
UNIT I
BASIC STRUCTURE OF COMPUTERS

• Functional units
• Basic operational concepts
• Bus structures
• System software
• Performance and metrics
• The history of computer development

Computer organization:
 It concerned with the way the hardware components operate and the way they are

connected to form a computer system

Computer architecture:

 It is concerned with the structure and behavior of computer system. It includes

information related instruction set, no of bits used for data, addressing modes.

Functional units of computer system:

A computer consists of five functionally independent main parts input unit ,memory
unit , arithmetic logic unit (ALU), output unit and control unit.

 Input ALU

 I/O Memory Processor

 Output Control Unit

Fig:Functional units of computer

Input device accepts the coded information as source program i.e. high level language. This
is either stored in the memory or immediately used by the processor to perform the desired
operations. The program stored in the memory determines the processing steps. Basically the
computer converts one source program to an object program. i.e. into machine language.

Finally the results are sent to the outside world through output device. All of
these actions are coordinated by the control unit.

Input unit: -

The source program/high level language program/coded information/simply data
is fed to a computer through input devices keyboard is a most common type. Whenever a
key is pressed, one corresponding word or number is translated into its equivalent binary
code over a cable & fed either to memory or processor.

Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -

Its function into store programs and data. It is basically to two types

 Primary memory
 Secondary memory

1. Primary memory: - Is the one exclusively associated with the processor and operates
at the electronics speeds programs must be stored in this memory while they are being
executed. The memory contains a large number of semiconductors storage cells. Each
capable of storing one bit of information. These are processed in a group of fixed site
called word.

To provide easy access to a word in memory, a distinct address is associated with

each word location. Addresses are numbers that identify memory location.

Number of bits in each word is called word length of the computer. Programs
must reside in the memory during execution. Instructions and data can be written into the
memory or read out under the control of processor.

Memory in which any location can be reached in a short and fixed amount of

time after specifying its address is called random-access memory (RAM).

The time required to access one word in called memory access time. Memory
which is only readable by the user and contents of which can’t be altered is called read
only memory (ROM) it contains operating system.

Caches are the small fast RAM units, which are coupled with the processor and

are aften contained on the same IC chip to achieve high performance. Although primary
storage is essential it tends to be expensive.

2

2 Secondary memory: - Is used where large amounts of data & programs have to be
stored, particularly information that is accessed infrequently.

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like
addition, subtraction, division, multiplication, etc. the operands are brought into the ALU
from memory and stored in high speed storage elements called register. Then according
to the instructions the operation is performed in the required sequence.

The control and the ALU are may times faster than other devices connected to a

computer system. This enables a single processor to control a number of external devices
such as key boards, displays, magnetic and optical disks, sensors and other mechanical
controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the
processed results to the outside world.

Examples:- Printer, speakers, monitor etc.

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their
states. The actual timing signals that govern the transfer of data between input unit,
processor, memory and output unit are generated by the control unit.

Basic Operational Concepts Of Computer

To perform a given task an appropriate program consisting of a list of instructions is stored in
the memory. Individual instructions are brought from the memory into the processor, which executes
the specified operations. Data to be stored are also stored in the memory.

Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in register R0 &
places the sum into register. This instruction requires the performance of several steps,

1. First the instruction is fetched from the memory into the processor.
2. The operand at LOCA is fetched and added to the contents of R0
3. Finally the resulting sum is stored in the register R0

The preceding add instruction combines a memory access operation with an ALU

Operations. In some other type of computers, these two types of operations are performed by
separate instructions for performance reasons.

Load LOCA, R1

Add R1, R0

Transfers between the memory and the processor are started by sending the address of

the memory location to be accessed to the memory unit and issuing the appropriate control

signals. The data are then transferred to or from the memory.

The fig shows how memory & the processor can be connected. In addition to the

ALU & the control circuitry, the processor contains a number of registers used for several
different purposes.

The instruction register (IR):- Holds the instructions that is currently being executed. Its
output is available for the control circuits which generates the timing signals that control the
various processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It
contains the memory address of the next instruction to be fetched and executed.

Besides IR and PC, there are n-general purpose registers R0 through Rn-1.

The other two registers which facilitate communication with memory are: -
2. MAR – (Memory Address Register):- It holds the address of the location to be

accessed.
3. MDR – (Memory Data Register):- It contains the data to be written into or read out

of the address location.

