
Data Warehousing and Mining

Page 93

Association Analysis

Association analysis is useful for discovering interesting relationships hidden
in large data sets. The uncovered relationships can be represented in the form
of association rules. For example, the following rule can be extracted from the
data set shown in Table 6.1:

{Diapers} - - > {Beer}

The rule suggests that a strong relationship exists between the sale of diapers

and beer because many customers who buy diapers also buy beer. Retailers

can use this type of rules to help them identify new opportunities for cross-

selling their products to the customers.

Binary Representation Market basket data can be represented in a binary

format as shown in Table 6.2, where each row corresponds to a transaction

and each column corresponds to an item. An item can be treated as a binary

variable whose value is one if the item is present in a transaction and zero

otherwise. Because the presence of an item in a transaction is often considered

more important than its absence, an item is an asymmetric binary variable.

Association Rule An association rule is an implication expression of the
form X Y, where X and Y are disjoint itemsets, i.e., X ∩ Y = 0. The
strength of an association rule can be measured in terms of its support and
confidence.
Support determines how often a rule is applicable to a given data set, while
confidence determines how frequently items in Y appear in transactions that
contain X. The formal definitions of these metrics are

Data Warehousing and Mining

Page 94

Example: Consider the rule {Milk, Diapers} {Beer}. Since the support

count for {Milk, Diapers, Beer} is 2 and the total number of transactions is 5,

the rule's support is 2/5 = 0.4.

The rule's confidence is obtained by dividing the support count for {Milk,

Diapers, Beer} by the support count for {Milk, Diapers}. Since there are 3

transactions that contain milk and diapers, the confidence for this rule is 2/3 =

0.67.

Apriori Principle: If an itemset is frequent, then all of its subsets must

also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset lattice

shown in Figure 6.3. Suppose {c, d, e} is a frequent itemset. Clearly, any

transaction that contains {c, d, e} must also contain its subsets, {c, d},{c,e},

{d,e}, {c}, {d}, and {e}. As a result, if {c,d,e} is frequent, then all subsets

of {c, d, e} (i.e., the shaded itemsets in this figure) must also be frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets must

be infrequent too. As illustrated in Figure 6.4, the entire subgraph

containing the supersets of {a, b} can be pruned immediately once {a, b} is

found to be infrequent.

Data Warehousing and Mining

Page 95

Apriori algorithm:

The pseudocode for the frequent itemset generation part of the Apriori

algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate k-
itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine the

support of each item. Upon completion of this step, the set of all frequent l-

itemsets, H, will be known (steps 1 and 2) .

• Next, the algorithm will iteratively generate new candidate k-itemsets using

the frequent (k - 1)- itemsets found in the previous iteration (step 5). Candidate

generation is implemented using a function called apriori- gen.

Data Warehousing and Mining

Page 96

To count the support of the candidates, the algorithm needs to make an

additional pass over the data set (steps 6-10). The subset function is used to

determine all the candidate itemsets in Ck that are contained in each

transaction t.

• After counting their supports, the algorithm eliminates all candidate

itemsets whose support counts are less than minsup (step 12).

• The algorithm terminates when there are no new frequent itemsets gen-
erated, i.e., Fk = 0 (step 13).

Note: Refer class note book for examples on frequent itemset generation and association

rules generation by using Apriori algorithm.

Data Warehousing and Mining

Page 97

Compact Representation of Frequent Itemsets

The number of frequent itemsets produced from a transaction data set can be

very large. it is useful to identify a small set of itemsets from which all

other frequent itemsets can be derived.

Two such representations are maximal frequent item sets and closed frequent

itemsets.

Maximal Frequent Itemset: A maximal frequent item set is defined as a frequent

itemset for which none of its immediate supersets are frequent.

For example, consider the itemset lattice shown in Figure 6.16. The itemsets

in the lattice are divided into two groups: They are frequent and infrequent.

