UNIT-V

Deflection of Beams

Introduction

The deformation of a beam is usually expressed in terms of its deflection from its original unloaded
position. The deflection is measured from the original neutral surface of the beam to the neutral
surface of the deformed beam. The configuration assumed by the deformed neutral surface is
known as the elastic curve of the beam.

\ Elastic Curve

~ (Deformed shape)

Figure: Elastic curve

A. Methods of Determining Beam Deflections

Methods for the determination of beam deflections include:

Double-Integration Method
Macaulay’s Method
Moment-Area Method
Conjugate-beam Method

Strain - Energy method (Castigliano’s Theorem)
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Virtual work method

Of these methods, the first four shall be discussed in this course.

The stress, strain, dimension, curvature, elasticity, are all related, under certain assumption, by the
theory of simple bending. This theory relates to beam flexure resulting from couples applied to the
beam without consideration of the shearing forces.

B. Superposition Principle

The superposition principle is one of the most important tools for solving beam loading problems
allowing simplification of very complicated design problems.
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For beams subjected to several loads of different types the resulting shear force, bending moment,
slope and deflection can be found at any location by summing the effects due to each load acting
separately to the other loads.

C. Nomenclature

e = strain

E = Young's Modulus = o /e (N/m?)

y = distance of surface from neutral surface (m).
R = Radius of neutral axis (m).

| = Moment of Inertia (m* - more normally cm?)
Z = section modulus = I/ymax(m3 - more normally cm?)
F = Force (N)

x = Distance along beam

5 = deflection (m)

6 = Slope (radians)

o = stress (N/m?)

D. Review of Simple Bending

A straight bar of homogeneous material is subject to only a moment at one end and an equal and
opposite moment at the other end...

M
Fyl o RIS Neutral Axis | /Y
E

Assumptions

The beam is symmetrical about Y-Y. The traverse plane sections remain plane and normal to the
longitudinal fibres after bending (Beroulli's assumption). The fixed relationship between stress and
strain (Young's Modulus)for the beam material is the same for tension and compression ( o= E.e )

Consider two section very close together (AB and CD).

After bending the sections will be at A'B' and C'D' and are no longer parallel. AC will have extended
to A'C' and BD will have compressed to B'D'

The line EF will be located such that it will not change in length. This surface is called neutral
surface and its intersection with Z_Z is called the neutral axis

The development lines of A'B' and C'D' intersect at a point 0 at an angle of 6 radians and the radius
of E'F'=R

Let y be the distance(E'G') of any layer H'G' originally parallel to EF..Then

H'G'/E'F' =(R+y)0 /R 6 = (R+y)/R

And the strain e at layer H'G' =
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e=(H'G-HG) /HG = (H'G'-HG) / EF = [(R+y)B-R B8] /RO =y /R

The accepted relationship between stress and strain is o= E.e Therefore

c=Ee=E.y/R
c/E=y/R

Therefore, for the illustrated example, the tensile stress is directly related to the distance above the
neutral axis. The compressive stress is also directly related to the distance below the neutral axis.
Assuming E is the same for compression and tension the relationship is the same.

As the beam is in static equilibrium and is only subject to moments (no vertical shear forces) the
forces across the section (AB) are entirely longitudinal and the total compressive forces must

balance the total tensile forces. The internal couple resulting from the sum of ( 0.dA .y) over the
whole section must equal the externally applied moment.

!
f’l VI\ = t
{ ™ ‘ 7
\

' h\"\.“____ P /‘M '

zuf

>

Y(c.8A ) =0 therefore Y (c.z dy)=0

_.y_E | E o = E vy =
As o= R therefore R Y ly.8A)=0 and = Yiy. ziy) =0

This can only be correct if 5(y8a) or 2(y.z.8y) is the moment of area of the section about the neutral
axis. This can only be zero if the axis passes through the centre of gravity (centroid) of the section.