Operating steps are

 1. Programs reside in the memory & usually get these through the I/P unit.
2. Execution of the program starts when the PC is set to point at the first instruction of

the program.
3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the

memory.
4. After the time required to access the memory elapses, the address word is read out of

the memory and loaded into the MDR.
5. Now contents of MDR are transferred to the IR & now the instruction is ready to be

decoded and executed.
6. If the instruction involves an operation by the ALU, it is necessary to obtain the

required operands.
7. An operand in the memory is fetched by sending its address to MAR & Initiating a

read cycle.
8. When the operand has been read from the memory to the MDR, it is transferred from

MDR to the ALU.
9. After one or two such repeated cycles, the ALU can perform the desired operation.

10. If the result of this operation is to be stored in the memory, the result is sent to MDR.

11. Address of location where the result is stored is sent to MAR & a write cycle is

initiated.
12. The contents of PC are incremented so that PC points to the next instruction that is to

be executed.

Normal execution of a program may be preempted (temporarily interrupted) if some
devices require urgent servicing, to do this one device raises an Interrupt signal.

An interrupt is a request signal from an I/O device for service by the processor. The

processor provides the requested service by executing an appropriate interrupt service
routine.

The Diversion may change the internal stage of the processor its state must be saved

in the memory location before interruption. When the interrupt-routine service is
Completed the state of the processor is restored so that the interrupted program may continue.

Bus Structures:

Bus :A group of lines that serves as the connection path to several devices is
called a bus. A
 bus may be lines or wiresThese lines carry data or address or control signal.

The simplest and most common way of interconnecting various parts of the

computer. To achieve a reasonable speed of operation, a computer must be organized so that
all its units can handle one full word of data at a given time. A group of lines that serve as a
connecting port for several devices is called a bus.

In addition to the lines that carry the data, the bus must have lines for address and

control purpose. Simplest way to interconnect is to use the single bus as shown

 System bus

Since the bus can be used for only
actively use the bus at any given time. Bus
requests for use of one bus.

one transfer at a time, only two units can
control lines are used to arbitrate multiple

Single bus structure advantages

• Low cost
• Very flexible for attaching peripheral devices

Multiple bus structure certainly increases the performance but also increases the cost

significantly.

 Input Output Memory Processor

Software: It a set of instructions or programs instructing a computer to do specific
tasks.
Software types:

• System
software

• Application
Software

System Software: It is a collection of programs that are executed as needed
to perform function such as,

 Receiving & Interpreting user commands.
 Entering & editing application program and storing them as files

in secondary Storage devices.
 Managing the storage and retrieval of files in Secondary Storage devices.
 Running the standard application such as word

processor, games and spread sheets with data supplied
by the user.

 Controlling I/O units to receive input information and produce output results.
 Translating programs from source form prepared by the user into object

form.
 Linking and running user-written application programs with

existing standard library routines.
Eg: Compiler, Linker , Loaders, operating System ,Editors

Application

Software:
It is written in high level programming language(C,C++,Java, FORTRAN)The

programmer using high level language need not know the details of machine program
instruction.

Steps:

• The first step is to transfer the file into memory.
• When the transfer is completed, the execution of the program starts.
• During time period t0 to t1 , an OS routine initiates loading the application

program from disk to memory, wait until the transfer is complete and then
passes the execution control to the application program & print the results.

• Similar action takes place during t2 to t3 and t4 to t5.
• At t5Operating System may load and execute another application program.
• Similarly during t0 to t1 the Operating System can arrange to print the previous

program‟ results while the current program is being executed.
• The pattern of managing the concurrent execution of the several application

programs to make the best possible use of computer resources is called the
multi- programming or multi-tasking.

Performance:

For best performance, it is necessary to design the compiler, machine instruction set
and hardware in a co-ordinate way.

Elapsed Time The total time required to execute the program is called the elapsed
time.

It depends on all the units in computer system.
Processor Time The period in which the processor is active is called the processor
time.

It depends on hardware involved in the execution of the
instruction.

Clock Rate, R =1 / P

T = (N*S)/R

 Fig: The Processor Cache

A Program will be executed faster if the movement of instruction and data

between the main memory and the processor is minimized, which is achieved by
using the Cache.
Processor clock:

Clock: The Processor circuits are controlled by a timing signal called a clock.
Clock Cycle: The cycle defines a regular time interval called clock cycle.The

 length of the clock cycle is an important measure of performance

Where, P-length of one clock cycle.
Basic Performance Equation: To access the performance of the processor following is the
equation:

Where, T-Performance Parameter
 R-Clock Rate

in cycles/sec
N-Actual number of instruction execution
S-Average number of basic steps needed to execute one machine instruction.