A frequent itemset border is represented by a dashed line. Every itemset located

above the border is frequent, while those located below the border (the shaded

nodes) are infrequent. Among the itemsets residing near the border, {a, d},

{a, c, e}, and {b, c, d, e} are considered to be maximal frequent itemsets.

because their immediate supersets are infrequent. An itemset such as {a, d}

is maximal frequent because all of its immediate supersets, {a, b, d}, {a, c, d},

and {a, d, e}, are infrequent. In contrast, {a, c} is non-maximal because one

of its immediate supersets, {a, c, e}, is frequent.

Data Warehousing and Mining

Page 98

Closed Frequent Itemsets:

Closed Itemset: An itemset X is closed if none of its immediate supersets

has exactly the same support count as X.

For example, since the node {b, c} is associated with transaction IDs 1, 2, and 3,

its support count is equal to three. From the transactions given in this diagram,

notice that every transaction that contains b also contains c. Consequently, the

support for {b} is identical to {b, c} and {b} should not be considered as a closed

itemset. Similarly, since c occurs in every transaction that contains both a and

d, the itemset {a, d} is not closed. On the other hand, {b, c} is a closed itemset

because it does not have the same support count as any of its supersets.

Closed Frequent Itemset: An itemset is a closed frequent itemset if it

is closed and its support is greater than or equal to minsup.

In the previous example, assuming that the support threshold is 40%, {b,c} is a

closed frequent itemset because its support is 60%. The rest of the closed

frequent itemsets are indicated by the shaded nodes.

Data Warehousing and Mining

Page 99

FP-Growth Algorithm:

FP-Growth Algorithm encodes the data set using a compact data structure

called an FP-tree and extracts frequent itemsets directly from this structure

FP- Tree Representation

An FP-tree is a compressed representation of the input data. It is constructed by

reading the data set one transaction at a time and mapping each transaction onto

a path in the FP-tree.

As different transactions can have several items in common, their paths may

overlap. The more the paths overlap with one another, the more compression

we can achieve using the FP-tree structure. If the size of the FP-tree is small

enough to fit into main memory, this will allow us to extract frequent itemsets

directly from the structure in memory instead of making repeated passes over

the data stored on disk.

Data Warehousing and Mining

Page 100

Figure 6.24 shows a data set that contains ten transactions and five items. The

structures of the FP-tree after reading the first three transactions are also

depicted in the diagram. Each node in the tree contains the label of an item

along with a counter that shows the number of transactions mapped onto the

given path. Initially, the FP-tree contains only the root node represented by

the null symbol. The FP-tree is subsequently extended in the following way

The data set is scanned once to determine the support count of each item.

Infrequent items are discarded, while the frequent items are sorted in decreasing

support counts. For the data set shown in Figure 6.24, a is the most frequent

item, followed by b, c, d, and e.

The algorithm makes a second pass over the data to construct the FP- tree.

After reading the first transaction, {a, b}, the nodes labeled as a and b are

created. A path is then formed from null a b to encode the transaction.

Every node along the path has a frequency count of 1

After reading the second transaction, {b,c,d}, a new set of nodes is created for

items b, c, and d. A path is then formed to represent the transaction by

connecting the nodes null  b  C  d. Every node along this path

also has a frequency count equal to one. Although the first two transactions

have an item in common, which is b, their paths are disjoint because the

transactions do not share a common prefix.

The third transaction, {a,c,d,e}, shares a common prefix item (which is a)

with the first transaction. As a result, the path for the third transaction,

null a c d e, overlaps with the path for the first

transaction, null a b. Because of their overlapping path, the frequency

count for node a is incremented to two, while the frequency counts for the

newly created nodes, c, d, and e, are equal to one.

This process continues until every transaction has been mapped onto one of the

paths given in the FP-tree. The resulting FP-tree after reading all the

transactions is shown at the bottom of Figure 6.24.

Note: Refer class note book for examples on frequent itemset generation and association

rules generation by using FP-growth algorithm.

	Classification
	Model Overfitting:
	Apriori algorithm:
	Compact Representation of Frequent Itemsets