The internal couple resulting from the sum of ( 6.dA .y) over the whole section must equal the
externally applied moment. Therefore the couple of the force resulting from the stress on each area
when totalled over the whole area will equal the applied moment

The force on each area element = o. 3A = o. z. 8y

The resulting moment = y.o. 8A = a. Z. ¥. &y
The total moment M =¥(y.«.3A ) and } (=.z.y 3y)
Using Ey =a
R
_E 2 . E - 2.
M = sz(y L&A ) and R ¥ (z.y“y)

Py 25 } is the Moment of Inertia of the section(l)

From the above the following important simple beam bending relationship results
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It is clear from above that a simple beam subject to bending generates a maximum stress at the
surface furthest away from the neutral axis. For sections symmetrical about Z-Z the maximum

compressive and tensile stress is equal.
Omax = Ymax- M / |
The factor | /ymax is given the name section Modulus (Z) and therefore
Omax=M/Z

Values of Z are provided in the tables showing the properties of standard steel sections.
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Differential Equation for the Elastic Curve

Below is shown the arc of the neutral axis of a beam subject to bending.

a0

=3
1 e
1
l
i
& 5 I|‘_ !
i
— 6X

For small angle dy/dx =tan 6 =96

The curvature of a beam is identified as d® /ds = 1/R
In the figure 68 is small and &x; is practically = &s; i.e ds /dx =1

1 _M_dYy
R El dxz2
d 2 M
Slope =8 =2Y = (d dx = | M dx
ope 555) El
The deflection between limits is obtained by further integration.
) / M
Deflection =x= |odx = | dy |dx = M dx
\dx El

It has been proved earlier that dM/dx = -S and dS/dx = w = - d*M /dx’

Where S = the shear force M is the moment and w is the distributed load /unit length of beam.
Therefore

2 3
_dy /[ d dy dy
S = Y 1= El W=
A <El a2, dxd and -w= El axt
If w is constant or a integrable function of x then this relationship can be used to arrive at general

expressions for S, M, dy/dx, or y by progressive integrations with a constant of integration being

added at each stage. The properties of the supports or fixings may be used to determine the
constants. (x= 0 - simply supported, dx/dy = 0 fixed end etc)

In a similar manner if an expression for the bending moment is known then the slope and deflection
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can be obtained at any point x by single and double integration of the relationship and applying

suitable constants of integration of d°y _ M
dx* El

Evaluation of deflection by double-integration method

A. Example 1- Cantilever beam

Consider a cantilever beam (uniform section) with a single concentrated load at the end. At the
fixedendx=0,dy =0, dy/dx =0

From the equilibrium balance ..At the support there is a resisting moment -FL and a vertical upward
force F. At any point x along the beam there is a moment F(x - L) = M, = El d %y /dx ?

2
ady - ‘ ;
El = -F (L-x Integratin
oY, =-F(L-x) Integrating

2
El zi =-F [Lx -—‘é ) o+ G1 -...(C,=0 because dy/dx =0 atx =0)

Integrating again

2 .3
Ely =-F (%" - ’é—) +C,....(C =0 becausey =0 atx=0)

| dyy _ _F 2 L4_ FL2 S F. 2 L __FL
Atend A (dx‘)A EI(L i)—‘-‘—l"— and yz=- ‘KEHE)‘_-_
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Macaulay’s Method / Singularity Functions

The basic equation governing the slope and deflection of beams is

d 2
d_Z = E' where M is a function of x. This is derived from the Euler-Bernoulli beam theory, based
X

on the simplifying assumptions.

The method of integration of the above equation provides a convenient and effective way of
determining the slope and deflection at any point of a beam, as long as the bending moment can be
represented by a single analytical function M(x). However, when the loading of the beam is such
that two different functions are needed to represent the bending moment over the entire length of
the beam four constants of integration are required, and an equal number of equations, expressing
continuity conditions at point of concentrated load, as well as boundary conditions at the supports A
and B, must be used to determine these constants. If three or more functions were needed to
represent the bending moment, additional constants and a corresponding number of additional
equations would be required, resulting in rather lengthy computations. In this section these
computations will be simplified through the use of the singularity functions. This is the Macaulay’s
method.

