

| UNII-5                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSOL I DA TION                                                                                                                                              |
| INTRODU CATION :-                                                                                                                                             |
| The property of soil mass at which the change in volume<br>or decrease in volume takes place under compressive forces<br>is known as compressibility of soil. |
| compression of solid particles and water in the voids                                                                                                         |
| (a) compression of Solid particles and water in the voids                                                                                                     |
| 6 Compression attid expulsion of air in the voids                                                                                                             |
| @ Explaision of Water in rioids.                                                                                                                              |
| the expulsion of all by compaction, consolidation.                                                                                                            |
| Expulsion of air + water + adsorbed water + plastic readjust                                                                                                  |
| ment of solid particles (settlement)                                                                                                                          |
|                                                                                                                                                               |
| Stager of Concolidation =                                                                                                                                     |
| consolidation of soil deposit can be divided into 2 stage                                                                                                     |
| () Intial consolidation                                                                                                                                       |
| Dinciry Concolidation                                                                                                                                         |
| <li>Secondary Consolidation.</li>                                                                                                                             |
| @ Intial consolidation :- When load is applied to a                                                                                                           |
| partially saturated sorts, decreases in volume occur due to                                                                                                   |
| expulsion of air in the voids                                                                                                                                 |
| * The Reduction in the volume of the sor) just actives                                                                                                        |
| the application of the load is Known as "inteal consoli.<br>dation" (or "inteal compression".                                                                 |
|                                                                                                                                                               |
| @ primary consolidation & Atter intial consolidation, turther                                                                                                 |
| reduction occurs due to expulsion of water from voids                                                                                                         |
| * The Reduction in volume due to expulsion of water                                                                                                           |
| is Known as " primary consolidation"                                                                                                                          |
|                                                                                                                                                               |

Scanned by Cam\$canner

ALA



Scanned by Camgcanner



Scanned by CamScanner

And Definitions:  
where Definitions:  

$$a_{v} = -\frac{de}{de};$$

$$a_{v$$

www.Jntufastupdates.com Scanned by Cam&canner

$$i H_{\zeta} = \frac{100}{G} = \frac{100.2}{267 \times 50 \times 1} = 142 \text{ cm} \cdot 142 \text{ mm}$$

$$i H_{\zeta} = \frac{100}{G} = \frac{25 - 162}{14.2} = 0.76 \cdot 1.$$

$$i \Delta e = \frac{H - H_S}{H_{\zeta}} = \frac{25 - 162}{14.2} = 0.76 \cdot 1.$$
(3) In a consultation test the following results can be abted. The load pase changed from 50 K by m> tand 100 K by m, obidination is changed from 0.4 to 0.65 the determine CO-efficient of the compressibility of and compressibility of and compressibility of and compressibility of and compressibility of the compressib

Scanned by Cam5canner

## · DH = 0.11m

A clay stratum of sm thick, has initial void ratio of 1.5 methods and effective over boad pressure of 120 KN/mr, when sample is subjected to locrease of pressure, 120 KN/mr, the void notio reduces to buy, determine the final settlement of the stratum. 16 C . B & HA

Given data is

H=5m Po=1.5 , P=1.44

001 = 120KN/m2

Proceedse of pressure  $\sigma_1 = \sigma_0^1 + \Delta \sigma_1^1$  $\dot{\sigma_1} = 120 + 120$ 

1 240 KD/m2

· AH = MVX HXAO

 $\frac{\alpha_{U}}{1+e_{0}} = \frac{\Delta e}{\Delta \sigma} \times \frac{1}{1+e_{0}}$  $m_V =$  $m_v = \frac{1.5 - 1.00}{120} \times \frac{1}{1 + 1.5} = 2 \times 10^{-4} m^2/k\mu$ 

$$\circ \Delta H = 2 \times 10^{-4} \times 5 \times 120 = 0.12 m$$

A saturated so has compression index cc=0.27, it void rates at a stress of 125 KO/m2 is @ 2:94 and its permeabirity El 3.5 × 10-8 cm/sec. compute the change in void ratio it effective stress is increased 18.7.5 KN/m2. The Settlement of the soil ef is thickness is 5cm.

Sole-  
globalen data is  
compression index (cc) = 
$$(c - 2\pi)$$
  
 $e = 2 \cdot 04$   
 $C = 2 \cdot 5 \times 10^{-2} \text{ cm/sec}$   $\nabla o' = 125 \times 10 \text{ m}^{-2}$   
 $e = 2$   $\nabla_1' = 187 \cdot 5 \times 10 \text{ m}^{-2}$   
 $\Delta H = 7$  and  $H = 5 \text{ cm}$   
 $C_c = \frac{-\Delta e}{\log_1 o(\frac{51}{50})}$   
 $e \cdot 27 = \frac{e' - e}{\log_1 o(\frac{157 \cdot 5}{125})}$   
 $e \cdot 27 \times (\log(\frac{157 \cdot 5}{125})] = 2 \cdot 04 - e$ 

www.Jntufastupdates.com

Scanned by Cam6canner

Scanned by Cam\$canner

$$\begin{aligned} h_{H} &= \frac{U \times CC}{|1 + C_{0}} \times \log_{10} \left( \frac{O_{11}}{O_{01}} \right) \quad (O_{1} = O_{01} + \Delta \sigma^{1}) \\ A_{H} &= \frac{U \times CC}{|1 + 1 + 2} \Rightarrow \log_{10} \left( \frac{UO_{2} + 470}{(02 + 97)} \right) \\ A_{H} &= \frac{U \times CC}{|1 + 1 + 2} \Rightarrow \log_{10} \left( \frac{UO_{2} + 970}{(02 + 97)} \right) \\ (A_{H} &= O_{10} + O_{10$$

Scanned by Cam8canner

Quartity of water entering the soil   

$$\therefore S(t_0) = V + A$$
  
 $O_{t_0} = V + duxdy$   
 $\therefore Q_{out} = (V + \frac{o_V}{o_E} dz) dudy$   
 $V(t) of Water & urezes out
 $\Delta Q = O_{out} - Q(t_0)$   
 $= (V + \frac{o_V}{o_E} dz) dudy - vdudy$   
 $z + vdxdy + \frac{o_V}{o_E} dudy - vdudy$   
 $z + vdxdy + \frac{o_V}{o_E} dudy - vdudy$   
 $w = -\frac{A_V}{V_0} \times \frac{1}{\Delta t_0}$   
 $M_V = -\frac{A_V}{V_0} \times \frac$$ 

Scanned by Cam§canner

$$Cv = \frac{\partial^2 u}{\partial 2^2} = \frac{\partial u}{\partial t}$$
  

$$Ev = \frac{c}{RWmv}$$
 CrCo-edfi entot  
Gosolodorm