To achieve high performance,

N, S < R
Pipelining and Superscalar operation:

Pipelining: A Substantial improvement in performance can be achieved by
overlapping the execution of successive instruction using a technique
called pipelining. The process of extraction of next instruction while
current instruction is executing

Superscalar Execution :Several instruction can be executed in parallel
by creating parallel paths. This mode of operation is called the
Superscalar execution.

Simple InstructionSet

RISC CISC CISC RISC

Simple Instruction set

Compiler
Translated into

Machine
instruction

High level
Language
Program

Running time on reference computer

SPEC rating=
Running time on computer under test

Clock Rate:

There are 2 possibilities to increase the clock rate(R).They are,

• Improving the integrated Chip(IC) technology makes logical circuits faster.
• Reduce the amount of processing done in one basic step also helps to reduce

the Clock period P.

Instruction Set: CISC AND RISC:

• The Complex instruction combined with pipelining would achieve the best
performance.

• It is much easier to implement the efficient pipelining in processor with simple
instruction set.

(Reduced Instruction Set Computer) (Complex Instruction Set Computer)
It is the design of the instruction set It is the design of the instruction set
of a processor with simple instruction of a processor with complex instruction.

Compiler:

Functions of Compiler:

• The compiler re-arranges the program instruction to achieve better performance.
• The high quality compiler must be closely linked to the processor architecture to reduce

the total number of clock cycles.

Performance Measurement:

The Performance Measure is the time it takes a computer to execute a given bench mark.
A non-profit organization called SPEC (System Performance Evaluation Corporation) selects

and publishes representative application program.

Where, n Number of programs in thesuite
(SPEC)irating for program I in thesuite.

SPEC rating= (Π SPECi)
i=1

1/n n

The Overall SPEC rating for the computer is given by,

Multiple bus hierarchies:

If a great number of devices are connected to the bus, performance will suffer. There are two main causes:

1. In general, the more devices attached to the bus, the greater the bus length and hence the greater the

propagation delay. This delay determines the time it takes for devices to coordinate the use of the bus.

When control of the bus passes from one device to another frequently, these propagation delays can

noticeably affect performance.

2. The bus may become a bottleneck as the aggregate data transfer demand approaches the capacity of the

bus. This problem can be countered to some extent by increasing the data rate that the bus can carry and

by using wider buses (e.g., increasing the data bus from 32 to 64 bits). However, because the data rates

generated by attached devices (e.g., graphics and video controllers, network interfaces) are growing

rapidly, this is a race that a single bus is ultimately destined to lose.

Accordingly, most computer systems use multiple buses, generally laid out in a hierarchy.

A typical Traditional bus structure is shown in Figure (a). There is a local bus that connects the

processor to a cache memory and that may support one or more local devices. The cache memory

controller connects the cache not only to this local bus, but to a system bus to which are attached all of the

main memory modules. The use of a cache structure insulates the processor from a requirement to access

main memory frequently. Hence, main memory can be moved off of the local bus onto a system bus. In

this way, I/O transfers to and from the main memory across the system bus do not interfere with the

processor’s activity. It is possible to connect I/O controllers directly onto the system bus. A more efficient

solution is to make use of one or more expansion buses for this purpose .An expansion bus interface

buffers data transfers between the system bus and the I/O controllers on the expansion bus. This

arrangement allows the system to support a wide variety of I/O devices and at the same time insulate

memory-to-processor traffic from I/O traffic. Figure 3.18a shows some typical examples of I/O devices

that might be attached to the expansion bus. Network connections include local area networks (LANs)

Ethernet and connections to wide area networks (WANs),SCSI (small computer system interface) is itself

a type of bus used to support local disk drives and other peripherals. A serial port could be used to support

a printer or scanner. This traditional bus architecture is reasonably efficient but begins to break down as

higher and higher performance is seen in the I/O devices.