For general case of loadings, M(x), can be expressed in the form:
M(X) =M, (X)+P,(x—a,)+ P, (x—a,) + P, (x—a;) +...

where the quantity P <X —a1.> represents the bending moment at the section ‘x’ due to point load

P. located at distance @, from the end. The quantity (x—a1.> is a Macaulay bracket defined as

0 if :
(x_ai>:{ I X<a
x—a Iifx>aq

Ordinarily, when integrating P (x—ai ) we get,

1.2
— — ar

/P(r—a.) dr =P +C

However, when integrating expressions containing Macaulay brackets, we have to do this way:

2
/P(r _ gy de= P#+ c.,

Using these integration rules makes the calculation of the deflection of Euler-Bernoulli beams simple
in situations where there are multiple point loads and point moments.

The steps for finding deflections by Macaulay’s method are shown by the following example of a
simply supported beam:

www.Jntufastupdates.com 7



4 X e
“ £ r
b \

1a—h1
vt x P 3
Ty i £

f F
R R

1. Write down the bending moment equation placing x on the extreme right hand end of the beam
so that it contains all the loads. Write all terms containing x in angle brackets.

218 M =R () (x-2) F, (x-b) - Fy(x—c)

2. Integrate once treating the whole brackets as the variables.

dy o ()0 (x-a) | (xeb) o (x-c)
Bl =R R R R,

3. Integrate again using the same rules.

3 3 3 3
El y=R1<X6> —F1<X_6a> —Fz<x_6b> o,

4. Use boundary conditions to solve C; and C,.

5. Solve slope and deflection by putting in appropriate value of x. IGNORE any brackets containing

negative values.
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Example 1: Simply Supported Beam with Eccentric Point Load
}_i
P
/HC Consider a simply supported beam with a single eccentric
a=08L ®p & concentrated load as shown in the figure.

l | |
I il |

y \/ The notations used in this example

(a) bending moment =M

(b) shear force=Q

(c) deflection=w (instead ofy)

~

The first step is to find M. The reactions at the supports A and C are determined from the balance of

forces and moments as

RA + R(_‘v == P, LRCV = Pa
Therefore £ 4 = Pb/L and the bending moment at a point D between Aand B (() < ¢ < g)is given by
M = Rz = Pbz/L

Using the moment-curvature relation and the Euler-Bernoulli expression for the bending moment, we have

d*w  Pbx
e =71
Integrating the above equation we get, for () < ¢ < q.
dw  Pba?
3
Elw= Fg’z Y Ca+Cy (i)
Alr=a_
dw Pba? ..
EIE(a._) =37 + Cy (iii)
3
Elw(a_) = F‘; bL“' L Ca+Cy  (iv)

For a point D in the region BC (g < 7 < [,). the bending moment is
M = R,z — P(z —a) = Pbz/L — P(z —a)

In Macaulay's approach we use the Macaulay bracket form of the above expression to represent the
fact that a point load has been applied at location B, i.e.,
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Pbx

M=———Plr—a
>~ Pz —a)
Therefore the Euler-Bernoulli beam equation for this region has the form
d?w  Phr
FIl—=——-Plr—a
dz? L ( )

Integrating the above equation, we getfor g < ¢ < [,
dw  Pbx? (x —a)’

Er% = _pP D «
d 2L g t5 (v)
Pba? x—a)? .
Flw = 6L —P< g ) + Dyx + Dy (vi)
Al = a4
dw Pba? ..
EIE(Q_F) = T + D]_ (Vll)
3
Elw(a) = 2% 4 D+ D, (i)

6L

Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point B, D;= C;
and D, = C, . The above observation implies that for the two regions considered, though the
equation for bending moment and hence for the curvature are different, the constants of
integration got during successive integration of the equation for curvature for the two regions are
the same.

The above argument holds true for any number/type of discontinuities in the equations for
curvature, provided that in each case the equation retains the term for the subsequent region in the
form (T — @)", (& = B)", (T — )" etc_ It should be remembered that for any x, giving the
guantities within the brackets, as in the above case, -ve should be neglected, and the calculations
should be made considering only the quantities which give +ve sign for the terms within the
brackets.

Reverting to the problem, we have

d?w  Pbx
EI(I.I'E —T—P(I—Ci>
It is obvious that the first term only is to be considered for 7 <7 g and both the terms for ¢ > @ and the solution is
dw [ Phz? P{z —a)?
El— = oy - —
& [ 5L 1} 3
Pbz? Plx —a)®
EIM':|:W+01I+CQ}—%

Note that the constants are placed immediately after the first term to indicate that they go with the
first term when x < a and with both the terms when x > a. The Macaulay brackets help as a reminder
that the quantity on the right is zero when considering points with x < a.
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Boundary conditions:

Asqgp=0atr =0.C2=0As0asy =0atyr = L.

