent itemset generation and association 

rules generation by using FP-growth algorithm. 

***** 
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