High Speed bus architecture:

 In response to these growing demands, a common approach taken by industry is to build a high

speed bus that is closely integrated with the rest of the system, requiring only a bridge between the

processor’s bus and the high-speed bus. This arrangement is sometimes known as a mezzanine

architecture. Figure 3.18b shows a typical realization of this approach.Again, there is a local bus that

connects the processor to a cache controller, which is in turn connected to a system bus that supports main

memory. The cache controller is integrated into a bridge, or buffering device, that connects to the high-

speed bus. This bus supports connections to high-speed LANs, such as Fast Ethernet at 100 Mbps, video

and graphics workstation controllers, as well as interface controllers to local peripheral buses, including

SCSI and FireWire. The latter is a high-speed bus arrangement specifically designed to support high-

capacity I/O devices. Lower-speed devices are still supported off an expansion bus, with an interface

buffering traffic between the expansion bus and the high-speed bus. The advantage of this arrangement is

that the high-speed bus brings high demand devices into closer integration with the processor and at the

same time is independent of processor.

History of Computer Development:

Development of technologies used to fabricate the processors, memories and I/O units of computers have

been divided into the following generations

First generation (1945-1955):

• Program and data are reside in the same memory

• ALP was made used to write programs

• Vacuum tubes were used to implement CU,ALU

• Magnetic core and Magnetic tape storage devices are used

• Using electronic Vacuum tubes,as the switching components.

Second Generation (1955-1965):

• Transistors were used to design ALU,CU

• High level language (FORTRAN) is used

• To convert HLL to MLL compiler were used

• Separate I/O Processor were developed to operate in parallel with CPU, thus improving

performance

• Invention of transistors which was faster, smaller and required considerably less power to operate

Third Generation (1965-1975):

• Integrated circuit(IC) technology improved

• Improved IC technology helped in designing low cost, high speed processor and memory

modules

• Multiprogramming, pipelining concept were incorporated

• DOS allowed efficient and coordinate operation of computer system with multiple users

• Cache and virtual memory concepts were developed

• More than one circuit on single silicon chip became available

Forth generation (1975-1985):

• CPU termed as microprocessor

• INTEL,MOTOROLA,TEXAS,NATIONAL semiconductors started developing microprocessor

• Work stations, microprocessor &Notebook computers were developed

• Interconnection of different computer for better communication LAN/MAN/WAN.

• Computational speed increased by 1000 times

• Specialized processors like Digital Signal processor were also developed

Fifth generation (1985-till now):

• E-Commerce, E-Banking, Home Office

• ARM,AMD,INTEL,MOTOROLA

• High Speed processor-GHz speed

• Because of submicron IC technology lot of added features in small size.

UNIT 2

Machine Instruction and Programs

 Instructions and instruction sequencing
 Register transfer notation
 Assembly language notations
 Basic Instruction Types
 Addressing modes
 Basic input output operations
 Role of Stacks and Queues in computer programming equation
 Component of Instructions: Logic ,Shift& Rotate Instructions

Instruction And Instruction Sequencing

Tasks carried out by a computer program consist of a sequence of steps
such as adding two numbers, testing for particular condition, reading a character
from keyboard or sending a character to be display on display screen.A computer
must have instruction capable of performing the following operations. They are,

 Data transfer between memory and processor register.
 Arithmetic and logical operations on data.
 Program sequencing and control.
 I/O transfer.

Register Transfer Notation:

Register Transfer and Micro operations

• A microoperation is an elementary operation performed on the information stored in

one or more registers

Eg: shift, count, clear, and load

Register transfer language

• The symbolic notation used to represent micro operations called a register transfer
language

Register Transfer

• Designate computer registers by capital letters to denote its function
• The register that holds an address for the memory unit is called MAR
• The program counter register is called PC
• IR is the instruction register and R1 is a processor register
• The individual flip-flops in an n-bit register are numbered in sequence from 0 to

n-1

Figure 4.1 for the different representations of a register

Designate information transfer from one register to another by

 R2 ← R1//Content of register R1 is transferred to R2

Control function:
The control function is a Boolean variable either o or 1.If the transfer is to occur only

under a predetermined control condition, designate it by

 If (P = 1) then (R2 ← R1)

(or)

P: R2 ← R1
 Where P is a control function that can be either 0 or 1.

Every statement written in register transfer notation implies the presence of the required
hardware construction

• It is assumed that all transfers occur during a clock edge transition
• To represent more than one micro operation micro operations are separated by comma(,)
• All micro operations written on a single line are to be executed at the same time

 T: R2 ← R1, R1 ← R2

 Assembly Language Notation: This is another type of notation used to represent machine instructions
and
 programs

 Eg:

Assembly Language
Format

Description

Move LOC,R1 Transfers the contents of memory location to the processor
register R1.

Add R1,R2,R3 Add the contents of register R1 & R2 and places their sum
into register R3.

