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UNIT-V 

Deflection of Beams 

Introduction 

The deformation of a beam is usually expressed in terms of its deflection from its original unloaded 

position. The deflection is measured from the original neutral surface of the beam to the neutral 

surface of the deformed beam. The configuration assumed by the deformed neutral surface is 

known as the elastic curve of the beam. 

A. Methods of Determining Beam Deflections

Methods for the determination of beam deflections include: 

1. Double-Integration Method

2. Macaulay’s Method

3. Moment-Area Method

4. Conjugate-beam Method

5. Strain - Energy method (Castigliano’s Theorem)

6. Virtual work method

Of these methods, the first four shall be discussed in this course. 

The stress, strain, dimension, curvature, elasticity, are all related, under certain assumption, by the 

theory of simple bending.   This theory relates to beam flexure resulting from couples applied to the 

beam without consideration of the shearing forces. 

B. Superposition Principle

The superposition principle is one of the most important tools for solving beam loading problems 

allowing simplification of very complicated design problems. 
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For beams subjected to several loads of different types the resulting shear force, bending moment, 

slope and deflection can be found at any location by summing the effects due to each load acting 

separately to the other loads. 

C. Nomenclature

e = strain 
E = Young's Modulus = σ /e (N/m2) 
y = distance of surface from neutral surface (m). 
R = Radius of neutral axis (m). 
I = Moment of Inertia (m4 - more normally cm4)  
Z = section modulus = I/ymax(m

3 - more normally cm3) 
F = Force (N) 
x = Distance along beam 
δ = deflection (m) 
θ = Slope (radians) 
σ = stress (N/m2) 

D. Review of Simple Bending

A straight bar of homogeneous material is subject to only a moment at one end and an equal and 

opposite moment at the other end...  

Assumptions 

The beam is symmetrical about Y-Y. The traverse plane sections remain plane and normal to the 

longitudinal fibres after bending (Beroulli's assumption). The fixed relationship between stress and 

strain (Young's Modulus)for the beam material is the same for tension and compression ( σ= E.e )  

Consider two section very close together (AB and CD). 

After bending the sections will be at A'B' and C'D' and are no longer parallel.   AC will have extended 

to A'C' and BD will have compressed to B'D' 

The line EF will be located such that it will not change in length.   This surface is called neutral 

surface and its intersection with Z_Z is called the neutral axis 

The development lines of A'B' and C'D' intersect at a point 0 at an angle of θ radians and the radius 

of E'F' = R 

Let y be the distance(E'G') of any layer H'G' originally parallel to EF..Then 

H'G'/E'F' =(R+y)θ /R θ = (R+y)/R 

And the strain e at layer H'G' = 
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e = (H'G'- HG) / HG = (H'G'- HG) / EF = [(R+y)θ - R θ] /R θ = y /R 

The accepted relationship between stress and strain is σ= E.e Therefore 

σ = E.e = E. y /R 

σ / E = y / R  

Therefore, for the illustrated example, the tensile stress is directly related to the distance above the 

neutral axis.   The compressive stress is also directly related to the distance below the neutral axis. 

  Assuming E is the same for compression and tension the relationship is the same. 

As the beam is in static equilibrium and is only subject to moments (no vertical shear forces) the 

forces across the section (AB) are entirely longitudinal and the total compressive forces must 

balance the total tensile forces.  The internal couple resulting from the sum of ( σ.dA .y) over the 

whole section must equal the externally applied moment. 

This can only be correct if Σ(yδa) or Σ(y.z.δy) is the moment of area of the section about the neutral 

axis.  This can only be zero if the axis passes through the centre of gravity (centroid) of the section. 

The internal couple resulting from the sum of ( σ.dA .y) over the whole section must equal the 

externally applied moment.  Therefore the couple of the force resulting from the stress on each area 

when totalled over the whole area will equal the applied moment  

From the above the following important simple beam bending relationship results 
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M E

I y R


   

It is clear from above that a simple beam subject to bending generates a maximum stress at the 

surface furthest away from the neutral axis.  For sections symmetrical about Z-Z the maximum 

compressive and tensile stress is equal. 

σmax = ymax. M / I 

The factor I /ymax is given the name section Modulus (Z) and therefore 

σmax = M / Z 

Values of Z are provided in the tables showing the properties of standard steel sections. 
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Differential Equation for the Elastic Curve 

Below is shown the arc of the neutral axis of a beam subject to bending. 

For small angle dy/dx = tan θ = θ 

The curvature of a beam is identified as dθ /ds = 1/R 

In the figure δθ is small and δx; is practically = δs; i.e ds /dx =1 

From this simple approximation the following relationships are derived. 