2 P(L — 3
{PbL +01L}_Q:0
6
or,
Pb
C,=—(L*-1?).
\= (12— )
Hence.
dw | Pbx* Pb _, P{z — a)?
B =2 et Y| =
Pbz* Pbx, _, Plx —a)?
Elw= 57 _E(L —b) -—

Maximum Deflection:

For ! to be maximum, dw/dr = (). Assuming that this happens for 3 <C g we have

Pbz®> Pb

(=) =0
2L ﬁL( )
or
(LZ _ b2)112
r=rtc———
V3

Clearly ¢ < () cannot be a solution. Therefore, the maximum deflection is given by
1 2 _ p233/2 Pb(L? — b2 3/2
Bl = = {Pb(L 5) } — ( )
6v3L 6v3L

3
or,
Pb(L2 _ b2 )3,‘2
~ 9V3EIL

Deflection at load application point

Atx = a, ie. at point B, the deflection is
Pba*  Pha Phba
L —b) =

Elwes = Ry = L (g2 b2_L2
e S ATA )=\ @+ )
or
B Pa?h?
B = T3TEI

Deflection at the mid-point

It is instructive to examine the ratio of Way /w(L/2) Atz = L2

PbL?  Pb Pb [3L2
ETw(L/2) = S ([2_p)y= D2 2
w(L/2) 48 12( ) 12 { 4 }
Therefore,
Wmax_A(L2=F)¥2 A(1 =B 16(1— k)2

w(L/2)  3V3L[2 —1?] 3V3[2-5] 3v3(3-4k2)
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where k = b/L and for a < b we get 0 < k < 0.5. Even when the load is as near as 0.05L from the
support, the error in estimating the deflection is only 2.6%. Hence in most of the cases the
estimation of maximum deflection may be made fairly accurately with reasonable margin of error by
working out deflection at the centre.

Special case of symmetrically applied load

Wheng = h = L/Q. for ! to be maximum

-2 1

/3 2
and the maximum deflection is
_ P(L/2)b[L% — (L/2)*? PL?

Wmax — -

9v3EIL T TARET

w(L/2) .

Example 2: Simply Supported Beam with Two Point Loads

The beam shown is 7 m long with an El value of 200 MN/m?. Determine the slope and deflection at
the middle of the span.

- >‘: .
" 4.5 m N
T m SIII kN 40[kN
¥r ox 1 }
If 1
Ry Fq
P.T.O.
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SOLUTION

First solve the reactions by taking moments about the right end.
30x5+40x25=7R; hence R; =35.71 kN
Ry =70-35.71 =3429 kN
Next write out the bending equation.
El g°—¥ =M =35710{x] - 30000[x — 2] -40000[x — 4.5]
=
Integrate once treating the square bracket as the variable.

......

BOUNDARY CONDITIONS
x=0,y=0 andx=7 y=0
Using equation 2 and putting x = 0 and y = 0 we get

EI(O)=357|0%-30000[O——_62]—3-4OOOOW+A(0)+B

Ignore any bracket containing a negative value.
0=0-0-0+0+B hence B=0
Using equation 2 again but this time x=7and y =0

3 k) 3
EI(0) =357|0%-30000%-40000w +A(7)40

Evaluate A and A =-187400
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Moment-Area Method

The moment-area theorem is a method to derive the slope, rotation and deflection of
beams and frames. This theorem was developed by Mohr and later stated namely by Charles E.
Greene in 1873. This method is advantageous when we solve problems involving beams, especially
for those subjected to a series of concentrated loadings or having segments with different moments
of inertia. If we draw the moment diagram for the beam and then divided it by the flexural
rigidity(El), the 'M/EI diagram' results by the following:

d’y do M M
—=—=— =60(X)=|—0dx
dx* dx El ) jEI

B. Mohr’s Theorems

Theorem 1: The change in slope between any two points on the elastic curve equals the area of the

M
E diagram between these two points.

e M =bending moment expression as a function of x

e El=flexural rigidity
e 0,5 =change in slope between points A and B

e A, B=points on the elastic curve

Theorem 2: The vertical deviation of a point A on an elastic curve with respect to the tangent which
is extended from another point B equals the moment of the area under the M/EI diagram between
those two points (A and B). This moment is computed about point A where the deviation from Bto A
is to be determined.