Basic Instruction Types:

 Based on number of address fields used the instructions are categorized into 4 types
1) Three address instructions
2) Two address instructions
3) One address instructions

4) Zero address instructions

 Execution of C=A+B in four types of instructions is as shown bellow

Instruction
Type

Syntax Eg Explanation Description

Three
Address

Operation
Source1,Source2,Destination

Add A,B,C C [A]+[B] Add values of variable A
,B & place the result
into C.

Two Address Operation Source, Destination Add A,B B [A]+[B] Add the values of A,B &
place the result into
B.

One Address Operation Operand Add B AC [AC]+[B] Content of accumulator
add with
content of B and store the
result in Accumulator.

Zero address --- PUSH A
PUSH B
ADD
POP C

TOS [A]
TOS [B]
TOS [A]+[B]
C [TOS]

Stack is used to store
operands, result

Evaluate the arithmetic statement X = (A + B) ∗ (C + D). Using zero, one, two, or three address instruction.

We will use the symbols ADD, SUB, MUL, and DIV for the four arithmetic operations; MOV for the

transfer-type operation; and LOAD and STORE for transfers to and from memory and AC register. We will

assume that the operands are in memory addresses A, B, C, and D, and the result must be stored in memory

at address X.

ADD

THREE-ADDRESS INSTRUCTIONS

Computers with three-address instruction formats can use each address field to specify either a processor
register or a memory operand.

 A, B, R1 R1 ← M [A] + M [B]

ADD C, D, R2 R2 ← M [C] + M [D]

MUL R1, R2, X M [X] ← R1 ∗ R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M [A] denotes the operand at

memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when evaluating arithmetic

expressions.
The disadvantage is that the binary-coded instructions require too many bits to specify three addresses.

MOV

TWO-ADDRESS INSTRUCTIONS
Two address instructions are the most common in commercial computers. Here again each address field can specify
either a processor register or a memory word. The program to evaluate X = (A + B) ∗ (C + D) is as follows:

 A, R1 R1 ← M [A]

ADD B,R1 R1 ← R1 + M [B]

MOV C,R2 R2 ← M [C]

ADD D,R2 R2 ← R2 + M [D]

MUL R2,R1 R1 ← R1∗R2

MOV R1,X M [X] ← R1

The MOV instruction moves or transfers the operands to and from memory and processor registers. The first

symbol listed in an instruction is assumed to be both a source and the destination where the result of the operation is

transferred.

All operations are done between the AC register and a memory operand. T is the address of a temporary

memory location required for storing the intermediate result.

ONE-ADDRESS INSTRUCTIONS

One-address instructions use an implied accumulator (AC) register for all data manipulation. For

multiplication and division there is a need for a second register. However, here we will neglect the second and

assume that the AC contains the result of tall operations. The program to evaluate X = (A + B) ∗ (C + D) is

PUSH

ZERO-ADDRESS INSTRUCTIONS

A stack-organized computer does not use an address field for the instructions ADD and MUL. The PUSH and
POP instructions, however, need an address field to specify the operand that communicates with the stack. The
following program shows how X = (A + B) ∗ (C + D) will be written for a stack organized computer. (TOS stands
for top of stack)

A TOS ← A

PUSH B TOS ← B

ADD TOS ← (A + B)

PUSH C TOS ← C

PUSH D TOS ← D

ADD TOS ← (C + D)

MUL TOS ← (C + D) ∗ (A + B)

POP X M [X] ← TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to convert the expression into reverse

Polish notation. The name “zero-address” is given to this type of computer because of the absence of an address

field in the instructions

ADDRESSING MODES

The different ways in which the location of an operand is specified in an instruction is called as Addressing

mode.

Generic Addressing Modes:

 Implied addressing mode

 Immediate addressing mode
 Register addressing mode
 Register Indirect addressing mode
 Direct addressing mode
 Indirect addressing mode
 Relative addressing mode
 Index addressing mode
 Base register addressing mode
 Auto-increment &Auto-decrement addressing mode

Implied Addressing mode:
It is also called inherent addressing mode.
• The operand is implied by the instruction.
• The operand is hidden/fixed inside the instruction.

Eg: Complement Accumulator CMA (Here accumulator A is implied by the
instruction)

 Complement Carry Flag CMC (Here Flags register is implied by the
instruction)

 Set Carry Flag STC (Here Flags register is implied by the instruction)

Immediate Addressing mode:
The operand is specified within the instruction.
 Operand itself is provided in the instruction rather than its address.
 Eg:Move Immediate MVI 15h,A A ← 15h Here 15h is the immediate

operand

Register addressing Mode:
The operand is specified within one of the processor register.
 Instruction specifies the register in which the operand is stored.