The deflection between limits is obtained by further integration. 

It has been proved earlier that dM/dx = -S and dS/dx = w = - d2M /dx2 

Where S = the shear force M is the moment and w is the distributed load /unit length of beam. 

Therefore 

If w is constant or a integrable function of x then this relationship can be used to arrive at general 

expressions for S, M, dy/dx, or y by progressive integrations with a constant of integration being 

added at each stage.  The properties of the supports or fixings may be used to determine the 

constants. (x= 0 - simply supported, dx/dy = 0 fixed end etc )  

In a similar manner if an expression for the bending moment is known then the slope and deflection 
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can be obtained at any point x by single and double integration of the relationship and applying 

suitable constants of integration of  
2

2

d y M

dx EI


Evaluation of deflection by double-integration method 

A. Example 1- Cantilever beam

Consider a cantilever beam (uniform section) with a single concentrated load at the end.  At the 

fixed end x = 0, dy = 0 , dy/dx = 0 

From the equilibrium balance ..At the support there is a resisting moment -FL and a vertical upward 

force F.  At any point x along the beam there is a moment F(x - L) = Mx = EI d 2y /dx 2 
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Macaulay’s Method / Singularity Functions 

The basic equation governing the slope and deflection of beams is 

2

2

d y M

dx EI
 , where M is a function of x.  This is derived from the Euler-Bernoulli beam theory, based

on the simplifying assumptions. 

The method of integration of the above equation provides a convenient and effective way of 

determining the slope and deflection at any point of a beam, as long as the bending moment can be 

represented by a single analytical function M(x). However, when the loading of the beam is such 

that two different functions are needed to represent the bending moment over the entire length of 

the beam four constants of integration are required, and an equal number of equations, expressing 

continuity conditions at point of concentrated load, as well as boundary conditions at the supports A 

and B, must be used to determine these constants. If three or more functions were needed to 

represent the bending moment, additional constants and a corresponding number of additional 

equations would be required, resulting in rather lengthy computations. In this section these 

computations will be simplified through the use of the singularity functions.  This is the Macaulay’s 

method. 

For general case of loadings, M(x), can be expressed in the form: 

1 1 1 2 2 3 3( ) ( ) ...M x M x P x a P x a P x a       

where the quantity i iP x a  represents the bending moment at the section ‘x’ due to point load 

iP located at distance ia from the end.  The quantity ix a is a Macaulay bracket defined as 

0 if 

if

i

i

i i

x a
x a

x a x a


  

 

Ordinarily, when integrating  i iP x a we get,

However, when integrating expressions containing Macaulay brackets, we have to do this way: 

Using these integration rules makes the calculation of the deflection of Euler-Bernoulli beams simple 

in situations where there are multiple point loads and point moments. 

The steps for finding deflections by Macaulay’s method are shown by the following example of a 

simply supported beam: 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

www.Jntufastupdates.com 7



Page | 103

1. Write down the bending moment equation placing x on the extreme right hand end of the beam

so that it contains all the loads. Write all terms containing x in angle brackets.

2

1 1 2 32

d y
EI M R x F x a F x b F x c

dx
       

2. Integrate once treating the whole brackets as the variables.

2 2 2 2

1 1 2 3 1
2 2 2 2

x x a x b x cdy
EI R F F F C

dx

  
    

3. Integrate again using the same rules.

3 3 3 3

1 1 2 3 1 2
6 6 6 6

x x a x b x c
EI y R F F F C x C

  
     

4. Use boundary conditions to solve C1 and C2.

5. Solve slope and deflection by putting in appropriate value of x. IGNORE any brackets containing

negative values.
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Example 1: Simply Supported Beam with Eccentric Point Load 

Consider a simply supported beam with a single eccentric 

concentrated load as shown in the figure.   

The notations used in this example 

(a) bending moment = M

(b) shear force = Q

(c) deflection = w  (instead of y)

The first step is to find M. The reactions at the supports A and C are determined from the balance of 

forces and moments as 

In Macaulay's approach we use the Macaulay bracket form of the above expression to represent the 

fact that a point load has been applied at location B, i.e., 
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Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point B, D1= C1 

and D2 = C2 . The above observation implies that for the two regions considered, though the 

equation for bending moment and hence for the curvature are different, the constants of 

integration got during successive integration of the equation for curvature for the two regions are 

the same. 