B( M
tys :IA (ajxdx

where,
e M =bending moment expression as a function of x

e El=flexural rigidity

o 1,5 =deviation of tangent at point B with respect to the tangent at point A
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e A, B=points on the elastic curve

Two simple examples are provide below to illustrate these theorems

Example 1) Determine the deflection and slope of a cantilever as shown..

B diagram

The bending momentat A= M, =FL

The area of the bending moment diagram Ay, = F.L?/2

The distance to the centroid of the BM diagram from B = x. = 2L/3
The deflection of B=y , = A y.x . /El = F.L > /3El

The slope at B relative to the tan at A= 0, = Ay /El = FL? /2EI

Example 2) Determine the central deflection and end slopes of the simply supported beam as

shown..
E=210GPa.....| =834 cm*..... El = 1,7514. 10 °®Nm 2
10kN 5 10kN
c c

=" ' I
i | I T e bt ],::_: e e I B

- 4m -

10kN - o

Bending Moment Diagram

A;=10.1, 8.1,8/2 =16.2kNm
A;=10.1,8.2 =36kNm
A;=10.1,8.2 = 36kNm
A;=10.1,8.1,8/2 = 16,2kNm
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X, = Centroid of A; = (2/3).1,8=1,2
X, = Centroid of A, =1,8+1=2,8
X3 = Centroid of A;=1,8+1=2,8
X4 = Centroid of A, =(2/3).1,8=1,2

The slope at A is given by the area of the moment diagram between A and C divided by EI.

0a= (A, +A,) /El = (16,2+36).10%/(1,7514.10°)
= 0,029rads = 1,7 degrees

The deflection at the centre (C) is equal to the deviation of the point A above a line that is tangent to
C.
Moments must therefore be taken about the deviation line at A.

8c = (Awxm) /EI = (A1 x; +A, %) /El = 120,24.103/(1,7514. 10 %)
= 0.0686m = 68.6mm

Conjugate Beam Method

Conjugate beam is defined as the imaginary beam with the same dimensions (length) as that of the
original beam but load at any point on the conjugate beam is equal to the bending moment at that
point divided by El. The conjugate-beam method is a method to derive the slope and displacement
of a beam. The conjugate-beam method was developed by H. Mller-Breslau in 1865. Essentially, it
requires the same amount of computation as the moment-area theorems to determine a beam's
slope or deflection; however, this method relies only on the principles of statics, so its application
will be more familiar.

We know the relationship between the load, shear and bending moment in a beam as follows:

(a) The relationship between the load ‘W’ at a section with the shear force ‘V’ at that section is

. dv
Equation 1: — =—-W; and
dx

(b) the relation between the shear force ‘V’ and the bending moment ‘M’at that section is

dM . o . . d’™M _dv
—— =V . Thus, by differentiating this equation we get, Equation 2: ==
dx dx dx

The basis for the conjugate-beam method comes from the similarity of the above equations with the
slope and deflection equations of the elastic curve.

To show this similarity, these equations are shown below.

Equation 1 —dV w i
uati : =— ; . _M:_
dx Equation 2: e W
M d’y M
Equation 3: = i R
dx _EI Equation 4: o El
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Equation 1 is similar to Equation 3. And Equation 2 is similar to Equation 4. The integral forms of
these equations look as follows:

Equation1: V = I—de Equation2: M = j(I—WdX)dX

M
Equation 3: € = I(Ej dX | Equation4: y= I{j(%jdx} dx

Here the shear V compares with the slope 6, the moment M compares with the displacement y, and

the external load w compares with the M/EI diagram.

To make use of this comparison we will now consider a beam having the same length as the real
beam, but referred here as the "conjugate beam." The conjugate beam is "loaded" with the M/EI
diagram derived from the load on the real beam. From the above comparisons, we can state two
theorems related to the conjugate beam:

Theorem 1: The slope at a point in the real beam is numerically equal to the shear at the
corresponding point in the conjugate beam.