 Eg: Move MOV R1,R2 R2 ← R1 Here A is the operand specified in
register

Register indirect addressing mode:
The instruction specifies the register in which the memory address of operand is placed.
• It do not specify the operand itself but its location within the memory where operand is

placed.
Eg:Move MOV [R2], R1 // R1 ← [R2] It moves the data from memory location

specified
 by R2 register to R1

Direct addressing mode:
The instruction specifies the direct address of the operand.
• The memory address is specified where the actual operand is.

Eg:Load Accumulator LDA 2805h // A ← [2805] It loads the data from
memory location 2805 to A

Indirect addressing mode:
The instruction specifies the indirect address where the effective address of the operand is

placed
• The memory address is specified where the actual address of operand is placed.

Eg:Move MOV 2802h , A // A ← [[2802]] It moves the data from memory location
specified by the location 2802 to A

 Relative addressing mode:

 In relative addressing mode, contents of Program Counter PC is added to address
part of instruction to obtain effective address.

 • The address part of the instruction is called as offset and it can +ve or –ve.

• When the offset is added to the PC the resultant number is the memory location where the
operand will be placed.

 Effective address of operand = PC + 01 + offset

 Index addressing mode,: Here the contents of Index register is added to address part of
instruction to
 obtain effective address.

 • The address part of instruction holds the beginning/base address and is called as
base.

 • The index register hold the index value, which is +ve.

 • Base remains same, the index changes.

 • When the base is added to the index register the resultant number is the memory
location where the operand will be placed

 Eg:ADD R1,XR[50]
 Effective address=Content of index register XR+50

 Base register addressing mode

 In base register addressing mode, contents of base register is added to address
part of instruction to obtain effective address.

 • It is similar to the indexed addressing mode except the register now is called as
base

 instead of index.

 • The base register hold the beginning/base address.

 • The address part of instruction holds the offset.

 • Offset remains same, the base changes.

 • When the offset is added to the base register the resultant number is the memory
location

 where the operand will be placed.

Eg:ADD R1,BR[50]
 Effective address=Content of index register XR+50

 Auto-increment &Auto-decrement addressing mode:

 It is similar to register indirect addressing mode. • Here the register is
incremented or
 decremented before or after its value is used

 Eg:

 Basic Input Output Operations:

 There are three ways by which the data transfer between memory and I/O Devices

 happens.

1) Program controlled I/O
2) Memory Mapped I/O
3) Isolated I/O

Program Controlled I/O:
 In this, the processor involves continuously in the transfer of every byte between
memory and I/O Devices.
 Every input output devices has two components. They are 1) Buffer 2) Flag register

 Buffer register: It is used to hold the contents temporary.
Flag register: It is used to indicate whether the device is ready or not.

The following diagram shows the inter connection among processor, keyboard and monitor.

 BUS

PROCESSOR

 Key board

 Monitor

DATAIN

SIN

DATAOUT

SOUT

 The action of striking a key does not automatically cause the corresponding character to be

displayed on the screen .Instead there is a block of instructions in the IO program which transfer a

character into the processor and another block of instruction causes the character to be displayed

on the screen.

 Striking a key transfers corresponding character code into DATAIN register (buffer) of the

keyboard. The Flag register SIN is set to 1 to indicate that valid character is available in DATAIN

.When the character is transferred to processor it is reset to 0.when the next character is ready in

the DATAIN, it is again set to 1.

 The same process takes place when the character are transferred from processor to monitor.

When SOUT equals to 1 the device is ready to receive a character from the processor. When SOUT

is ‘1’ the processor sends the character to monitor. After this SOUT is set to ‘0’.the SOT is set to ‘1’

,when the monitor is ready to receive the character from the processor.

Memory mapped I/O vs Isolated I/O:

ISOLATED I/O MEMORY MAPPED I/O

Memory and I/O have seperate address

space Both have same address space

All address can be used by the memory

Due to addition of I/O addressable memory

become less for memory

Separate instruction control read and write

operation in I/O and Memory

Same instructions can control both I/O and

Memory

In this I/O address are called ports. Normal memory address are for both

More efficient due to seperate buses Lesser efficient

Larger in size due to more buses Smaller in size

It is complex due to separate separate logic

is used to control both.

Simpler logic is used as I/O is also treated

as memory only.