The above argument holds true for any number/type of discontinuities in the equations for 

curvature, provided that in each case the equation retains the term for the subsequent region in the 

form etc. It should be remembered that for any x, giving the 

quantities within the brackets, as in the above case, -ve should be neglected, and the calculations 

should be made considering only the quantities which give +ve sign for the terms within the 

brackets. 

Note that the constants are placed immediately after the first term to indicate that they go with the 

first term when x < a and with both the terms when x > a. The Macaulay brackets help as a reminder 

that the quantity on the right is zero when considering points with x < a. 
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Boundary conditions: 

Maximum Deflection: 

Deflection at load application point 

Deflection at the mid-point 
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where k = b/L and for a < b we get 0 < k < 0.5. Even when the load is as near as 0.05L from the 

support, the error in estimating the deflection is only 2.6%. Hence in most of the cases the 

estimation of maximum deflection may be made fairly accurately with reasonable margin of error by 

working out deflection at the centre. 

Special case of symmetrically applied load 

Example 2: Simply Supported Beam with Two Point Loads 

The beam shown is 7 m long with an EI value of 200 MN/m2. Determine the slope and deflection at 

the middle of the span. 

P.T.O. 
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Moment-Area Method 

The moment-area theorem is a method to derive the slope, rotation and deflection of 

beams and frames. This theorem was developed by Mohr and later stated namely by Charles E. 

Greene in 1873. This method is advantageous when we solve problems involving beams, especially 

for those subjected to a series of concentrated loadings or having segments with different moments 

of inertia.  If we draw the moment diagram for the beam and then divided it by the flexural 

rigidity(EI), the 'M/EI diagram' results by the following: 

2

2
( )

d y d M M
x dx

dx dx EI EI


    

B. Mohr’s Theorems

Theorem 1: The change in slope between any two points on the elastic curve equals the area of the 

M

EI
diagram between these two points.

B

AB
A

M
dx

EI
  

where, 

 M = bending moment expression as a function of x

 EI = flexural rigidity

 AB = change in slope between points A and B

 A, B = points on the elastic curve

Theorem 2:  The vertical deviation of a point A on an elastic curve with respect to the tangent which 

is extended from another point B equals the moment of the area under the M/EI diagram between 

those two points (A and B). This moment is computed about point A where the deviation from B to A 

is to be determined. 

/

B

A B
A

M
t x dx

EI

 
  

 


where, 

 M = bending moment expression as a function of x

 EI = flexural rigidity

 /A Bt = deviation of tangent at point B with respect to the tangent at point A
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 A, B = points on the elastic curve

Two simple examples are provide below to illustrate these theorems 

Example 1) Determine the deflection and slope of a cantilever as shown.. 

The bending moment at A = MA = FL 

The area of the bending moment diagram AM = F.L2 /2 

The distance to the centroid of the BM diagram from B = xc = 2L/3 

The deflection of B = y b = A M.x c /EI = F.L 3 /3EI 

The slope at B relative to the tan at A = θ b = AM /EI = FL2 /2EI 

Example 2) Determine the central deflection and end slopes of the simply supported beam as 

shown.. 

E = 210 GPa ......I = 834 cm
4
...... EI = 1,7514. 10 

6
Nm 

2 

A1 = 10.1,  8.1, 8/2 = 16.2kNm 

A2 = 10.1,8.2 = 36kNm 

A2 = 10.1,8.2 = 36kNm 

A1 = 10.1,8.1,8/2 = 16,2kNm 
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x1 = Centroid of A1 = (2/3).1,8 = 1,2 

x2 = Centroid of A2 = 1,8 + 1 = 2,8 

x3 = Centroid of A3 = 1,8 + 1 = 2,8 

x4 = Centroid of A4 = (2/3).1,8 = 1,2 

The slope at A is given by the area of the moment diagram between A and C divided by EI. 

θA = (A1 + A2) /EI   =   (16,2+36).10 3 / (1,7514. 10 6) 

=  0,029rads   =   1,7 degrees 

The deflection at the centre (C) is equal to the deviation of the point A above a line that is tangent to 

C.  

Moments must therefore be taken about the deviation line at A. 

δC = (AM.xM) /EI   =   (A1 x1 +A2 x2) / EI   =   120,24.10 3/ (1,7514. 10 6) 

=   0.0686m = 68.6mm 

Conjugate Beam Method 

Conjugate beam is defined as the imaginary beam with the same dimensions (length) as that of the 

original beam but load at any point on the conjugate beam is equal to the bending moment at that 

point divided by EI. The conjugate-beam method is a method to derive the slope and displacement 

of a beam. The conjugate-beam method was developed by H. Müller-Breslau in 1865. Essentially, it 

requires the same amount of computation as the moment-area theorems to determine a beam's 

slope or deflection; however, this method relies only on the principles of statics, so its application 

will be more familiar. 