Theorem 2: The displacement of a point in the real beam is numerically equal to the moment at the
corresponding point in the conjugate beam

Supports of the Conjugate Beam:

When drawing the conjugate beam it is important that the shear and moment developed at the
supports of the conjugate beam account for the corresponding slope and displacement of the real
beam at its supports, a consequence of Theorems 1 and 2.
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Real Beam

Conjugate beam

Fixed Support Free End
=0 V=0
Free End Fixed Support
y£0 M=0
0+0 V=0
Hinged support Hinged support
y=0 M=0
=0 V=0

Middle support

\r:O

# continuous

Middle hinge

M=0

V" continuous

Middle hinge

v = continuous

A1)

{ discontinuous

Middle support

M continuous

I discontinuous

i

For example, as shown above, a pin or roller support at the end of the real beam provides zero
displacement, but a non zero slope. Consequently, from Theorems 1 and 2, the conjugate beam
must be supported by a pin or a roller, since this support has zero moment but has a shear or end
reaction. When the real beam is fixed supported, both the slope and displacement are zero. Here
the conjugate beam has a free end, since at this end there is zero shear and zero moment.
Corresponding real and conjugate supports are shown below. Note that, as a rule, neglecting axial
forces, statically determinate real beams have statically determinate conjugate beams; and statically
indeterminate real beams have unstable conjugate beams. Although this occurs, the M/EI loading
will provide the necessary "equilibrium" to hold the conjugate beam stable.

Some Examples of Conjugate Beams:
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Real beam Conjugate beam

simple beam A A A JAY
Cantilever beam ﬂ E
Left-end Overhanging beam 7AN Ay JAN
Both-end overhanging beam vy JAY © E
Gerber's beam (2span) - O Ay yARIAY A © JAN
Gerber's beam (3span) - Ay O—=0 AR ANIIVAY © FANIAY AN

Analysis Proceedure:

The following procedure provides a method that may be used to determine the displacement and
slope at a point on the elastic curve of a beam using the conjugate-beam method.

Conjugate beam

e This beam has the same length as the real beam and has corresponding supports as listed

above.

e Ingeneral, if the real support allows a slope, the conjugate support must develop shear; and

if the real support allows a displacement, the conjugate support must develop a moment.

e The conjugate beam is loaded with the real beam's M/EI diagram. This loading is assumed to
be distributed over the conjugate beam and is directed upward when M/El is positive and
downward when M/EI is negative. In other words, the loading always acts away from the

beam.
Equilibrium
e Using the equations of statics, determine the reactions at the conjugate beams supports.

e Section the conjugate beam at the point where the slope 8 and displacement A of the real
beam are to be determined. At the section show the unknown shear V' and M' equal to 6
and A, respectively, for the real beam. In particular, if these values are positive, and slope is

counterclockwise and the displacement is upward.

Example 1:

Determine the slope and deflection of point A of the of a cantilever beam AB of length L and
uniform flexural rigidity EI. A concentrated force P is applied at the free end of beam.
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A % B
. L |

(a) A cantilever beam (actual beatn)

| L [
N il

A
7 e |
Va I 7 "
(c) Free-body diagram for the cenjugate beam
F
a ‘
_‘_r“_/_/_'_”_'_'!_ .
ﬁﬂ ,_-r-"f .
I Lﬂﬁ"a
L

:;!

(d) Deflections of the cantilever beam (actual beam)

Solution: The conjugate beam of the actual beam is shown in Figure (b). A linearly varying
distributed upward elastic load with intensity equal to zero at A and equal to PL/El at B. The free-
body diagram for the conjugate beam is shown in Figure 8(c). The reactions at A of the conjugate
beam are given by

1 FL PR |
gl g FL_FL
a=grlegr 2.&![‘”

_ ' sl
M‘_(lx[‘xﬂjxﬁ_&[ ]]
2 EI 3 O3RNk

The slope at A, and the deflection at the free end A of the actual beam in Figure (d) are respectively,

equal to the “shearing force” and the “bending moment” at the fixed end A of the conjugate beam
in

Figure (c).
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