GEEKSFORGEEKS

Universal Shift Register in Digital
logic

A Universal shift register is a register
which has both the right shift and left shift
with parallel load capabilities. Universal
shift registers are used as memory
elements in computers. A Unidirectional
shift register is capable of shifting in only
one direction. A bidirectional shift register
1s capable of shifting in both the
directions. The Universal shift register is a
combination design of bidirectional shift
register and a unidirectional shift

register with parallel load provision.

Parallel input Bits

O o, S
.-"'f B.,. _-L"'h
By B2 33 : B Senal mpu
Mlnpul_]_ : : dhas——y | —— for laft-shift
£) | T4 .
e aba | [= W 11 1 Qe 1 I — 1
s 3210 3210 1210 | 1321 0| 31210
41 4¢1 4=1 e 4=1 1o
S+ MU | 1 MUX; | 1 MUXs |1 MU, | MUX,
o, ®
D:
D1 ar D2 Q2 Dn-1 Qn-If* Dn an
FF1 FF2 W FFn-1 FFn
a @l anadl . a
Clock-p—s| Ok - H= rmm @ J Clk g @O rmk
Clear | |[' I
Qs Q: Qn Q'"f
— e

Y __".‘ !.__.___,..--
¥

Parallel Output Bits

library iece:
use jeee. std_logic_1164.al1l:

use 1eee.
std_logic_arith.all:

use ieee.
std_legic_unsigned.all:

entity SR_FF i4is

PORT(S,R,CLOCK: in
std_logic;

Q, QBAR: out std_logic);
end SR_FF;

Architecture behavioral of
SR_FF is

begin

PROCESS (CLOCK)

variable tmp: std_logic;

begin
if(CLOCK="'1l' and CLOCK'EVENT)

then
if(S='0' and R='0"')then

tmp:=tmp;
elsif(S="1' and R='1')then
Emp: =74 "

elsif(S='0' and R='1')then
tmp:="'0";

else

tmp:="1";

end if;

end if;

Q <= tmp;

QBAR <= not tmp;
end PROCESS:
end behavioral:

VHDL Code for Serial In Parallel
Out Shift Register

library ieee;
use iecee.std_logic_1164.all;

entity sipo is

port (

clk, clear : in std_logic;
Input_Data: in std_logic;
Q: out std_logic_vector(3
downto 0));
end sipo;

architecture arch of sipo is
begin

process (clk)

begin

if clear = '1' then
g == "0000";

elsif (CLK'event and
CLK='1"'") then

Q(3 downto 1) <= Q(2 downto
0);

Q(0) <= Input_Data;
end if;

end process;
end arch:

Serial-in to Parallel-out (SIPO) Shift
Register

4-bit Serial-in to Parallel-out Shift
Register

4-bit Parallel Data Output

Qa Qe Qc Qp
== D D D D
eria
cae | FFA FFB FFC FFD
CLK CLK —{CLK CLK

CLR CLR CLR CLR
Clear l l l
Cloc:k1I|L | | |

The operation is as follows. Lets assume that

all the flip-flops (FFA to FFD) have just been
RESET (CLEAR input) and that all the outputs

Qa to Qp are at logic level “0” ie, no parallel
data output.

If alogic “1” is connected to the DATA input
pin of FFA then on the first clock pulse the

output of FFA and therefore the resulting Qa
will be set HIGH to logic “1” with all the other
outputs still remaining LOW at logic “O".

Assume now that the DATA input pin of FFA
has returned LOW again to logic “0” giving us

one data pulse or 0-1-0.

The second clock pulse will change the output
of FFA to logic “0” and the output of FFB and
Qg HIGH to logic “1” as its input D has the
logic “1” level on it from Qa. The logic “1” has

now moved or been “shifted” one place along

the register to the right as it is now at Qa.

When the third clock pulse arrives this logic

“1” value moves to the output of FFC (Q¢)

and so on until the arrival of the fifth clock

pulse which sets all the outputs Qa to Qp

back again to logic level “O” because the input

to FFA has remained constant at logic level
(IO”.

The effect of each clock pulse is to shift the
data contents of each stage one place to the

right, and this is shown in the following table

until the complete data value of 0-0-0-1is

stored in the register. This data value can now

be read directly from the outputs of Qa to
Qp.

Then the data has been converted from a
serial data input signal to a parallel data
output. The truth table and following
waveforms show the propagation of the logic
“1” through the register from left to right as

follows.

1. Draw the logic diagram of 74X74 IC and explain the operation.

l

PR_Lo-

CLR Lov

CLK o

Qan

Do

Figure 7-20
Commercial circuit for
a positive-edge-
triggered D flip-flop

such as 74LS74

A commonly desired function in D flip-flops is the ability to hold the last value stored, rather
than load a new value, at the clock edge. This is accomplished by adding an enable input.
called EN or CE (clock enable). While the name "clock enable” is descriptive, the extra
input's function is not obtained by controlling the clock in any way whatsoever If EN is
asserted, the external D input is selected; if EN is negated. the flip-flop's current output is

used.