We know the relationship between the load, shear and bending moment in a beam as follows: 

(a) The relationship between the load ‘w’ at a section with the shear force ‘V’ at that section is

Equation 1: 
dV

w
dx

  ;  and

(b) the relation between the shear force ‘V’ and the bending moment ‘M’at that section is

dM
V

dx
 .  Thus, by differentiating this equation we get, Equation 2:

2

2

d M dV
w

dx dx
  

The basis for the conjugate-beam method comes from the similarity of the above equations with the 

slope and deflection equations of the elastic curve. 

To show this similarity, these equations are shown below. 

Equation 1: 
dV

w
dx

  Equation 2: 
2

2

d M
w

dx
 

Equation 3: 
d M

dx EI


 Equation 4: 

2

2

d y M

dx EI

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Equation 1 is similar to Equation 3. And Equation 2 is similar to Equation 4. The integral forms of 

these equations look as follows: 

Equation 1: V wdx  Equation 2:  M wdx dx  

Equation 3: 
M

dx
EI


 

  
 
 Equation 4: 

M
y dx dx

EI

  
   

  
 

Here the shear V compares with the slope θ, the moment M compares with the displacement y, and 

the external load w compares with the M/EI diagram.  

To make use of this comparison we will now consider a beam having the same length as the real 

beam, but referred here as the "conjugate beam." The conjugate beam is "loaded" with the M/EI 

diagram derived from the load on the real beam. From the above comparisons, we can state two 

theorems related to the conjugate beam: 

Theorem 1: The slope at a point in the real beam is numerically equal to the shear at the 

corresponding point in the conjugate beam. 

Theorem 2:  The displacement of a point in the real beam is numerically equal to the moment at the 

corresponding point in the conjugate beam 

Supports of the Conjugate Beam: 

When drawing the conjugate beam it is important that the shear and moment developed at the 

supports of the conjugate beam account for the corresponding slope and displacement of the real 

beam at its supports, a consequence of Theorems 1 and 2.  
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For example, as shown above, a pin or roller support at the end of the real beam provides zero 

displacement, but a non zero slope. Consequently, from Theorems 1 and 2, the conjugate beam 

must be supported by a pin or a roller, since this support has zero moment but has a shear or end 

reaction. When the real beam is fixed supported, both the slope and displacement are zero. Here 

the conjugate beam has a free end, since at this end there is zero shear and zero moment. 

Corresponding real and conjugate supports are shown below. Note that, as a rule, neglecting axial 

forces, statically determinate real beams have statically determinate conjugate beams; and statically 

indeterminate real beams have unstable conjugate beams. Although this occurs, the M/EI loading 

will provide the necessary "equilibrium" to hold the conjugate beam stable. 

Some Examples of Conjugate Beams: 
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Analysis Proceedure: 

The following procedure provides a method that may be used to determine the displacement and 

slope at a point on the elastic curve of a beam using the conjugate-beam method. 

Conjugate beam 

 This beam has the same length as the real beam and has corresponding supports as listed

above.

 In general, if the real support allows a slope, the conjugate support must develop shear; and

if the real support allows a displacement, the conjugate support must develop a moment.

 The conjugate beam is loaded with the real beam's M/EI diagram. This loading is assumed to

be distributed over the conjugate beam and is directed upward when M/EI is positive and

downward when M/EI is negative. In other words, the loading always acts away from the

beam.

Equilibrium 

 Using the equations of statics, determine the reactions at the conjugate beams supports.

 Section the conjugate beam at the point where the slope θ and displacement Δ of the real

beam are to be determined. At the section show the unknown shear V' and M' equal to θ

and Δ, respectively, for the real beam. In particular, if these values are positive, and slope is

counterclockwise and the displacement is upward.

Example 1: 

Determine the slope and deflection of point A of the of a cantilever beam AB of length L and 

uniform flexural rigidity EI. A concentrated force P is applied at the free end of beam. 
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Solution: The conjugate beam of the actual beam is shown in Figure (b). A linearly varying 

distributed upward elastic load with intensity equal to zero at A and equal to PL/EI at B. The free-

body diagram for the conjugate beam is shown in Figure 8(c). The reactions at A of the conjugate 

beam are given by 

The slope at A, and the deflection at the free end A of the actual beam in Figure (d) are respectively, 

equal to the “shearing force” and the “bending moment” at the fixed end A of the conjugate beam 

in 

Figure (c). 
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