D ENCLK Q QN

0

¥ > X

——

1§ o0 1
.5 0
0 | lastQ lastQN
x 0 lastQ lastQN
x 1 lastQ last QN

library ieee;
use ieee.std_logic_1164.all;
entity D_flip_flop is
port (clk,Din : in std_logic;
Q: out std_logic;
Qnot : out std_logic);
end D_flip_flop;
architecture DFF_arch of D_flip_flop is
begin
process (clk,Din)
begin
if(clk’'event and clk="1") then
Q <= Din;
Qnot <= (not Din);
end if;
end process;
end DFF_arch;

library ieee;
use ieee. std,logic_1164.all;

use ieee€e.
std_logic_arith.all;

use 1leee.
std,logic_unsigned.all;

entity JK_FF is

PORT(J,K,CLOCK: in
std_logic;

Q, QB: out std_logic);
end JE_EF;

Architecture behavioral of
JK_FF is

begin

PROCESS (CLOCK)

variable TMP: std_logic;

begin

if(CLOCK="'1"' and CLOCK'EVENT)
then

if(J='0' and K='0"')then
TMP : =TMP ;

elsif(J='1' and K='1"')then
TMP:= not TMP;

elsif(J='0' and K='1"')then
T™P:="0";

else

M = g *

end if;

end if;

Q<=TMP;

Q <=not TMP;

end PROCESS;

end behavioral;
P e o

FUNCTION TABLE/TRUTH
TABLE FOR 74194

TRUTH TABLE

INPUTS OUTPUS
CLEAR MODE cLOCK SERIAL PARALLEL oA oB ac | ap
S1 S0 LEFT |RIGHT| A | B | € D

L X X X X X X | X X | x L L L L
H X X L X X X | X X | x | acao | aBo | aco | apo
H H H [X X a b c d a b ¢ d
o L b 0 (] X H Il x | % | % - QAn | @Bn | Qcn
H L H I X L x | x | x | x L QAn | @Bn | Qcn
H H L i H X X X X | X | aBn | @cn | QDn H
H H L i) L X X X X X | @Bn | QCn | QDn L
H L L X X X ol X | X | cao | aBo | a@co | apo

VHDL code for a 74LS194 Universal Shift Register

Hi everyons!

I've got an assignment about writing the VHDL code for a 74LS194 shift register,
but I'm not allowed to use the functional description. So far I've made this, but I'm
not sure if it's ok (I've simulated it, but since I'm new to VHDL I'm not sure if it's
working as it should).

Thanks a lot for your help, here's the code:

library 1IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ ARITH.ALL;

use IEEE.STD_LOGIC UNSIGNED.ALL;

entity IC74L5194 is

Port (clear, S0, S1, clk, SL, SR, A, B, C, D : in STD_LOGIC; 1/
Qa, Qb, Qc, Qd : out STD_LOGIC);

end 1C74L5194;

architecture Schematic of IC74L5194 is

signal Qas, Qbs, Qcs, Qds : STD_LOGIC;

signal LogicA, LogicB, LogicC, LogicD : STD_LOGIC;
begin

LogicA <= (SR and not(S1) and S0) or (SO and S1 and A) or (not(S0) and S1 and
Qbs) or (SO and not{S1) and Qas); .

LogicB <= (S0 and not(S1) and Qas) or (S0 and S1 and = or (not(S0) and S1 and
Qcs) or (not{S0) and not(S1) and Qbs);

LogicC <= (S0 and not(S1) and Qbs) or (S0 and S1 and C) or (not{S0) and S1 and
Qds) or (not(S0) and not(51) and Qcs);

LogicD <= (S0 and not(S1) and Qcs) or (S0 and S1 and D) or (not(S0) and S1 and
SL) or (not(S0) and not{S1) and Qds);

FFA: process (clear, clk, Qas)

begin

if clear ='0' then

Qas <="'0";

alsif rising_edge (clk) then
Qas <= LogicA,

else Qas <= Qas;

end if;

end process;

FFB: process (clear, clk, Qbs)

begin
if clear ='0' then

Qbs <="0";

elsif rising_edge (clk) then
Qbs <= LogicB;

else Qbs <= Qbs;

end if;

end process;

FFC: process (clear, clk, Qcs)
begin

if clear ='0' then

Qcs <='0";

elsif rising_edge (clk) then
Qcs <= LogicC;

else Qcs <= Qcs;

end if;

end process;

FFD: process (clear, clk, Qds)
begin

if clear ='0' then

Qds <='0";

elsif rising_edge (clk) then
Qds <= LogicD;

else Qds <= Qds;

end if;

end process;

Qa <= Qas;
Qb <= Qbs;
Qc <= Qcs;
Qd <= Qds;

end Schematic;

